COMPLEX VARIABLES PH.D. QUALIFYING EXAM

May 20, 2008

There are ten questions. A passing paper consists of seven problems done completely correctly, or six problems done correctly with substantial progress on two others. Let \mathbb{D} denote the open disc of radius 1 centered at the origin.

1. Let f be holomorphic on a connected open set U. Prove that if $f(z)^{2}=\overline{f(z)}$ for all $z \in U$ then f is constant on U. Find all possible values for f.
2. Let γ be the circle of radius 5 centered at 0 . Evaluate with brief justification the integrals:
(a) $\int_{\gamma} \frac{\bar{z}}{z-1} d z$,
(b) $\int_{\gamma} e^{1 / z} d z$.
3. Find a Laurent series expansion valid in some bounded annulus centered at 0 that contains the point $z=2$ for the following function (explain briefly how the inner and outer radii of the annulus are determined):

$$
f(z)=\frac{z}{1-z^{2}}+\frac{6}{(z-4)^{2}} .
$$

4. Use the calculus of residues to evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x
$$

5. Prove that if f is entire and there are positive real numbers A, B and k such that $|f(z)| \leq A+B\left|z^{k}\right|$ for all $z \in \mathbb{C}$, then f is a polynomial.
6. Let f be analytic on the closed unit disc $\overline{\mathbb{D}}$, and assume $|f(z)|<1$ on its boundary. Prove that there is one and only one point $z_{0} \in \mathbb{D}$ such that $f\left(z_{0}\right)=z_{0}$.
7. (a) Exhibit an entire function, $P(z)$, that has simple zeros at the numbers \sqrt{n} for each positive integer n, and no other zeros.
(b) For the function P you gave in part (a), describe P^{\prime} / P as an infinite series (not necessarily a Taylor series however).
8. Define $f(z)=\int_{0}^{1} \frac{d t}{1+t z}$.
(a) Show by using Morera's Theorem that f is analytic on the open unit disc \mathbb{D}.
(b) Find a power series expansion for $f(z)$ valid on \mathbb{D}.
9. Let $P(z)$ and $Q(z)$ be polynomials with degree $Q \geq$ degree $P+2$. Prove that

$$
\sum_{z_{i}} \operatorname{Res}_{z=z_{i}} \frac{P(z)}{Q(z)}=0
$$

where the sum is over all poles z_{i} in \mathbb{C} of the rational function $\frac{P}{Q}$.
10. Suppose f is analytic on the punctured unit disc $\mathbb{D}-\{0\}$ and the real part of f is positive there. Prove that f has a removable singularity at 0 .

