ALGEBRA PH.D. QUALIFYING EXAM

January 17, 2019

Three hours

A passing paper consists of five problems solved completely, or four solved completely plus significant progress on two other problems; in both cases the set of problems solved completely must include one from each of Sections A, B and C.

Section A.

In this section you may quote without proof basic theorems and classifications from group theory as long as you state clearly what facts you are using.

- 1. Let G be a group of order 2457 (note that $2457 = 3^3 \cdot 7 \cdot 13$).
 - (a) Compute the number, n_p , of Sylow *p*-subgroups permitted by Sylow's Theorem for each of p = 7 and 13 (only).
 - (b) Let P_{13} be a Sylow 13-subgroup of G. Prove that if P_{13} is not normal in G, then $N_G(P_{13})$ has a normal Sylow 7-subgroup.
 - (c) Deduce from (b) and (a) that G has a normal Sylow p-subgroup for either p = 13 or p = 7.
- **2.** Let p be a prime and let P be a p-group acting on a nonempty finite set A with (|A|, p) = 1.
 - (a) Prove that there is some $a \in A$ that is fixed by every element of P.
 - (b) Suppose P is a p-subgroup of a finite group G and H is a normal subgroup of G with (|H|, p) = 1. Deduce from (a) that for every prime q dividing |H| there is a Sylow q-subgroup of H that is normalized by P.
- **3.** Let G be a group containing nonabelian simple subgroups H_i such that

$$H_1 \le H_2 \le H_3 \le \cdots$$
 and $\bigcup_{n=1}^{\infty} H_n = G.$ (3)

- (a) Prove that G is simple.
- (b) Prove that if $H_n \neq H_{n+1}$ for all n, then G is not finitely generated.

Section B.

- 4. Let R be the ring of all *continuous* real valued functions on the closed interval [0,1]. For each $a \in [0,1]$ let $M_a = \{f \in R \mid f(a) = 0\}$.
 - (a) Find all units in R.
 - (b) Give an explicit example of a nonzero zero divisor in R.
 - (c) Prove that M_a is a maximal ideal in R.

(d) Prove that there is a countable subset $\{a_1, a_2, a_3, ...\}$ of [0,1] such that $\bigcap_{i=1}^{\infty} M_{a_i} = 0$.

- 5. Let R be a Principal Ideal Domain with field of fractions F and assume $R \neq F$. As usual we may view F as a module over its subring R.
 - (a) Prove that every finitely generated *R*-submodule of *F* is a cyclic *R*-module.
 - (b) Deduce from (a) that F cannot be a finitely generated R-module.

(You may quote results about modules over PIDs.)

6. Let \mathbb{F}_q be the finite field with q elements. Find the number of similarity classes of 5×5 matrices A over F_q that satisfy $A^q = I$, where I is the identity matrix. (Justify your answer. You do not need to exhibit representatives of the classes.)

Section C.

- 7. Let $f(x) = x^6 6x^3 + 1$ and let α, β be the two real roots of f(x) with $\alpha > \beta$. You may assume f(x) is irreducible in $\mathbb{Q}[x]$. Let K be the splitting field of f(x) in \mathbb{C} .
 - (a) Exhibit all six roots of f(x) in terms of radicals involving only integers and powers of ω , where ω is a primitive cube root of unity.
 - (b) Prove that $K = \mathbb{Q}(\alpha, \omega)$ and deduce that $[K : \mathbb{Q}] = 12$. [Hint: What is $\alpha\beta$?]
 - (c) Prove that $G = \text{Gal}(K/\mathbb{Q})$ has a normal subgroup N such that G/N is the Klein group of order four.
- 8. Let n be a given positive integer and let E_{2^n} be the elementary abelian group of order 2^n (the direct product of n copies of the cyclic group of order 2). Show that there is some positive integer N such that the cyclotomic field $\mathbb{Q}(\zeta_N)$ contains a subfield F that is Galois over \mathbb{Q} with $\operatorname{Gal}(F/\mathbb{Q}) \cong E_{2^n}$, where ζ_N is a primitive Nth root of 1 in \mathbb{C} .
- **9.** Let p be a prime and let $q = p^n$ for some $n \in \mathbb{Z}^+$.
 - (a) What is the degree of the extension \mathbb{F}_{q^2} over \mathbb{F}_q ? Describe how the Frobenius automorphism, σ , for this extension acts on the elements of \mathbb{F}_{q^2} .
 - (b) Define the norm map

$$N: \mathbb{F}_{a^2}^{\times} \longrightarrow \mathbb{F}_q^{\times}$$
 by $N(a) = a\sigma(a)$.

Prove that this norm map is surjective. [Hint: Note that N is a homomorphism of multiplicative groups. Use (a) and facts about finite fields to find the order of its kernel.]