Ph.D. QUALIFYING EXAM IN REAL ANALYSIS

January 10, 2008 Three hours

There are 11 questions. A passing paper consists of 6 questions done completely correctly, or 5 questions done correctly with substantial progress on 2 others.

1. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R} . Assume that every convergent subsequence converges to the same real number. Prove that there is a real number L such that the entire sequence converges to L. [Note: The hypotheses allow the possibility that $\{x_n\}_{n=1}^{\infty}$, has no convergent subse-

[Note: The hypotheses allow the possibility that $\{x_n\}_{n=1}^{\infty}$ has no convergent subsequences, so your proof must subsume this case.]

- **2.** Let f be a real valued function that is continuous on [0, 1] and differentiable on (0, 1). Assume f(0) = 0 and $|f'(x)| \le |f(x)|$ for all $x \in (0, 1)$. Prove that f = 0 on [0, 1].
- **3.** Let $f_n(x) = \frac{1}{1+x^{2n}}$ for $x \in \mathbb{R}$.
 - (a) Find where $\{f_n\}_{n=1}^{\infty}$ converges pointwise, and describe the limit function F(x).
 - (b) Describe the intervals in \mathbb{R} on which $\{f_n\}_{n=1}^{\infty}$ converges uniformly to F.
- **4.** Suppose f, g and h are bounded real valued functions on [0, 1] with $f \le g \le h$. If f and h are Riemann integrable with $\int_0^1 f = \int_0^1 h$, prove that g is Riemann integrable.
- 5. Let $F(x, y, z) = (x^2 + z^2 4)^2 + xy 2008$. Find all points (x, y, z) such that the Implicit Function Theorem does *not* provide a local implicit function f(x, y) = z such that F(x, y, f(x, y)) = 0. Describe this set geometrically as a subset of \mathbb{R}^3 (eg., a sphere, cone, etc.).
- **6.** Let $g: (0,\infty) \longrightarrow \mathbb{R}$ by
 - g(x) = n when $x \in ((n-1)^2, n^2]$, for each $n \in \mathbb{N}$.

Since g is increasing and left continuous let μ be the Lebesgue-Stieltjes measure obtained from g on the semiring of half open intervals:

$$\mu([a,b)) = g(b) - g(a), \quad \text{for all } b \ge a > 0.$$

Prove that every subset of $(0, \infty)$ is μ^* -measurable, and find a simple expression for $\mu^*(E)$ for an arbitrary subset E of $(0, \infty)$.

[You may assume μ is a measure on this semiring, and μ^* , its Carathéodory extension, is an outer measure; you may quote basic results from measure theory without proof.]

- 7. Let λ denote Lebesgue measure on the real line.
 - (a) Prove that there is an open set \mathcal{O} that is dense in \mathbb{R} with $\lambda(\mathcal{O}) < 1$.
 - (b) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \mathcal{O}$ is uncountable.
 - (c) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \mathcal{O}$ is not compact.
- 8. (a) State the Lebesgue Dominated Convergence Theorem for $f_n: [0,1] \longrightarrow \mathbb{R}$.
 - (b) Use (a) to evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{dx}{(1 + \frac{x}{n})^n x^{\frac{1}{n}}}$$

where dx denotes integration with respect to Lebesgue measure. [Be sure to explain why the hypotheses are satisfied when you quote (a).]

- 9. Either prove or provide an explicit counterexample to each of the following assertions: (you may quote without proof familiar relations and containments between L^p -spaces)
 - (a) If $f, g \in L^2([0,1])$ then $fg \in L^2([0,1])$. (Lebesgue measure)
 - (b) If $f, g \in L^2(\mathbb{R})$ then $fg \in L^2(\mathbb{R})$. (Lebesgue measure)
 - (c) If $f, g \in \ell^2$ then $fg \in \ell^2$. (counting measure)
- **10.** Assume g is a continuous real valued function on $[-\pi, \pi]$ with $g(-\pi) = g(\pi)$, and suppose that $\int_{-\pi}^{\pi} g(t) \sin nt \, dt = 0$ for all natural numbers n. Prove that g is an even function (i.e., g(-x) = g(x) for all x). [Hint: Consider g(x) g(-x).]
- 11. Suppose $\{e_1, e_2, ...\}$ is an orthonormal basis of $L^2([0, 1])$. Extend each e_i to a function on \mathbb{R} by making it zero outside [0, 1]. For each integer n define $e_{i,n}(x) = e_i(x-n)$ (the translate of $e_i(x)$ by n). Prove that $\{e_{i,n} \mid i \in \mathbb{N}, n \in \mathbb{Z}\}$ is an orthonormal basis of $L^2(\mathbb{R})$. (All L^2 -spaces are with respect to Lebesgue measure.)