REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM

January 10, 2019
Three Hours
A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

1. Let $X \subseteq Y \subseteq Z$ where Z is a metric space (hence X and Y are metric subspaces).

Prove that if X is dense in Y and Y is dense in Z, then X is dense in Z.
(You may use any of the equivalent definitions of "dense" to do this, but state clearly which one(s) you are invoking.)
2. Explain why the function $f(x)=\sum_{n=1}^{\infty} \frac{x^{n} \sin \left(x^{n}\right)}{n!}$ is well-defined and continuous on all of \mathbb{R}.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine whether or not f is Riemann integrable on $[0,1]$; and if so, find its Riemann integral. (You may use either Riemann's Condition or Lebesgue's Theorem.)
(b) Explain briefly why f is Lebesgue integrable, and find its Lebesgue integral $\int_{0}^{1} f$.
4. Let A be a subset of $[0,1]$ that has outer Lebesgue measure a.
(a) Prove that there is some Lebesgue measuable set B such that $A \subseteq B$ and B has Lebesgue measure a.
(b) Explain why $B-A$ need not have measure zero.
5. Find, with justification, the value of

$$
\lim _{N \rightarrow \infty} \int_{0}^{1} N \sin \left(\frac{x^{2}}{N}\right) d x
$$

6. Let ℓ^{2} be the usual Hilbert space of square summable sequences of real numbers. Prove that the closed unit ball, $B=\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \mid \sum a_{n}^{2} \leq 1\right\}$, is not compact.

Section B. Complex Analysis

7. Let f be an analytic function defined on the open unit disc $\mathbb{D}=\{z| | z \mid<1\}$. Prove that if f is real valued on \mathbb{D}, then it must be constant.
8. Prove that $\log z=e^{z}$ has no solution for $|z|=1$, where $\log z$ denotes the principal branch of the logarithm.
9. Use the method of residues to find the value of the integral $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+3\right)^{2}} d x$. (Sketch your contour of integration and very briefly justify your method.)
10. Find the Laurent series of the form $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ for

$$
f(z)=\frac{1}{(z+1)^{2}}+\frac{z}{z^{2}+8}
$$

that converges in an annulus containing the point $z=2 i$, and state precisely where this Laurent series converges.
11. Let $\mathbb{D}=\{z| | z \mid<1\}$ be the open unit disc and let $\mathbb{D}^{*}=\mathbb{D}-\{0\}$. Prove that there is no one-to-one, onto analytic map $f: \mathbb{D}^{*} \rightarrow \mathbb{D}$.
12. Let $f(z)$ be an entire function and let $p(z)$ be a non-constant polynomial. Prove that if

$$
|f(z)| \leq|f(z)+p(z)|, \quad \text { for all } z \in \mathbb{C}
$$

then $f(z)=k p(z)$ for some $k \in \mathbb{C}$.
13. Find with justification a positive integer n such that $p(z)=z^{5}+n z^{2}+\pi z+1$ has exactly two zeros in the open disc of radius 2 centered at the origin.

