REAL ANALYSIS PH.D. QUALIFYING EXAM

January 31, 2009
A passing paper consists of 7 problems solved completely, or 6 solved completely with substantial progress on 2 others.

1. Let (X, d) be a metric space. A set $E \subseteq X$ is called discrete if there is $\delta>0$ such that, for all x and y in E with $x \neq y$ we have $d(x, y)>\delta$. Show that a discrete set is necessarily closed. (Use any standard definition of "closed set" in a metric space.)
2. Suppose that $f:(0,1) \rightarrow \mathbb{R}$ is differentiable on all of $(0,1)$ and $f^{\prime}(1 / 4)<0<f^{\prime}(3 / 4)$. Show that there is a $c \in(1 / 4,3 / 4)$ such that $f^{\prime}(c)=0$.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on all of \mathbb{R} and $\lim _{x \rightarrow \infty} f^{\prime}(x)=A$, where A is a real number. Show that $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ exists and equals A. [Hint: Show this for $A=0$ first.]
4. Let $f:[1, \infty) \rightarrow[0, \infty)$ be a non-increasing function. Prove that

$$
\int_{1}^{\infty} f(x) d x<\infty \quad \text { if and only if } \quad \sum_{k=0}^{\infty} 2^{k} f\left(2^{k}\right)<\infty
$$

5. Consider the two surfaces in \mathbb{R}^{3},

$$
\begin{aligned}
& \Sigma_{1}=\{(x, y, z): z=x y\} \\
& \Sigma_{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\},
\end{aligned}
$$

and let $\Gamma \equiv \Sigma_{1} \cap \Sigma_{2}$. For almost all of the points $(\tilde{x}, \tilde{y}, \tilde{z}) \in \Gamma$, the Implicit Function Theorem guarantees the existence of a differentiable function $g=\left(g_{1}, g_{2}\right)$, defined on some open neighborhood U of \tilde{z} and mapping into \mathbb{R}^{2}, such that $\left(g_{1}(z), g_{2}(z), z\right) \in \Gamma$ for all $z \in U$. But there are FOUR points $(\tilde{x}, \tilde{y}, \tilde{z})$ where the IFT does not guarantee the existence of such a g. Find the points, with justification.
6. Let (X, \mathcal{M}, μ) be a measure space, where \mathcal{M} is a σ-algebra, and let $g: X \rightarrow[0, \infty]$ be a non-negative measurable function. For each $E \in \mathcal{M}$ define

$$
\nu(E)=\int g \chi_{E} d \mu .
$$

(a) Show that $\nu(E)$ defines a measure on \mathcal{M}. (You may quote without proof any standard theorems from measure theory in your argument.)
(b) In a similar fashion, show that if $f: X \rightarrow[0, \infty]$ is any non-negative measurable function, then $\int f d \nu=\int f g d \mu$.
7. Suppose that (X, \mathcal{M}, μ) is a finite measure space, and $\left\{E_{k}\right\}$ is a sequence of sets from \mathcal{M} such that $\mu\left(E_{k}\right)>1 / 100$ for all k. Let F be the set of points $x \in X$ which belong to infinitely many of the sets E_{k}.
(a) Show that $F \in \mathcal{M}$, i.e., F is a measurable set.
(b) Prove that $\mu(F) \geq 1 / 100$.
(c) Give an example to show that conclusion (b) can fail if $\mu(X)=\infty$.
8. Find the value of

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k)!}\right) e^{-2 x} d x
$$

and justify your assertion by quoting appropriate facts from calculus and one or more limit theorems from measure theory.
9. Let $(X,\| \|)$ be a normed linear space.
(a) State what it means for $(X,\| \|)$ to be a Banach space, and give an example, with details, of a normed linear space that is not a Banach space.
(b) Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in X and let

$$
S_{N}=\sum_{k=1}^{N} x_{k}
$$

be the usual $N^{\text {th }}$ partial sum of the series $\sum_{k=1}^{\infty} x_{k}$. The series is said to be summable if the sequence $\left\{S_{N}\right\}_{N=1}^{\infty}$ of partial sums converges to an element of X. The series is called absolutely summable if if $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$.
Prove that $(X,\| \|)$ is a Banach space if and only if every absolutely summable series is summable. (You may use without proof the fact that if a Cauchy sequence has a subsequence that converges to L, then the entire sequence also converges to L.)
10. Let $\phi \in L^{\infty}(\mathbb{R})$ (the measure on \mathbb{R} is the usual Lebesgue measure). Show that

$$
\lim _{n \rightarrow \infty}\left(\int_{\mathbb{R}} \frac{|\phi(x)|^{n}}{1+x^{2}} d x\right)^{1 / n}
$$

exists and equals $\|\phi\|_{\infty}$.

