REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM

May 10, 2018
Three Hours
A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

1. Let X be any topological space and let $X \times X$ be the space with the product topology. Let $D=\{(x, x) \mid x \in X\}$ be a diagonal in $X \times X$. Prove any one implication of the statement: X is a Hausdorff space if and only if D is closed in $X \times X$.
2. Assume $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous. Prove that there exist some real numbers y_{0} and y_{1} such that if we extend f at the two end points by defining

$$
f(0)=y_{0} \quad \text { and } \quad f(1)=y_{1}
$$

then this new function is continuous (hence uniformly continuous) on the closed interval $[0,1]$. (Note that y_{0} and y_{1} are then necessarily unique.)
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{a}{b}, \text { a rational number in lowest terms with } b \text { even }, \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine whether or not f is Riemann integrable on $[0,1]$; and if so, find its Riemann integral. (You may use either Riemann's Condition or Lebesgue's Theorem.)
(b) Explain briefly why f is Lebesgue integrable, and find its Lebesgue integral $\int_{0}^{1} f$.
4. Let (X, Λ, μ) be a measure space, where μ is a measure on the σ-algebra Λ. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on X. Prove that the set

$$
E=\left\{x \in X \mid \lim _{n \rightarrow \infty} f_{n}(x)=+\infty\right\}
$$

is a measurable subset of X.
5. Find, with justification, the value of

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left(\sum_{n=0}^{N} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{N} \frac{(-2 x)^{n}}{n!}\right) d x
$$

6. Let $f:[0,1] \rightarrow[0, \infty)$ be continuous.
(a) Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0$.
(b) Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1}(n+1) x^{n} f(x) d x=f(1)$.

Section B. Complex Analysis

7. Exhibit an analytic isomorphism from the horizontal strip $\{z \mid-1<\operatorname{Im} z<1\}$ to the open unit disc $\{z||z|<1\}$. (Briefly show any steps if you use compositions of "well known" conformal maps.)
8. Use the method of residues to find the value of the integral $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}\left(x^{2}+9\right)} d x$. (Sketch your contour of integration and very briefly justify your method.)
9. Find the Laurent series of the form $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for $f(z)=\frac{6}{z^{2}+9}-\frac{9}{(z+6)^{2}}$ that converges in an annulus containing the point $z=-4 i$, and state precisely where this Laurent series converges.

10 . Let $\mathbb{D}^{* *}$ be the open unit disc $D(0,1)$ with the two points 0 and $\frac{1}{2}$ removed. Find all analytic automorphisms of $\mathbb{D}^{* *}$ (i.e., bijections $f: \mathbb{D}^{* *} \rightarrow \mathbb{D}^{* *}$ that are analytic with analytic inverse). (You may quote standard theorems about analytic automorphisms.)
11. Let $p(z)$ and $q(z)$ be non-constant polynomials over \mathbb{C} of different degrees. Prove that there is no entire function $f(z)$ such that

$$
|p(z)| \leq|f(z)| \leq|q(z)|, \quad \text { for all } z \in \mathbb{C} .
$$

12. Prove that the series

$$
f(z)=\sum_{n=1}^{\infty} \frac{1}{(z-n)^{3}}
$$

converges to a meromorphic function on all of \mathbb{C}, and find its poles and each of their orders.

