ALGEBRA PH.D. QUALIFYING EXAM — SOLUTIONS

October 20, 2011

A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely must include one from each of Sections A, B and C.

Section A.

In this section you may quote without proof basic theorems and classifications from group theory as long as you state clearly what facts you are using.

- 1. Let G be a group of order 9045 (note that $9045 = 3^3 \cdot 5 \cdot 67$).
 - (a) Compute the number, n_p , of Sylow *p*-subgroups permitted by Sylow's Theorem for each of p = 3, 5, and 67; for each of these n_p give the order of the normalizer of a Sylow *p*-subgroup.
 - (b) Show that G has a normal Sylow p-subgroup for some prime p dividing |G|.
 - (c) Show that G must have a normal Sylow 5-subgroup.

Solution:

(a) Direct computation shows that $n_3 = 1$ or 67; $n_5 = 1$ or $3 \cdot 67 = 201$; and $n_{67} = 1$ or $3^35 = 135$. If P_p is a Sylow *p*-subgroup, then in the cases were P_p is not normal in *G* we have $|N_G(P_3)| = 3^35$; $|N_G(P_5)| = 3^25$; and $|N_G(P_{67})| = 67$.

(b) If G does not have a normal Sylow 67-subgroup, then since distinct Sylow 67-subgroups intersect in the identity, by (a) there are 135(67 - 1) = 8910 elements of order 67. Only 135 elements remain. If G does not have a normal Sylow 5-subgroup, then analogously there are 201(5 - 1) = 804 elements of order 5. Thus G must have either a normal Sylow 67-subgroup or a normal Sylow 5-subgroup.

[Alternatively, if G does not have a normal Sylow 67-subgroup or a normal Sylow 3-subgroup, then the normalizer of a Sylow 3-subgroup, which has order 135, must account for all the elements of G that are not of order 67. Thus $N_G(P_3)$ is normal in G. This is impossible as P_3 is characteristic in $N_G(P_3)$, and so P_3 would be normal in G, contrary to assumption.]

(c) If P_5 is not normal in G, then by (b), P_{67} is normal. Let overbars denote passage to G/P_{67} . By Sylow's Theorem $\overline{P_5}$ is normal in \overline{G} . If H is the complete preimage in G of $\overline{P_5}$, then H is a normal subgroup of G of order $5 \cdot 67$. By Sylow's Theorem in H we see that P_5 is normal, hence characteristic, in H. Since H is normal in G, this gives P_5 is normal in G too.

[Alternatively, the corresponding argument will work if P_3 is normal in G. Or, simply consider $H = P_{67}P_5$ or P_3P_5 and derive a contradiction from (a) by showing 67 or $3^3 | N_H(P_5)|$ respectively.]

- **2.** Let p be a prime and let G be a finite group whose order is divisible by p. Let P be a normal p-subgroup of G (i.e., $|P| = p^b$ for some b).
 - (a) Prove that P is contained in *every* Sylow p-subgroup of G.
 - (b) Prove that if M is any maximal subgroup of G, then either $P \leq M$ or $|G:M| = p^c$ for some $c \leq b$.

Solution: (a) By Sylow's Theorem P is contained in one Sylow p-subgroup, Q, of G. Thus for all $g \in G$ we have $P = gPg^{-1} \leq gQg^{-1}$. By Sylow's Theorem every Sylow p-subgroup equals gQg^{-1} for some $g \in G$, so P is contained in every Sylow p-subgroup.

(b) If P is not contained in M, then since P is normal, PM is a subgroup of G that properly contains M. By maximality, PM = G. By the Second (Diamond) Isomorphism Theorem, $G/P = PM/P \cong M/(P \cap M)$. Looking at the other "parallel" sides of this diamond lattice gives that $|G:M| = |P:P \cap M|$. The latter index is a power of p by Lagrange's Theorem so the second conclusion of (b) holds.

3. Let G be a group acting faithfully and transitively (on the left) on a finite set Ω , and let $\omega \in \Omega$. Let G_{ω} be the stabilizer of the point ω :

$$G_{\omega} = \{ g \in G \mid g\omega = \omega \}.$$

- (a) For any $g \in G$, prove that $gG_{\omega}g^{-1} = G_{q\omega}$.
- (b) Show that if G_{ω} is a normal subgroup of G, then $G_{\omega} = 1$.
- (c) Suppose in addition that G is the quaternion group of order 8. Deduce that we must have $|\Omega| = 8$.

Solution: (a) It is straightforward from the definition to show $gG_{\omega}g^{-1} \subseteq G_{g\omega}$. Because these subgroups have the same order (*G* is finite here), we obtain equality. Alternatively (for infinite *G* too), conjugating the first containment by g^{-1} and applying the containment for g^{-1} gives

$$G_{\omega} \subseteq g^{-1}G_{g\omega}g \subseteq G_{g^{-1}\cdot g\omega}.$$

Since $g^{-1} \cdot g\omega = \omega$ all three subgroups above are equal, as desired.

(b) If G_{ω} is normal in G then by (a) we have $G_{\omega} = G_{g\omega}$ for every $g \in G$. Since G is transitive on Ω , this shows G_{ω} fixes every point of Ω . Since G acts faithfully on Ω , $G_{\omega} = 1$.

(c) Since every subgroup of the quaternion group of order 8 is normal, by (b) we must have $G_{\omega} = 1$ for any $\omega \in \Omega$. Since G is transitive on Ω , by results from group actions we have $|\Omega| = |G: G_{\omega}| = 8$.

Section B.

- 4. Let $R = \mathbb{Z}[\sqrt{-13}]$ and let $N(a + b\sqrt{-13}) = a^2 + 13b^2$ be the usual field norm. (You may assume $N : R \to \mathbb{Z}$ is multiplicative.)
 - (a) Let $\alpha = 1 + \sqrt{-13}$. Show that $\alpha^2 \in (2)$ but $\alpha \notin (2)$.
 - (b) Show that 2 is irreducible in R, and determine if (2) is a prime ideal.
 - (c) Is R is a Unique Factorization Domain? (Justify.)

Solution: (a) Clearly $\alpha^2 = -12 + 2\sqrt{-13} \in (2)$. Since $1, \sqrt{-13}$ are linearly independent over \mathbb{Q} , $\alpha \neq 2(a + b\sqrt{-13})$ for any integers a, b, i.e., $\alpha \notin (2)$.

(b) Suppose $2 = \beta \gamma$ for some $\beta, \gamma \in R$. Then $4 = N(\beta \gamma) = N(\beta)N(\gamma)$. In the quadratic integer ring R the elements of norm 1 are units (no norms are negative); so if neither β nor γ is a unit, both must have norm 2. For $\beta = a + b\sqrt{-13}$ we would have $N(\beta) = a^2 + 13b^2 = 2$, which is clearly impossible for integers a, b. This proves 2 is irreducible.

(c) Since 2 is irreducible but not prime, R is not a U.F.D.

5. Let x be an indeterminate over the field \mathbb{Q} . Describe explicitly all isomorphism types of $\mathbb{Q}[x]$ -modules that are 2-dimensional vector spaces over \mathbb{Q} . (Be sure to quote explicitly any theorems that you use.)

Solution: By the Fundamental Theorem for Finitely Generated Modules over a P.I.D. (such as $\mathbb{Q}[x]$), any 2-dimensional module, M—which is necessarily finitely generated, even over \mathbb{Q} , by a basis—is a direct sum of cyclic modules:

$$M \cong \frac{\mathbb{Q}[x]}{(a_1(x))} \oplus \frac{\mathbb{Q}[x]}{(a_2(x))} \oplus \dots \oplus \frac{\mathbb{Q}[x]}{(a_n(x))}$$

for monic polynomials a_1, a_2, \ldots, a_n , each dividing the next (the Invariant Factor Decomposition). Since the Q-dimension of each $\mathbb{Q}[x]/(a_i(x))$ is the degree of a_i , we must have n = 1 or 2. Furthermore, if n = 1 then $M \cong \mathbb{Q}[x]/(a_1(x))$ for a monic quadratic polynomial in $\mathbb{Q}[x]$. If n = 2 then the divisibility condition forces $a_1 = a_2$ and both are degree 1, i.e., $M \cong \mathbb{Q}[x]/(x-a) \oplus \mathbb{Q}[x]/(x-a)$. By the Fundamental Theorem these are all possibilities, and all are distinct (nonisomorphic).

- 6. (a) Find, with justification, the smallest positive integer n such that there is an $n \times n$ matrix A with rational number entries satisfying $A^9 = I$ but $A^i \neq I$ for $1 \le i \le 8$.
 - (b) Exhibit an explicit matrix A satisfying the conditions of (a) for the smallest n you found.
 - (c) Find, with justification, the smallest positive integer k such that there are two, nonsimilar $k \times k$ matrices with rational number entries, both satisfying $X^9 = I$ but $X^i \neq I$ for $1 \le i \le 8$.

Solution: (a) and (b) First factor the cyclotomic polynomial $x^9 - 1 = (x^3)^3 - 1$ into irreducibles in $\mathbb{Q}[x]$ as

$$x^{9} - 1 = (x - 1)(x^{2} + x + 1)(x^{6} + x^{3} + 1)$$

where the last irreducible factor is $\Phi_9(x)$ of degree $\phi(9) = 6$. The given conditions are equivalent to the minimal polynomial of A dividing $x^9 - 1$ but not $x^3 - 1$. Thus the minimal polynomial of A must have a factor of $\Phi_9(x)$. The degree of such a matrix A is at least 6. Since the companion matrix of $\Phi_9(x)$ is a 6×6 matrix whose characteristic and minimal polynomials are both $\Phi_9(x)$, this matrix satisfies the given conditions.

(c) As noted above, the specified conditions are equivalent to the minimal polynomial dividing $x^9 - 1$ and containing a factor of $\Phi_9(x)$. If A and B are nonsimilar matrices of smallest degree satisfying the conditions, then the two lists of invariant factors resulting in the smallest degree matrices (= the degree of the product of all invariant factors) are seen to be:

(i)
$$a_1(x) = x - 1$$
, $a_2(x) = (x - 1)\Phi_9(x)$, and
(ii) $a_1(x) = (x^2 + x + 1)\Phi_9(x)$.

The lists are distinct, so the matrices are nonsimilar; and there is no possible pair of invariant factor lists—each invariant factor dividing the next with $\Phi_9(x)$ dividing the last invariant factor—for degrees 6 or 7. The minimal degree of A and B is therefore 8.

Section C.

- 7. Let K be the splitting field of $x^6 2$ over \mathbb{Q} .
 - (a) Find the isomorphism type of the Galois group of K over \mathbb{Q} .
 - (b) Find all subfields of K that are quadratic over \mathbb{Q} . (Justify why you found all of them.)
 - (c) Find a subfield of K that is normal over \mathbb{Q} of degree 6.

Solution: (a) The roots of $x^6 - 2$ are $\zeta^i \sqrt[6]{2}$, i = 0, 1, ..., 5, where ζ is a primitive sixth root of unity in \mathbb{C} , and $\sqrt[6]{2}$ is the real, positive sixth root of 2. Argue as usual that $K = \mathbb{Q}(\sqrt[6]{2}, \zeta)$ by easily showing containment in both directions. The irreducible polynomial of ζ in $\mathbb{Q}[x]$ is $\Phi_6(x) = x^2 - x + 1$. By Eisenstein for $p = 2, x^6 - 2$ is irreducible over \mathbb{Q} , hence $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}] = 6$. Since ζ is not real, $\zeta \notin \mathbb{Q}(\sqrt[6]{2})$; and since ζ is a root of a quadratic with rational coefficients we obtain

$$[K:\mathbb{Q}] = [\mathbb{Q}(\sqrt[6]{2},\zeta):\mathbb{Q}] = [\mathbb{Q}(\sqrt[6]{2},\zeta):\mathbb{Q}(\sqrt[6]{2})][\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}] = 2 \cdot 6 = 12.$$
(7.1)

Each Galois automorphism, σ , of K is uniquely determined by its action on $\sqrt[6]{2}$ and ζ . Since σ fixes \mathbb{Q} , $\sigma(\sqrt[6]{2})$ must be a root of $x^6 - 2$ and $\sigma(\zeta)$ must be a root of $x^2 - x + 1$. There are at most 12 possible choices, hence by (7.1) all such indeed do determine automorphisms of K/\mathbb{Q} . Let ρ and σ be the Galois automorphisms defined by

(i) $\rho(\sqrt[6]{2}) = \zeta \sqrt[6]{2}$ and $\rho(\zeta) = \zeta$, and

(ii) $\sigma(\sqrt[6]{2}) = \sqrt[6]{2}$ and $\sigma(\zeta) = \zeta^5 = \overline{\zeta}$ (complex conjugation restricted to K).

Easy direct computation shows that $|\rho| = 6$, $|\sigma| = 2$ and $\rho\sigma = \sigma\rho^{-1}$. Thus ρ and σ satisfy the familiar presentation relations for generators (r and s respectively) in the dihedral group of order 12. This proves $\operatorname{Gal}(K/\mathbb{Q}) \cong D_{12}$.

(b) The field generated by all quadratic extensions of \mathbb{Q} that are contained in K is of 2-power degree over \mathbb{Q} . Clearly $\sqrt{2} = (\sqrt[6]{2})^3$ and ζ generate distinct quadratic extensions of \mathbb{Q} , so $L = \mathbb{Q}(\sqrt{2}, \zeta) = \mathbb{Q}(\sqrt{2}, \sqrt{-3})$ is a normal biquadratic extension of degree 4 over \mathbb{Q} . Since $8 \not| [K : \mathbb{Q}]$, all quadratic extensions lie in L. The three quadratic subfields of L (and hence of K) are $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-6})$.

(c) Since $(\sqrt[6]{2})^2 = \sqrt[3]{2}$ is a root of $x^3 - 2$ and ζ^2 is a primitive cube root of unity (which generates the same field as ζ), the subfield $\mathbb{Q}((\sqrt[3]{2}, \zeta))$ is the splitting field of $x^3 - 2$, hence is normal over \mathbb{Q} . Alternatively, $\langle \rho^3 \rangle$ is a normal subgroup of $\operatorname{Gal}(K/\mathbb{Q})$ of index 6 (it has order 2 and is the center of the Galois group); its fixed field is thus the required subfield (and this fixed field is seen to be L).

8. Let F be the finite field with 3^{20} elements.

- (a) Draw the lattice of all subfields of *F*.
- (b) Give an expression for the number of field generators for the extension F/\mathbb{F}_3 , i.e., the number of primitive elements for this extension (you need not compute the actual numerical value).
- (c) Give an expression for the number of generators for the multiplicative group, F^{\times} , of nonzero elements of F (you need not compute the actual numerical value).
- (d) Does F contain a primitive eighth root of 1? (Briefly justify.)

Solution: (a) Since \mathbb{F}_{p^n} is a subfield of \mathbb{F}_{p^m} if and only if $n \mid m$, the lattice of subgroups of $\mathbb{F}_{3^{20}}$ is the same as the lattice of subgroups of the cyclic group of order 20 (which is the same lattice as that of $\mathbb{Z}/12\mathbb{Z}$ in Section 2.5 of Dummit–Foote).

(b) An element $\alpha \in F$ is a primitive element if and only if α does not lie in either of the two maximal subfields of F, namely $\alpha \notin \mathbb{F}_{3^{10}} \cup \mathbb{F}_{3^4}$. The number of such α is therefore $3^{20} - 3^{10} - 3^4 + 3^2$, where we've added on the last term because the order of $\mathbb{F}_{3^{10}} \cap \mathbb{F}_{3^4} = \mathbb{F}_{3^2}$ has been subtracted twice.

(c) The number of multiplicative generators for the cyclic group F^{\times} is $\phi(3^{20} - 1)$, where ϕ is Euler's function.

(d) Yes, F contains a primitive eighth root of unity because 8 divides the order of the cyclic group F^{\times} , so this group contains a (cyclic) subgroup of order 8. (Easily, $3^{20} = (3^2)^{10} \equiv 1 \pmod{8}$; or use the equivalent fact that $\mathbb{F}_9^{\times} \leq F^{\times}$.)

9. Let *a* and *b* be relatively prime odd integers, both > 1. Let ζ be a primitive $(ab)^{\text{th}}$ root of 1 in \mathbb{C} . Prove that the Galois group of $\mathbb{Q}(\zeta)/\mathbb{Q}$ is *not* a cyclic group. (Be sure to quote explicitly any theorems that you use.)

Solution: By the basic theory of cyclotomic extensions, $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/ab\mathbb{Z})^{\times}$. By the Chinese Remainder Theorem (applied to the units in the ring $\mathbb{Z}/ab\mathbb{Z}$), since (a, b) = 1,

$$(\mathbb{Z}/ab\mathbb{Z})^{\times} \cong (\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}.$$
(9.1)

Note that $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$ is seen from its formula to be even for all odd integers n > 1. Thus the direct product in (9.1) is not cyclic since both factors have even order (it contains a noncyclic subgroup, the Klein 4-group).