A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

1. Let \((M, d)\) be a metric space, and let \(\{x_n\}_{n=1}^{\infty}\) and \(\{y_n\}_{n=1}^{\infty}\) be Cauchy sequences in \(M\).
Prove that the sequence of real numbers \(\{d(x_n, y_n)\}_{n=1}^{\infty}\) converges in \(\mathbb{R}\).
(Do not assume \(M\) is complete.)

2. Let \(f_n : \mathbb{R} \to \mathbb{R}\) be a sequence of functions that converges uniformly to a function \(f : \mathbb{R} \to \mathbb{R}\).
Prove that if the sequence of real numbers \(\{a_n\}_{n=1}^{\infty}\) converges to \(a\) and \(f\) is continuous at \(a\), then the sequence \(\{f_n(a_n)\}_{n=1}^{\infty}\) converges to \(f(a)\).

3. For each real number \(t > 0\) let \(F(t) = \int_0^{\infty} \frac{e^{-xt}}{1 + x^2} \, dx\). (You may treat the integrals as either Riemann or Lebesgue — whichever you prefer.)
 (a) Show that \(F(t)\) is defined (i.e., converges) for every \(t > 0\).
 (b) Prove that \(F\) is continuous on \((0, \infty)\).

4. Let \(\overline{\mu}\) be an outer measure on a set \(X\). Show that a subset \(E\) of \(X\) is \(\overline{\mu}\)-measurable if and only if for every natural number \(n\) there is a measurable set \(E_n\) with \(E_n \subseteq E\) and \(\overline{\mu}(E - E_n) < \frac{1}{n}\).

5. Let \((X, \mathcal{M}, \mu)\) be a measure space. We say that \(\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{M}\) almost fills up \(X\) if, for all \(A \in \mathcal{M}\) with finite measure,
\[\lim_{n \to \infty} \mu(A \setminus E_n) = 0. \]
Show that \(\{E_n\}_{1}^{\infty} \subseteq \mathcal{M}\) almost fills up \(X\) if and only if for all \(f \in L^1(X, \mathcal{M}, \mu), f\chi_{E_n} \to f\) in \(L^1(X)\).

6. Find, with justification, the value of
\[\lim_{n \to \infty} \int_1^{\infty} \frac{n \sin(x^2/n)}{x^4} \, dx. \]

7. Let \(F : \mathbb{R}^4 \to \mathbb{R}^2\) by \(F(x, y, u, v) = (x^3 + vx + y, uy + v^3 - x)\).
 (a) Find the Jacobian matrix of \(F\) at an arbitrary point in the domain.
 (b) At what points satisfying \(F(x, y, u, v) = (0, 0)\) does the Implicit Function Theorem allow you to solve for \(u\) and \(v\) in terms of \(x\) and \(y\) ?
 (c) At any one of the points in part (a) of your choosing compute \(\partial u / \partial x\).
Section B. Complex Analysis

8. Identify explicitly the real and imaginary parts of the function \(f(z) = z \cos z \), and verify any one of the Cauchy–Riemann equations for \(f \) at an arbitrary point \(z \).

9. Use the method of residues to find the value of the integral \(\int_0^\infty \frac{x^2}{x^6 + 1} \, dx \).

10. Find the Laurent series of the form \(\sum_{n=-\infty}^{\infty} c_n z^n \) for \(f(z) = \frac{33}{(2z - 1)(z + 5)} \) that converges in an annulus containing the point \(z = -3i \), and state precisely where this Laurent series converges.

11. Use Rouché’s Theorem to determine the number of zeros of \(f(z) = 2z^5 - 6z^2 + z + 1 \) in the annulus \(1 \leq |z| \leq 2 \).

12. Use any method to find the value of \(\int_C \tan z \, dz \), where \(C \) is the circle of radius 8 centered at the origin, oriented counterclockwise.

13. Describe explicitly all entire functions \(f(z) \) that satisfy the following inequality:

\[|f(z)| \leq |e^z \sin z|, \quad \text{for all } z \in \mathbb{C}. \]

14. Let \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \) be the unit disk in the complex plane, and let \(f_n : D \to D \) be a sequence of analytic functions that converges pointwise to \(f : D \to \mathbb{C} \). Prove that \(f \) is analytic. (You may quote results from both real and complex analysis.)