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A passing paper consists of 7 problems solved completely, or 6 solved completely with substantial
progress on 2 others.

1. Let (X, d) be a metric space. A set E ⊆ X is called discrete if there is δ > 0 such that, for all
x and y in E with x 6= y we have d(x, y) > δ. Show that a discrete set is necessarily closed.
(Use any standard definition of “closed set” in a metric space.)

2. Suppose that f : (0, 1) → R is differentiable on all of (0, 1) and f ′(1/4) < 0 < f ′(3/4). Show
that there is a c ∈ (1/4, 3/4) such that f ′(c) = 0.

3. Suppose that f : R → R is differentiable on all of R and lim
x→∞

f ′(x) = A, where A is a real

number. Show that lim
x→∞

f(x)
x

exists and equals A. [Hint: Show this for A = 0 first.]

4. Let f : [1,∞) → [0,∞) be a non-increasing function. Prove that

∫ ∞

1

f(x) dx < ∞ if and only if
∞∑

k=0

2kf(2k) < ∞.

5. Consider the two surfaces in R3,

Σ1 = {(x, y, z) : z = xy}
Σ2 = {(x, y, z) : x2 + y2 + z2 = 1},

and let Γ ≡ Σ1 ∩Σ2. For almost all of the points (x̃, ỹ, z̃) ∈ Γ, the Implicit Function Theorem
guarantees the existence of a differentiable function g = (g1, g2), defined on some open neigh-
borhood U of z̃ and mapping into R2, such that (g1(z), g2(z), z) ∈ Γ for all z ∈ U . But there
are FOUR points (x̃, ỹ, z̃) where the IFT does not guarantee the existence of such a g. Find
the points, with justification.

6. Let (X,M, µ) be a measure space, where M is a σ-algebra, and let g : X → [0,∞] be a
non-negative measurable function. For each E ∈M define

ν(E) =
∫

g χE dµ.

(a) Show that ν(E) defines a measure on M. (You may quote without proof any standard
theorems from measure theory in your argument.)

(b) In a similar fashion, show that if f : X → [0,∞] is any non-negative measurable function,
then

∫
f dν =

∫
f g dµ.

7. Suppose that (X,M, µ) is a finite measure space, and {Ek} is a sequence of sets from M such
that µ(Ek) > 1/100 for all k. Let F be the set of points x ∈ X which belong to infinitely
many of the sets Ek.
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(a) Show that F ∈M, i.e., F is a measurable set.

(b) Prove that µ(F ) ≥ 1/100.

(c) Give an example to show that conclusion (b) can fail if µ(X) = ∞.

8. Find the value of

lim
n→∞

∫ ∞

0

(
n∑

k=0

(−1)kx2k

(2k)!

)
e−2x dx,

and justify your assertion by quoting appropriate facts from calculus and one or more limit
theorems from measure theory.

9. Let (X, || ||) be a normed linear space.

(a) State what it means for (X, || ||) to be a Banach space, and give an example, with details,
of a normed linear space that is not a Banach space.

(b) Let {xk}∞k=1 be a sequence in X and let

SN =
N∑

k=1

xk

be the usual N th partial sum of the series
∞∑

k=1

xk. The series is said to be summable if

the sequence {SN}∞N=1 of partial sums converges to an element of X. The series is called

absolutely summable if if
∞∑

k=1

||xk || < ∞.

Prove that (X, || ||) is a Banach space if and only if every absolutely summable series
is summable. (You may use without proof the fact that if a Cauchy sequence has a
subsequence that converges to L, then the entire sequence also converges to L.)

10. Let φ ∈ L∞(R) (the measure on R is the usual Lebesgue measure). Show that

lim
n→∞

(∫

R

|φ(x)|n
1 + x2

dx

)1/n

exists and equals ‖φ‖∞.


