What the UVM Catalogue says about CHEM 201 - Advanced Chemistry Laboratory: "Discussion and laboratory experiments using spectroscopy techniques (mass spectrometry, NMR, IR, UV/visible, and atomic spectroscopy) to solve problems in analytical, physical, and inorganic chemistry."

And that is what we hope we have for you in CHEM 201:

- Infrared spectroscopy in lab 1 and again in lab 2 & 4
- NMR spectroscopy in lab 3 and again in lab 4
- UV/visible and excitation/emission (fluorimetry) spectrometry in lab 2
- Inductively coupled plasma (ICP) atomic emission spectroscopy in lab 5
- Mass spectrometry in lab 6

Learning Goals:

- To apply knowledge of chemical and physical principles to the solution of qualitative and quantitative chemical problems
- To understand the interplay of observational data, hypotheses, and hypothesis-driven experimentation through application of the scientific method
- To become proficient in chemical laboratory techniques and apply these techniques to practical and current problems in research
- To be able to read and critically evaluate the chemical and scientific literature
- To learn to present scientific data clearly and effectively through both written and verbal communication

Prerequisites that are important:

- CHEM 165 (strongly recommended) and CHEM 260 (recommended, but not required) – Because CHEM 201 is the place where we will put in practice the knowledge in quantum chemistry, CHEM 165 is required and CHEM 260 is recommended to have been completed or taken simultaneously with CHEM 201. However, the basic knowledge required from CHEM 165 and some of CHEM 260 will be repeated in CHEM 201 lectures.
- CHEM 142 or 144 – means you have finished the 1st 2-years of chemistry. Note: it is possible to take CHEM 201 concurrently with CHEM 144, but it is not advised.
- CHEM 221 or concurrent enrollment – CHEM 221 is not really a prerequisite for CHEM 201, but why not learn about the instrumentation in CHEM 221 while you are working with them in CHEM 201?

Lecture:

Mon., Wed., & Fri., 10:50 - 11:40 am, Waterman 419

The foci of Advanced Chem Lab are the laboratory experiments and the lab write-ups and presentation. The purpose of the class time is to provide lectures about the chemistry and instrumentation that will be in each laboratory. As such, we won't need to meet for 3 class days a week. See calendar of classes for which days class will meet.

Laboratory:

Wed., 1:15 - 7:15 pm, Cook A105 & Cook A215, the 2nd floor NMR/GCMS room

Text:

No text covers the diverse laboratories in the course. Readings will be provided as papers from the scientific literature and chapters from books. Students will also have to search the literature for additional information relevant to particular laboratories.

Course Instructor:

Dwight E. Matthews 656-8114 Cook A121

Graduate Teaching Assistants:

Robert Tracy Cook A140 – Expts 1, 2, & 6
Kevin Fischer Cook A206/A224 – Expts 3, 4, & 5
Office hours:
Scheduled per student need

UVM Policy on Absences:
Religious Holidays: Students have the right to practice the religion of their choice. Students should submit in writing by the end of the 2nd full week of classes their documented religious holiday schedule for the semester if there are any conflicts with the class or laboratory schedule.

Inter-collegiate Athletics: Members of UVM varsity and junior varsity teams are responsible for documenting in writing any conflicts between their planned athletic schedule and the class (& laboratory) schedule by the end of the 2nd full week of classes.

UVM Policy on Academic Integrity:
Offenses against the Code of Academic Integrity are deemed serious and insult the integrity of the entire academic community. Any suspected violations of the code are taken very seriously and will be forwarded to the Center for Student Ethics & Standards for further investigation. Details

How the course grade is determined:

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written lab reports (5 x50 points each - see link on lab reports)</td>
<td>250</td>
<td>72%</td>
</tr>
<tr>
<td>Oral lab report (1 x50)</td>
<td>50</td>
<td>14%</td>
</tr>
<tr>
<td>Lab performance and lab notebook</td>
<td>30</td>
<td>8%</td>
</tr>
<tr>
<td>Participation during oral presentations</td>
<td>20</td>
<td>6%</td>
</tr>
<tr>
<td>Total:</td>
<td>350</td>
<td>100%</td>
</tr>
</tbody>
</table>

Failure to submit a lab report: any missing lab report will be assigned a grade of ~40 points.

Update the literature used for the various labs. Bring me (DEM) a good article from the literature or chapter from a book reviewing or discussing a key aspect of any of the labs that is newer and better than the existing references already cited for the lab, and I will give you 5 points up to a maximum of 30 points.

More Information About Chem 201:

Lab safety:
- You will continue the same laboratory safety practices in Chem 201 as per your earlier labs at UVM in the Dept. of Chemistry.
- In addition, you will be responsible for knowing what chemicals and what procedures are being used in advance of each laboratory. You will be expected to come to the laboratory already equipped with the necessary safety information concerning chemicals to be used in that laboratory.
- You can get the necessary safety information from the Chem. Dept Lab Safety page including:
 - Material Safety Data (MSDS) info.

Lab notebooks:
Yes you need to keep a laboratory notebook. The notebook is worth up to 9% of your grade. The usual is expected with regard to the notebook:
- Mark your notebooks clearly with your name and address.
- Be sure you have your notebook with you when you come to lab. You will have points taken off and you may be dismissed from the lab if you do not have your notebook.
- Each day’s entry will be preceded by an entry of the date of work.
- All entries will be in permanent ink.
- All entries will be readily readable! Points will be deducted for bad hand-writing and ambiguous numbers.
- All data that needs to be written down (e.g. a weight from a balance) will be entered at the time you collect it, not on scraps of paper to be entered later. You will have points taken off if you do not record data properly in your notebook during the lab period.
- It’s helpful if you bring a “thumb-drive” or USB memory stick to lab to download data into a format that can be transferred to Excel for further processing and plotting for lab reports.
- Although much of the data you collect will come from a computer controlling an instrument, you still need to record all of the operating parameters of an instrument at the time you are using it.
- You should organize for every experiment in advance, prior to starting it, and try to arrange space in your notebook for that day’s experiment accordingly.

Lab reports:
Lab oral presentation:

Communication skills are critical to success in a career in science. Everyone has to present their work during their careers. Here is a perfect opportunity for you to begin in a less threatening environment.

- Each student chooses one of the six laboratory experiments to present orally to the class, rather than as a written lab report. The basic format will be the same as the written lab reports.
- You will have ~30 min to present and 10 min for the audience (your class & instructors) to ask questions.
- An overhead computer-projection device projector that connects to a PC and an overhead display camera will be available for your talk, or you may bring your own laptop to attach.
- The schedule for the oral presentation will be 1st-come 1st-served. You need to send an e-mail to me (DEM) stating which presentation date you wish to reserve and which laboratory you wish to present.
- See the link in the menu above for details about the oral presentation.

General lab format:

- At the start of each lab, your TA will get together with you to discuss the experiment to be done. This is your best chance to ask questions. Preliminary reading assignments, the general plan for the experiment, etc. will have been given to you at least a week in advance of the experiment.
- Key to success in the course is a positive mental attitude when you arrive to start a lab. We will have done the best we can in preparing an experiment, but Murphy's law will sometimes strike, causing delays or slowing completion of experiments. Should extraordinary difficulties occur, your TA will work with you to extend working hours or to complete the experiment at another time.
- We have planned each laboratory so that all necessary data can be obtained within the scheduled laboratory time, but sometimes more time may be needed.

Brief Synopsis of the Laboratory Experiments:

Lab #1: FT-IR

1 lab day. You will learn how to use a high resolution Fourier transform-infrared spectrometer (FT-IR). We will take advantage of the FT-IR's high spectral resolution to measure various physical chemical vibrational properties of diatomic gases. The 1st gas to be studied will be CO at normal and high resolution modes. The 2nd gas will be HCl. Here you will be able to distinguish the isotopes of ^{35}Cl and ^{37}Cl. You will also prepare ^2HCl and measure the spectrum of ^2HCl. You will calculate the physical chemistry rotational and rotational-vibrational parameters for both ^1HCl and ^2HCl. You will also calculate bond strengths from the measured mechanic parameters of these oscillators.

Lab #2: Molecular Spectroscopy

1 lab day. You will use our research-grade UV-visible spectrophotometer and our fluorometer to investigate the fluorescence emission spectra of anthracene. The vibronic features of the fluorescence will be related to conventional IR absorptions.

Lab #3: NMR

1 lab day. You will use the Agilent (Varian) 500 MHz NMR. We will take advantage of the instrument's resolution and sensitivity to acquire ^1H data for the keto-enol tautomerization equilibrium of ethyl acetoacetate and acetylacetone and measure the equilibrium constants in two different solvents.

Lab #4: Vacuum Chemistry

1 lab day. You will learn how to manipulate, move, sample and measure gases using a vacuum line. Two gases, BF$_3$ and (CH$_3$)$_3$N will be combined to form a solid-state product. You will confirm and characterize the product by melting point, FT-IR, and ^2H, ^{13}C, ^{19}F, ^{11}B by NMR using the Bruker 500 MHz Avance III.

Lab #5: Atomic Emission Spectroscopy by ICP

2 lab days. You will learn to use the Perkin-Elmer Optima 7000DV inductively coupled plasma (ICP) optical emission spectrophotometer to measure calcium, sodium and other ions in ground water by atomic emission. This lab will focus on methods of quantification and interferences.

Lab #6: GCMS

2 lab days. You will learn modern separation techniques via gas chromatography (GC) and analysis techniques via mass spectrometry (MS). You will use the Varian Saturn 2100T ion trap GCMS to make your the measurements. You will also learn chemistry required to prepare biological samples for GC measurement by performing micro-chemistry reactions on samples of amino acids. You will separate the individual amino acids by GC and collect spectra by MS for identification of each compound. Using standard mass spectra analysis techniques, you will confirm the identity of each amino acid peak.
The five written lab reports comprise 75% of your grade. Thus, the preparation of the lab reports is expected to take a significant amount of your time spent in the course. For the wise student, much of the time spent should be spent prior to the lab:

1. Understanding the goals of the lab and what will happen in the lab before you get there
2. Learning the underlying chemistry to be done in the lab
3. Learning the principles of the instrumentation to be used
4. Thinking about what data sets are to be acquired
5. Thinking about what calculations will be performed
6. And thinking about what interpretations can be made from the calculations.

Your written reports should reflect mastery of these points for each lab.

Each formal, written lab report is due 2 weeks after the lab is scheduled to have been completed. Submit your reports directly to the TA in charge of the lab.

The Good News and the Bad News:

- The bad news: you lose 1 point (2% of your grade) for each weekday-day that you are late, where 10% represents a change in letter grade.
- The good news: you receive 1 bonus point for each weekday-day that you hand in your lab report ahead of the due date.

The format we use for the written reports is as close as we can make it to the format that you would use if you were submitting a manuscript for publication to a journal. The skills you will develop in writing these reports will carry over to anything else you do in science beyond this course. Good writing skills are as important to the successful scientist as good bench-skills--perhaps more important because if you cannot communicate effectively the results of your work, they will die of ennui in the back drawer of a filing cabinet or in the middle of a dusty 3rd-class journal on a library shelf.

PDF of the instructions for preparing your lab reports

Yes, it is confusing to organize and write a lab report in manuscript format for the first time. The problem is organization: getting your thoughts organized, getting your data organized, & getting your words in an organized fashion. Probably the most difficult part is figuring out which of all the data you collected in a lab should be included in Tables and Figures and which are supplementary and should only be included as Appendix material. That's where the organization part comes in. The only way to get organized is by trying. It will get easier as you write up successive laboratories.

I have also included two files here for you to download as an aid to help you understand what a manuscript in manuscript form looks like when converted to a published paper in a journal. The 1st PDF file is a manuscript submitted to Analytical Biochemistry for the purpose of describing a new method to measure glucose and glycerol stable isotopically labeled tracers by liquid chromatography-mass spectrometry. The 2nd PDF file is the paper as it was published from this manuscript in Analytical Biochemistry.

- PDF manuscript
- PDF published paper

Other writing resources:

- Plain Language.gov — a web site devoted to assist people in effectively communicating with their audience.
 - This site has pages specifically on real examples of bad writing (especially by government employees)
 - It also has pages of how to guidelines and manuals. My favorites:
 - Plain English at a glance
 - Tips on how to write good
- Workable Web Solutions — a web site that has a reproduction of the original National Lampoon article by Michael O'Donoghue on "How to Write Good"

Write your reports for your peers: other junior/senior chemistry students.

Yes, you may submit your lab reports electronically directly to your TA & Prof. However, even if you choose this option, you may also want to provide a written copy because what you submit must be in a standard format (Word or WordPerfect) that does not include idiosyncratic buried-fonts, characters, graphics, etc. that do not display correctly on someone else’s computer. You will be graded on what displays on your TA’s computer. Most appendix material will still have to be submitted the old-fashioned way unless it is done using a common application such as Excel.

You are expected to prepare professional-looking, properly formatted
1. Equations, using an equation editor as needed
2. Chemical structures and chemical reactions, etc., prepared using software such as ChemDraw available to you from the Dept. of Chemistry Chemistry Software page (select from the links at the bottom right of the page and follow the directions)
3. Tables and figures. The figures should be professionally annotated as needed using
 ○ Word/PowerPoint drawing tools, not hand-drawn annotations
 ○ ChemDraw for chemical structures

For CHEM 201 (not CHEM 202): Your first lab report will include a "do over" option. We realize that the first report you write may be a work in progress, and that you will improve as you write more reports. Therefore, your first report can be revised and handed back in later for a regrade. However, the revised first-lab report must be turned into your TA before that lab is presented as an oral presentation. When you turn in your revised lab report, please include your original lab report too.

Grading Rubric for Lab Reports

<table>
<thead>
<tr>
<th>Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Abstract</td>
</tr>
<tr>
<td>3</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Experimental</td>
</tr>
<tr>
<td>5</td>
<td>Definition of instrumentation & procedures used</td>
</tr>
<tr>
<td>5</td>
<td>Definition of terms & equations used to perform calculations</td>
</tr>
<tr>
<td>5</td>
<td>Results</td>
</tr>
<tr>
<td>10</td>
<td>Written explanation</td>
</tr>
<tr>
<td>10</td>
<td>Tables & Figures</td>
</tr>
<tr>
<td>10</td>
<td>Discussion</td>
</tr>
<tr>
<td>2</td>
<td>Literature cited</td>
</tr>
<tr>
<td>5</td>
<td>Appendix material</td>
</tr>
<tr>
<td>5</td>
<td>Overall composition and writing style</td>
</tr>
<tr>
<td>5</td>
<td>Total:</td>
</tr>
<tr>
<td>5</td>
<td>Bonus: Analyses that go beyond the required scope of the report</td>
</tr>
<tr>
<td></td>
<td>Total: 50</td>
</tr>
</tbody>
</table>

Last modified February 05 2016 10:25 AM
Some ground rules for your oral presentation:

- There are 6 lab experiments that can be presented
- See the class schedule for the dates of the oral presentations
- You **cannot** present the first lab you perform – this lab must be a written lab
- Sign up is first-come, first-served, with the caveats:
 - All 6 labs will be presented (unless there is <6 students in the class)
 - If there are more than 6 students, then one or more labs may have 2 students signed up (but no more than two)
 - Send Prof Matthews and e-mail with the lab you want to present. If the lab is available and there are no other problems (see above), the lab is yours to present.

Grading Rubric for Oral Presentations:

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
</tr>
<tr>
<td>Description of instrumentation & procedures used</td>
<td>3</td>
</tr>
<tr>
<td>Definition of terms & equations used to perform calculations</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Clear presentation of key results</td>
<td>5</td>
</tr>
<tr>
<td>Tables & Figures</td>
<td>5</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>Literature cited</td>
<td>10</td>
</tr>
<tr>
<td>Appendix material</td>
<td>2</td>
</tr>
<tr>
<td>Overall composition and speaking style</td>
<td>5</td>
</tr>
<tr>
<td>Quality of graphics</td>
<td>5</td>
</tr>
<tr>
<td>Total:</td>
<td>50</td>
</tr>
</tbody>
</table>

Bonus: Analyses that go beyond the required scope of the report 5

Last modified March 30 2016 10:40 AM