Ph.D. QUALIFYING EXAM IN REAL ANALYSIS

January 10, 2008
Three hours

There are 11 questions. A passing paper consists of 6 questions done completely correctly, or 5 questions done correctly with substantial progress on 2 others.

1. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R}. Assume that every convergent subsequence converges to the same real number. Prove that there is a real number L such that the entire sequence converges to L.
[Note: The hypotheses allow the possibility that $\left\{x_{n}\right\}_{n=1}^{\infty}$ has no convergent subsequences, so your proof must subsume this case.]
2. Let f be a real valued function that is continuous on $[0,1]$ and differentiable on $(0,1)$. Assume $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all $x \in(0,1)$. Prove that $f=0$ on $[0,1]$.
3. Let $f_{n}(x)=\frac{1}{1+x^{2 n}} \quad$ for $x \in \mathbb{R}$.
(a) Find where $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise, and describe the limit function $F(x)$.
(b) Describe the intervals in \mathbb{R} on which $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to F.
4. Suppose f, g and h are bounded real valued functions on $[0,1]$ with $f \leq g \leq h$. If f and h are Riemann integrable with $\int_{0}^{1} f=\int_{0}^{1} h$, prove that g is Riemann integrable.
5. Let $F(x, y, z)=\left(x^{2}+z^{2}-4\right)^{2}+x y-2008$. Find all points (x, y, z) such that the Implicit Function Theorem does not provide a local implicit function $f(x, y)=z$ such that $F(x, y, f(x, y))=0$. Describe this set geometrically as a subset of \mathbb{R}^{3} (eg., a sphere, cone, etc.).
6. Let $g:(0, \infty) \longrightarrow \mathbb{R}$ by

$$
g(x)=n \quad \text { when } \quad x \in\left((n-1)^{2}, n^{2}\right], \quad \text { for each } n \in \mathbb{N} .
$$

Since g is increasing and left continuous let μ be the Lebesgue-Stieltjes measure obtained from g on the semiring of half open intervals:

$$
\mu([a, b))=g(b)-g(a), \quad \text { for all } b \geq a>0
$$

Prove that every subset of $(0, \infty)$ is μ^{*}-measurable, and find a simple expression for $\mu^{*}(E)$ for an arbitrary subset E of $(0, \infty)$.
[You may assume μ is a measure on this semiring, and μ^{*}, its Carathéodory extension, is an outer measure; you may quote basic results from measure theory without proof.]
7. Let λ denote Lebesgue measure on the real line.
(a) Prove that there is an open set \mathcal{O} that is dense in \mathbb{R} with $\lambda(\mathcal{O})<1$.
(b) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R}-\mathcal{O}$ is uncountable.
(c) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R}-\mathcal{O}$ is not compact.
8. (a) State the Lebesgue Dominated Convergence Theorem for $f_{n}:[0,1] \longrightarrow \mathbb{R}$.
(b) Use (a) to evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{d x}{\left(1+\frac{x}{n}\right)^{n} x^{\frac{1}{n}}}
$$

where $d x$ denotes integration with respect to Lebesgue measure.
[Be sure to explain why the hypotheses are satisfied when you quote (a).]
9. Either prove or provide an explicit counterexample to each of the following assertions: (you may quote without proof familiar relations and containments between L^{p}-spaces)
(a) If $f, g \in L^{2}([0,1])$ then $f g \in L^{2}([0,1])$. (Lebesgue measure)
(b) If $f, g \in L^{2}(\mathbb{R})$ then $f g \in L^{2}(\mathbb{R})$. (Lebesgue measure)
(c) If $f, g \in \ell^{2}$ then $f g \in \ell^{2}$. (counting measure)
10. Assume g is a continuous real valued function on $[-\pi, \pi]$ with $g(-\pi)=g(\pi)$, and suppose that $\int_{-\pi}^{\pi} g(t) \sin n t d t=0$ for all natural numbers n. Prove that g is an even function (i.e., $g(-x)=g(x)$ for all x). [Hint: Consider $g(x)-g(-x)$.]
11. Suppose $\left\{e_{1}, e_{2}, \ldots\right\}$ is an orthonormal basis of $L^{2}([0,1])$. Extend each e_{i} to a function on \mathbb{R} by making it zero outside $[0,1]$. For each integer n define $e_{i, n}(x)=e_{i}(x-n)$ (the translate of $e_{i}(x)$ by $\left.n\right)$. Prove that $\left\{e_{i, n} \mid i \in \mathbb{N}, n \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$. (All L^{2}-spaces are with respect to Lebesgue measure.)

