REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM

September 17, 2015
Three Hours
A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

1. Let (M, d) be a metric space, and let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be Cauchy sequences in M. Prove that the sequence of real numbers $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}$ converges in \mathbb{R}.
(Do not assume M is complete.)
2. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of functions that converges uniformly to a function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that if the sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a and f is continuous at a, then the sequence $\left\{f_{n}\left(a_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(a)$.
3. For each real number $t>0$ let $F(t)=\int_{0}^{\infty} \frac{e^{-x t}}{1+x^{2}} d x$. (You may treat the integrals as either Riemann or Lebesgue - whichever you prefer.)
(a) Show that $F(t)$ is defined (i.e., converges) for every $t>0$.
(b) Prove that F is continuous on $(0, \infty)$.
4. Let $\bar{\mu}$ be an outer measure on a set X. Show that a subset E of X is $\bar{\mu}$-measurable if and only if for every natural number n there is a measurable set E_{n} with $E_{n} \subseteq E$ and $\bar{\mu}\left(E-E_{n}\right)<\frac{1}{n}$.
5. Let (X, \mathcal{M}, μ) be a measure space. We say that $\left\{E_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{M}$ almost fills up X if, for all $A \in \mathcal{M}$ with finite measure,

$$
\lim _{n \rightarrow \infty} \mu\left(A \backslash E_{n}\right)=0
$$

Show that $\left\{E_{n}\right\}_{1}^{\infty} \subseteq \mathcal{M}$ almost fills up X if and only if for all $f \in L^{1}(X, \mathcal{M}, \mu), f \chi_{E_{n}} \rightarrow f$ in $L^{1}(X)$.
6. Find, with justification, the value of

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{n \sin \left(x^{2} / n\right)}{x^{4}} d x
$$

7. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by $F(x, y, u, v)=\left(x^{3}+v x+y, u y+v^{3}-x\right)$.
(a) Find the Jacobian matrix of F at an arbitrary point in the domain.
(b) At what points satisfying $F(x, y, u, v)=(0,0)$ does the Implicit Function Theorem allow you to solve for u and v in terms of x and y ?
(c) At any one of the points in part (a) of your choosing compute $\partial u / \partial x$.

Section B. Complex Analysis

8. Identify explicitly the real and imaginary parts of the function $f(z)=z \cos z$, and verify any one of the Cauchy-Riemann equations for f at an arbitrary point z.
9. Use the method of residues to find the value of the integral $\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x$.
10. Find the Laurent series of the form $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for $f(z)=\frac{33}{(2 z-1)(z+5)}$ that converges in an annulus containing the point $z=-3 i$, and state precisely where this Laurent series converges.
11. Use Rouché's Theorem to determine the number of zeros of $f(z)=2 z^{5}-6 z^{2}+z+1$ in the annulus $1 \leq|z| \leq 2$.
12. Use any method to find the value of $\int_{C} \tan z d z$, where C is the circle of radius 8 centered at the origin, oriented counterclockwise.
13. Describe explicitly all entire functions $f(z)$ that satisfy the following inequality:

$$
|f(z)| \leq\left|e^{z} \sin z\right|, \quad \text { for all } z \in \mathbb{C} \text {. }
$$

14. Let $D=\{z \in \mathbb{C}| | z \mid<1\}$ be the unit disk in the complex plane, and let $f_{n}: D \rightarrow D$ be a sequence of analytic functions that converges pointwise to $f: D \rightarrow \mathbb{C}$. Prove that f is analytic. (You may quote results from both real and complex analysis.)
