There are ten questions. A passing paper consists of seven problems done completely correctly, or six problems done correctly with substantial progress on two others. Let \(\mathbb{D} \) denote the open disc of radius 1 centered at the origin.

1. Let \(f \) be holomorphic on a connected open set \(U \). Prove that if \(f(z)^2 = \overline{f(z)} \) for all \(z \in U \) then \(f \) is constant on \(U \). Find all possible values for \(f \).

2. Let \(\gamma \) be the circle of radius 5 centered at 0. Evaluate with brief justification the integrals:
 \[
 (a) \int_{\gamma} \frac{z}{z-1} \, dz, \quad (b) \int_{\gamma} e^{1/z} \, dz.
 \]

3. Find a Laurent series expansion valid in some bounded annulus centered at 0 that contains the point \(z = 2 \) for the following function (explain briefly how the inner and outer radii of the annulus are determined):
 \[
f(z) = \frac{z}{1-z^2} + \frac{6}{(z-4)^2}.
 \]

4. Use the calculus of residues to evaluate the improper integral
 \[
 \int_{-\infty}^{\infty} \frac{\cos 2x}{x^2 + 1} \, dx.
 \]

5. Prove that if \(f \) is entire and there are positive real numbers \(A, B \) and \(k \) such that \(|f(z)| \leq A + B|z|^{k} \) for all \(z \in \mathbb{C} \), then \(f \) is a polynomial.

6. Let \(f \) be analytic on the closed unit disc \(\overline{\mathbb{D}} \), and assume \(|f(z)| < 1 \) on its boundary. Prove that there is one and only one point \(z_0 \in \mathbb{D} \) such that \(f(z_0) = z_0 \).

7. (a) Exhibit an entire function, \(P(z) \), that has simple zeros at the numbers \(\sqrt{n} \) for each positive integer \(n \), and no other zeros.

 (b) For the function \(P \) you gave in part (a), describe \(P'/P \) as an infinite series (not necessarily a Taylor series however).
8. Define \(f(z) = \int_0^1 \frac{dt}{1 + tz} \).

(a) Show by using Morera’s Theorem that \(f \) is analytic on the open unit disc \(\mathbb{D} \).

(b) Find a power series expansion for \(f(z) \) valid on \(\mathbb{D} \).

9. Let \(P(z) \) and \(Q(z) \) be polynomials with degree \(Q \geq \text{degree } P + 2 \). Prove that

\[
\sum_{z_i} \text{Res}_{z=z_i} \frac{P(z)}{Q(z)} = 0
\]

where the sum is over all poles \(z_i \) in \(\mathbb{C} \) of the rational function \(\frac{P}{Q} \).

10. Suppose \(f \) is analytic on the punctured unit disc \(\mathbb{D} - \{0\} \) and the real part of \(f \) is positive there. Prove that \(f \) has a removable singularity at 0.