REAL ANALYSIS PH.D. QUALIFYING EXAM

January 31, 2009

A passing paper consists of 7 problems solved completely, or 6 solved completely with substantial progress on 2 others.

- 1. Let (X, d) be a metric space. A set $E \subseteq X$ is called *discrete* if there is $\delta > 0$ such that, for all x and y in E with $x \neq y$ we have $d(x, y) > \delta$. Show that a discrete set is necessarily closed. (Use any standard definition of "closed set" in a metric space.)
- 2. Suppose that $f: (0,1) \to \mathbb{R}$ is differentiable on all of (0,1) and f'(1/4) < 0 < f'(3/4). Show that there is a $c \in (1/4, 3/4)$ such that f'(c) = 0.
- **3.** Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable on all of \mathbb{R} and $\lim_{x \to \infty} f'(x) = A$, where A is a real number. Show that $\lim_{x \to \infty} \frac{f(x)}{x}$ exists and equals A. [Hint: Show this for A = 0 first.]
- 4. Let $f: [1,\infty) \to [0,\infty)$ be a non-increasing function. Prove that

$$\int_{1}^{\infty} f(x) \, dx < \infty \qquad \text{if and only if} \qquad \sum_{k=0}^{\infty} 2^{k} f(2^{k}) < \infty.$$

5. Consider the two surfaces in \mathbb{R}^3 ,

$$\Sigma_1 = \{ (x, y, z) : z = xy \}$$

$$\Sigma_2 = \{ (x, y, z) : x^2 + y^2 + z^2 = 1 \},$$

and let $\Gamma \equiv \Sigma_1 \cap \Sigma_2$. For almost all of the points $(\tilde{x}, \tilde{y}, \tilde{z}) \in \Gamma$, the Implicit Function Theorem guarantees the existence of a differentiable function $g = (g_1, g_2)$, defined on some open neighborhood U of \tilde{z} and mapping into \mathbb{R}^2 , such that $(g_1(z), g_2(z), z) \in \Gamma$ for all $z \in U$. But there are FOUR points $(\tilde{x}, \tilde{y}, \tilde{z})$ where the IFT does not guarantee the existence of such a g. Find the points, with justification.

6. Let (X, \mathcal{M}, μ) be a measure space, where \mathcal{M} is a σ -algebra, and let $g : X \to [0, \infty]$ be a non-negative measurable function. For each $E \in \mathcal{M}$ define

$$\nu(E) = \int g \, \chi_E \, d\mu.$$

- (a) Show that $\nu(E)$ defines a measure on \mathcal{M} . (You may quote without proof any standard theorems from measure theory in your argument.)
- (b) In a similar fashion, show that if $f: X \to [0, \infty]$ is any non-negative measurable function, then $\int f d\nu = \int f g d\mu$.
- 7. Suppose that (X, \mathcal{M}, μ) is a finite measure space, and $\{E_k\}$ is a sequence of sets from \mathcal{M} such that $\mu(E_k) > 1/100$ for all k. Let F be the set of points $x \in X$ which belong to infinitely many of the sets E_k .

- (a) Show that $F \in \mathcal{M}$, i.e., F is a measurable set.
- (b) Prove that $\mu(F) \ge 1/100$.
- (c) Give an example to show that conclusion (b) can fail if $\mu(X) = \infty$.
- 8. Find the value of

$$\lim_{n \to \infty} \int_0^\infty \left(\sum_{k=0}^n \frac{(-1)^k x^{2k}}{(2k)!} \right) \, e^{-2x} \, dx,$$

and justify your assertion by quoting appropriate facts from calculus and one or more limit theorems from measure theory.

- **9.** Let (X, || ||) be a normed linear space.
 - (a) State what it means for (X, || ||) to be a Banach space, and give an example, with details, of a normed linear space that is **not** a Banach space.
 - (b) Let $\{x_k\}_{k=1}^{\infty}$ be a sequence in X and let

$$S_N = \sum_{k=1}^N x_k$$

be the usual N^{th} partial sum of the series $\sum_{k=1}^{\infty} x_k$. The series is said to be *summable* if the sequence $\{S_N\}_{N=1}^{\infty}$ of partial sums converges to an element of X. The series is called *absolutely summable* if if $\sum_{k=1}^{\infty} ||x_k|| < \infty$.

Prove that (X, || ||) is a Banach space if and only if every absolutely summable series is summable. (You may use without proof the fact that if a Cauchy sequence has a subsequence that converges to L, then the entire sequence also converges to L.)

10. Let $\phi \in L^{\infty}(\mathbb{R})$ (the measure on \mathbb{R} is the usual Lebesgue measure). Show that

$$\lim_{n \to \infty} \left(\int_{\mathbb{R}} \frac{|\phi(x)|^n}{1 + x^2} \, dx \right)^{1/n}$$

exists and equals $\|\phi\|_{\infty}$.