COMPLEX VARIABLES PH.D. QUALIFYING EXAM

September 27, 2008

There are ten questions. A passing paper consists of seven problems done completely correctly, or six problems done correctly with substantial progress on two others. Let \mathbb{D} denote the open disc of radius 1 centered at the origin.

1. Let $f(z) = z |z|^2$.

- (a) Find all points in the complex plane where f satisfies the Cauchy-Riemann equations.
- (b) Does f have a complex derivative at the points you found in (a)? (Justify briefly.)
- **2.** Find all complex numbers z such that $\tan z = i 1$.
- **3.** Let $f(z) = \overline{z}$. In each of parts (a) and (b) compute $\int_{\gamma} f(z) dz$, where γ is the specified path whose initial point is -1 and terminal point is i.
 - (a) γ is the path along the coordinate axes: from -1 to 0 and then from 0 to *i*.
 - (b) γ is the quarter of the unit circle lying in the second quadrant, oriented clockwise.
 - (c) Could there be a function g that is analytic on some simply connected open set U containing both the paths in (a) and (b) such that g = f on both paths? (Explain briefly.)
- 4. Find a Laurent series expansion valid in some bounded annulus centered at 0 that contains the point z = 3 for the following function (explain briefly how the inner and outer radii of the annulus are determined):

$$f(z) = \frac{z}{z^2 - 4} + \frac{12}{(z - 4)^2}$$

5. Use the calculus of residues to evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 9} \, dx.$$

[Draw your path of integration; but you may quote without proof any standard estimates for integrals along portions of your path, making sure to mention what growth conditions are required.]

6. Suppose f is entire and there is a positive real number M and a polynomial p such that $|f(z)| \le |p(z)|$ for all z with |z| > M. Prove that f is a polynomial.

- 7. Let f and g be analytic on the closed unit disc $\overline{\mathbb{D}}$, and assume both f and g have no zeros in $\overline{\mathbb{D}}$. Prove that if |f(z)| = |g(z)| for all z with |z| = 1, then f(z) = kg(z) in \mathbb{D} for some constant k of modulus 1.
- **8.(a)** Exhibit a function f such that at each positive integer n, f has a pole of order n, and f is analytic and nonzero at every other complex number. (Briefly justify your answer.)
 - (b) Let f be any function that satisfies the conditions of part (a). For each positive integer N find $\int_{C_N} \frac{f'(z)}{f(z)} dz$, where C_N is the circle of radius $N + \frac{1}{2}$ centered at the origin.
- 9.(a) State Goursat's Theorem.
 - (b) Use Goursat's Theorem to prove that if f is continuous on \mathbb{C} and analytic at every point not on the real axis, then f must be analytic everywhere.
- 10. Suppose f is entire and for some positive real number K

 $|\operatorname{Re} f(z)| \ge |\operatorname{Im} f(z)|, \quad \text{for all } z \text{ with } |z| \ge K.$

Prove that f is constant on \mathbb{C} .