$T(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbf{R}_{n}}^{T(x)} f(x,\theta) dx = \int_{\mathbf{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} T(x) f(x,\theta) dx = \int_{\mathbf{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} \int_{\mathbf{R}_{n}}^{\theta} f(x,\theta) dx = M\left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi,\theta)\right)$ $\int \left(\frac{\partial}{\partial \theta} \ln L(x,\theta)\right) \cdot f(x,\theta) dx = \int T(x) \left(\frac{\partial}{\partial \theta} f(x,\theta)\right) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) f(x,\theta) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) dx = \int \frac{\partial}{\partial \theta} f(x) dx = \int \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} f(x) dx = \int \frac{\partial}{\partial \theta} f(x$ ALLER .

Electrical and Biomedical Engineering Undergraduate Research Opportunities!

Funded undergraduate research positions are available for Spring!

Who should apply? Juniors and exceptional sophomore students interested in graduate school.

How to apply? Submit a hard copy of your 1-page resume with a 1page statement of interest by October 15th to Prof. Jeff Frolik (Votey 357). Announcements will be made by November 1st.

Want to learn more about opportunities available? Talk to your neighborhood EBE faculty.