REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM

May 8, 2012

A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{a}{b^{2}} & \text { if } x=\frac{a}{b}, \text { a rational number in lowest terms }, \\ 0 & \text { otherwise }\end{cases}
$$

Explain why f is Riemann integrable, and find $\int_{0}^{1} f$.
2. Find with justification the limit: $\lim _{n \rightarrow \infty} \int_{1}^{\infty} e^{-n t} t^{n} d t$.
3. Let (X, Λ, μ) be a measure space, where μ is a measure on the σ-algebra Λ. A family \mathcal{F} of real valued, measurable functions on X is called uniformly integrable if for every $\epsilon>0$ there is a $\delta>0$ such that

$$
\text { for every } E \in \Lambda \text { with } \mu(E)<\delta \text { we have } \int_{X}|f| \chi_{E} d \mu<\epsilon, \quad \text { for all } f \in \mathcal{F}
$$

where χ_{E} is the characteristic function of E (i.e., this δ works uniformly for all $f \in \mathcal{F}$). For any p with $1<p \leq \infty$, prove that the family of all measurable, real valued functions f on X that satisfy $\|f\|_{p} \leq 1$ is a uniformly integrable family (i.e., the closed unit ball centered at 0 in $L^{p}(X)$ is uniformly integrable).
4. Let (X, Λ, μ) be a measure space, where μ is a measure on the σ-algebra Λ. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on X. Prove that the set

$$
\left\{x \in X \mid\left\{f_{n}(x)\right\}_{n=1}^{\infty} \text { is a bounded sequence }\right\}
$$

is a measurable subset of X.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x, y)=\left(x^{3}-3 x y^{2}, 3 x^{2} y-y^{3}\right) .
$$

(a) Find the Jacobian matrix of f at an arbitrary point of \mathbb{R}^{2}.
(b) Find all points (a, b) in the domain of f where f has a local inverse. (Justify your answer.)
6. Let X be a subset of the real line and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of real valued functions on X.
(a) Give the definition of what it means for the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ to converge uniformly on X.
(b) Give the definition of what it means for the series $\sum_{n=1}^{\infty} f_{n}$ to converge uniformly on X.
(c) Suppose $X=[a, b]$, all f_{n} are continuous on X and $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on $[a, b]$. Prove that

$$
\int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

Section B. Complex Analysis

7. Exhibit the real and imaginary parts of the function $f(z)=z e^{z}$ and then verify one of the Cauchy-Riemann equations for f at an arbitrary point z.
8. Use the method of residues to find the value of the integral $\int_{-\infty}^{\infty} \frac{x-1}{x^{5}-1} d x$, where the singularity at 0 is removed from the integrand. (Simplify your answer.)
9. Find the Laurent series in powers of z (i.e., centered at 0) for the function $f(z)=\frac{z+9}{(z+2)(z-5)}$ that converges in a neighborhood of $z=3$, and explain briefly what the domain of convergence of your series is.
10. Suppose $f(z)$ is an entire function that satisfies the inequality $|f(z)| \leq|\operatorname{Re} z|$, for all $z \in \mathbb{C}$. Prove that f is identically zero on \mathbb{C}.
11. Let $f(t)$ be a continuous, real valued function on the interval $[-\pi, \pi]$. For each complex number z define

$$
g(z)=\int_{-\pi}^{\pi} f(t) \sin z t d t .
$$

(a) Show using Morera's Theorem that $g(z)$ is an entire function.
(b) Exhibit a power series for g expanded about 0 , with infinite radius of convergence.
12. (a) Find all of the singularities of the function $f(z)=\frac{1}{\sin \left(e^{z}\right)}$.
(b) Find the residue of $f(z)$ at one of its singularities in \mathbb{C} (of your choosing), and explain whether this singularity is a pole or essential.

