
REAL AND COMPLEX ANALYSIS PHD QUALIFYING EXAM
September 19, 2009

The test has two sections, covering real and complex analysis. In order to pass, you must
do at least 2 problems from each section completely correctly, and you must do a total
of 6 problems completely correctly, or 5 completely correctly with substantial progress on
2 others. Some problems have more than one part (e.g., problem 1 in Section I consists of
1a), 1b), and 1c)).

I. REAL ANALYSIS.

1. Let (X, d) be a metric space. Show that, if {xn} is a sequence in X and p ∈ X, then
xn → p if and only if every subsequence from {xn} has itself a subsequence that converges
to p.

2a) Suppose that f : R 7→ R is differentiable everywhere, and that

lim
x→∞

f ′(x) = 0.

Show that

lim
x→∞

f(x)
x

= 0.

2b) Use 2a) to prove the following: If f : R 7→ R is differentiable everywhere, and

lim
x→∞

f ′(x) = A,

where A is a real number, then

lim
x→∞

f(x)
x

= A.

3. Let {En} be a sequence of Lebesgue measurable subsets of R with the property that,
for all measurable A ⊂ R with finite measure,

lim
n→∞

m(A \ En) = 0, (1)

where m(·) denotes Lebesgue measure. Show that, if f is any Lebesgue integrable function,
then

lim
n→∞

∫

R

|fχEn − f | dm(x) = 0. (2)

Conversely, show that if (2) holds for all Lebesgue integrable f , then (1) holds for all A
with finite measure.

4. Consider f(x, y, z) ≡ x2 − z and g(x, y, z) ≡ x2 + y2 − z2, both mapping from R3

into R, and set S ≡ {(x, y, z) : f = g = 0}. We can write S = P0 ∪ P+ ∪ P−, where
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P0 = {(0, 0, 0)}, P+ = {(x, y, z) ∈ S : x > 0}, and P− = {(x, y, z) ∈ S : x < 0}. This
question only deals with P+. Find the point or points (x0, y0, z0) on P+ where the Implicit
Function Theorem does not guarantee the existence of differentiable functions g1 and g2,
defined on an open interval I containing z0, such that (g1(t), g2(t), t) ∈ P+ for all t ∈ I.

5. Exhibit an explicit f ∈ L2([0, 1]) such that f does not belong to Lp([0, 1]) for any p 6= 2.
(All Lp spaces are defined with respect to the usual Lebesgue measure.)

6. Find, using the appropriate limit theorem or theorems,

lim
n→∞

∫ n

0

(
n∑
0

xk

k!

)
e−(3/2)x dm(x).

II. COMPLEX ANALYSIS.

In this section, D always denotes the set {z ∈ C : |z| < 1}.
1. Use residues to show that, for all 0 < a < 1,∫ ∞

−∞

eax

1 + ex
dx =

π

sin(πa)
.

2. Suppose f : D 7→ C is continuous, f is analytic on D, and |f(z)| < 1 on the boundary
of D. Show that there is a unique ζ ∈ D such that f(ζ) = ζ.

3. Suppose that f : C \ {0} 7→ C is analytic and, for all z 6= 0,

|f(z)| ≤
√
|z|+ 1√

|z| .

Show that f is constant, but that this constant is NOT unique; i.e., that more than one
constant function fills the bill.

4. Show that if u : R2 7→ R is harmonic, i.e.,

uxx + uyy = 0,

everywhere, and always positive, then u is constant. You don’t need to prove this from
scratch, but you must cite the results you use from complex analysis.

5. Let
f(z) =

z

z2 − 2z − 8
.

This function has a Laurent series expansion of the form

f(z) =
∞∑
−∞

cnzn,

valid for all z in the annulus {z ∈ C : 2 < |z| < 4}. Compute the coefficients cn.

6. Suppose that f : C 7→ C is entire and, for all z ∈ C,

f(z) = f(z + 1 + i) = f(z + 2 + i).

Show that f is constant.
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