REAL AND COMPLEX ANALYSIS PHD QUALIFYING EXAM

May 20, 2008
The test has two sections, covering real and complex analysis. In order to pass, you must do at least 2 problems from each section completely correctly, and you must do a total of 6 problems completely correctly, or 5 completely correctly with substantial progress on 2 others. Some problems have more than one part (e.g., problem 1 in Section I consists of 1a), 1b), and 1c)).

I. REAL ANALYSIS.

1a) State what it means for a function $f:[a, b] \mapsto \mathbf{R}$ to be Riemann integrable on $[a, b]$.
1b) State what it means for a sequence of functions $f_{n}:[a, b] \mapsto \mathbf{R}$ to converge uniformly to a function $f:[a, b] \mapsto \mathbf{R}$.
1c) Let $f_{n}:[a, b] \mapsto \mathbf{R}$ be a sequence of functions converging uniformly to some $f:[a, b] \mapsto$ \mathbf{R}, and suppose that each f_{n} is Riemann integrable on $[a, b]$. Show that f is Riemann integrable on $[a, b]$ and that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

2. Suppose that $f: \mathbf{R} \mapsto \mathbf{R}$ satisfies $|f(x)-f(y)| \leq|x-y|^{5 / 4}$ for all x and y in \mathbf{R}. Show that f is constant.
3. Suppose that $\left\{f_{n}\right\}$ is a sequence of Lebesgue measurable functions defined on \mathbf{R}, and that, for all n,

$$
\int_{\mathbf{R}}\left|f_{n}(x)\right|^{2} d m(x) \leq 1
$$

where we are using m to denote Lebesgue measure. Show that, for all $\epsilon>0$, there is a $\delta>0$ such that, if $E \subset \mathbf{R}$ is any Lebesgue measurable set satisfying $m(E)<\delta$, then

$$
\int_{E}\left|f_{n}(x)\right| d m(x)<\epsilon
$$

4a) Find, with justification, the radius of convergence of the power series:

$$
\sum_{0}^{\infty} 2^{-\sqrt{n}} x^{n}
$$

4b) Find, with justification, the radius of convergence of the power series:

$$
\sum_{0}^{\infty} \frac{x^{n}}{1+2+4+\cdots+2^{n}}
$$

You may use without proof the standard tests (ratio, root, etc.) for computing radii of convergence, as well as the values of limits taught in elementary calculus: e.g., that $n^{-1} \log n \rightarrow 0$ as $n \rightarrow \infty$.
5. Consider the two functions $f_{1}(x, y, z) \equiv x^{2}-2 x+y^{2}$ and $f_{2}(x, y, z) \equiv x^{2}+y^{2}+z^{2}-4$, each mapping from \mathbf{R}^{3} into \mathbf{R}. (Note that f_{1} does not depend on z.) Define

$$
\Sigma \equiv\left\{(x, y, z) \in \mathbf{R}^{3}: f_{1}(x, y, z)=f_{2}(x, y, z)=0\right\} .
$$

At what points $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ on Σ does the Implicit Function Theorem not guarantee the existence of an open neighborhood U of z^{\prime} and differentiable functions $g: U \mapsto \mathbf{R}$ and $h: U \mapsto \mathbf{R}$ such that $\left(g\left(z^{\prime}\right), h\left(z^{\prime}\right), z^{\prime}\right) \in \Sigma$ for all $z^{\prime} \in U$? You do not need to sketch Σ, but it will probably help you to do so.
6. Find, using the appropriate limit theorem or theorems,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{1 / n}}{\left(e^{x}+\frac{x}{n}\right)} d m(x)
$$

II. COMPLEX ANALYSIS.

In this section, D always denotes the set $\{z \in \mathbf{C}:|z|<1\}$.

1. Use residues to show that, for all $a \geq 0$,

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)}{1+x^{2}} d x=\pi e^{-a}
$$

2. How many zeroes, counting multiplicities, does $f(z) \equiv 3 z^{2}+e^{z}$ have inside D ?

3a) State and sketch a proof of Morera's Theorem.
3b) Let $f: D \mapsto \mathbf{C}$ be continuous on all of D, and suppose that f is analytic on $D \backslash\{0\}$. Use Morera's Theorem and Cauchy's Theorem (don't prove Cauchy's Theorem) to show that f is analytic on all of D.
4. Consider the function $u(x, y) \equiv e^{x} \cos y+x^{3}-3 x y^{2}$, which maps from \mathbf{R}^{2} into \mathbf{R}. Show that u is harmonic on \mathbf{R}^{2}, and find a harmonic $v: \mathbf{R}^{2} \mapsto \mathbf{R}$ such that

$$
f(z) \equiv f(x+i y)=u(x, y)+i v(x, y)
$$

is analytic on all of \mathbf{C}.
5. Let

$$
f(z)=\frac{z}{z^{2}-z-2} .
$$

This function has a Laurent series expansion of the form

$$
\begin{equation*}
f(z)=\sum_{-\infty}^{\infty} c_{n} z^{n} \tag{1}
\end{equation*}
$$

valid for all z in the annulus $\{z \in \mathbf{C}: 1<|z|<2\}$. Compute the coefficients c_{n}. (Hint: Begin by doing a partial-fractions decomposition of $f(z)$. The inner and outer radii of the annulus of convergence will play a very important role here.)
6. Let $f: \mathbf{C} \mapsto \mathbf{C}$ be entire, and suppose that $|f(z)| \leq 13(1+|z|)^{5.3}$ for all $z \in \mathbf{C}$. Show that f is a polynomial of degree no larger than 5 .

