COMPLEX VARIABLES PH.D. QUALIFYING EXAM

September 28, 2007

There are ten questions. A passing paper consists of seven problems done completely correctly, or six problems done correctly with substantial progress on two others.

1. Find all solutions (if any) to the equation $i^{z}=2$, where $i=\sqrt{-1}$.
2. Let C_{1} and C_{2} be the circles centered at the origin in \mathbb{C}, of radii 1 and 2 respectively. Evaluate, with brief justifications, the integrals,
(a) $\int_{C_{1}} \frac{e^{z}}{z-1-i} d z$
(b) $\int_{C_{2}} \frac{e^{z}}{z-1-i} d z$.
3. Use the calculus of residues to evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

4. Find each singularity in \mathbb{C} and classify it (removable, pole of order n, essential) for the function

$$
f(z)=\frac{z}{\left(4+z^{2}\right) \sin (\pi z)} .
$$

5. Find a Laurent series expansion valid in the annulus $\{z: 1<|z|<2\}$ for the following function:

$$
f(z)=\frac{z^{2}}{(z+1)(z-2)}
$$

6. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ has the property that for each $z \in \mathbb{C}$ there is an open disc D_{z} centered at z such that f is a polynomial on D_{z} (where the radius of D_{z} and the polynomial $\left.f\right|_{D_{z}}$ both may depend on z). Prove that f is a polynomial on all of \mathbb{C} (i.e., f is the same polynomial on each D_{z}).
7. Show that $z^{5}+3 z^{3}+7$ has exactly five zeros in the disc $|z|<2$.
8. Suppose D is the unit disc centered at the origin in \mathbb{C} and, for each natural number n, $f_{n}: D \rightarrow \mathbb{C}$ is an analytic function. Prove that if the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on D then f is analytic.
9. Suppose f and g are entire functions such that $|f(z)| \leq|g(z)|$ at all points z where $g(z) \neq 0$. Prove that $f=c g$ for some constant $c \in \mathbb{C}$.
10. Exhibit an analytic, one-to-one, onto map from $\{z:|z|<1, \operatorname{Re}(z)>0\}$ to $\{z:|z|<1\}$. You may express your map as a sequence of compositions.
