REAL ANALYSIS PHD QUALIFYING EXAM

September 20, 2007
A passing grade is 6 problems done completely correctly, or 5 done completely correctly with substantial progress on 2 others.

1. Let (X, d) be a compact metric space, where we take "compact" to mean "every open cover of X has a finite subcover." Show that every sequence $\left\{x_{n}\right\}_{1}^{\infty}$ in X has a subsequence converging to some $z \in X$.
$2 \mathrm{a})$. Let $\left\{b_{n}\right\}$ be a sequence of positive numbers which is unbounded: $\sup _{n} b_{n}=\infty$. Show that there is a sequence of positive numbers $\left\{a_{n}\right\}$ such that $\sum a_{n}<\infty$, but for which $\sum a_{n} b_{n}=\infty$.
2b) Let $\left\{c_{n}\right\}$ be a sequence of positive numbers such that $\sum c_{n}=\infty$. Show that there is a sequence of positive numbers $\left\{d_{n}\right\}$ such that $\lim _{n} d_{n}=0$, but for which $\sum c_{n} d_{n}=\infty$.
2. Prove the following: If f is differentiable on $(0,1)$ and $f^{\prime}(1 / 4)<0<f^{\prime}(3 / 4)$, there is a $c \in(1 / 4,3 / 4)$ such that $f^{\prime}(c)=0$.
3. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{p}(\mathbf{R}, \mathcal{L}, m)$, where $1<p<\infty, \mathcal{L}$ is the Lebesgue measurable sets, and m denotes Lebesgue measure. Suppose that

$$
\begin{equation*}
\sup _{n}\left\|f_{n}\right\|_{p}<\infty \tag{1}
\end{equation*}
$$

Show that $\left\{f_{n}\right\}$ is uniformly integrable, which means: for every $\epsilon>0$ there is a $\delta>0$ such that, for all $E \in \mathcal{L}, m(E)<\delta$ implies

$$
\sup _{n} \int_{E}\left|f_{n}\right| d m<\epsilon
$$

Also, give an example of a sequence in L^{1} satisfying (1) for $p=1$, but which is not uniformly integrable.
5. Let f and g belong to $L^{2}(\mathbf{R}, \mathcal{L}, m)$. Show that

$$
\lim _{n \rightarrow \infty} \int f(x) g(x+n) d m=0
$$

6. Let $\|\cdot\|$ denote the usual Euclidean norm in \mathbf{R}^{d}. Let A and B be non-empty subsets of \mathbf{R}^{d}, where A is compact and B is closed (with respect to the usual topology). Show that there exist points $a \in A$ and $b \in B$ such that, for all $x \in A$ and $y \in B$,

$$
\|a-b\| \leq\|x-y\| .
$$

Show that such points need not exist if A is merely assumed to be closed.
7. Let (X, \mathcal{M}, μ) be a measure space, and suppose that $\left\{E_{n}\right\}_{1}^{\infty}$ is a sequence from \mathcal{M} with the property that

$$
\lim _{n \rightarrow \infty} \mu\left(X \backslash E_{n}\right)=0
$$

Let $G \subset X$ be the set of x 's that belong to only finitely many of the sets E_{n}; i.e., $x \in G$ if and only if x belongs to at most finitely many E_{n} 's. Show that $G \in \mathcal{M}$ and $\mu(G)=0$.
8. Show that, if $f \in L^{1}(\mathbf{R}, \mathcal{L}, m)$,

$$
\lim _{n \rightarrow \infty} \int f(x)(\sin (n x))^{2} d m=(1 / 2) \int f(x) d m
$$

9. Suppose that $\left\{f_{n}\right\}$ is a sequence in $L^{2}(\mathbf{R}, \mathcal{L}, m)$ such that $\sum_{1}^{\infty}\left\|f_{n}\right\|_{2}<\infty$ and $\sum_{1}^{\infty} f_{n}(x)=0$ for (Lebesgue-)almost-every $x \in \mathbf{R}$. Prove that, for all $g \in L^{2}(\mathbf{R}, \mathcal{L}, m)$,

$$
\sum_{1}^{\infty} \int f_{n}(x) g(x) d m
$$

exists and equals 0 .
10. Define $f: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ by $f(x, y)=\left(x^{2}-y, x^{4}+y^{2}\right)$, and let $(a, b) \in\{(x, y): x<$ $0, y>0\}$. Show that f is one-to-one on some open set U containing (a, b), and that there is a differentiable $g: f[U] \mapsto U$ such that $f(g(x, y))=(x, y)$ for all $(x, y) \in U$. In other words, prove that, at every point in the open second quadrant, f has a locally defined differentiable inverse.

