
ALGEBRA PH.D. QUALIFYING EXAM — SOLUTIONS

October 20, 2011

A passing paper consists of four problems solved completely plus significant progress on two other

problems; moreover, the set of problems solved completely must include one from each of Sections

A, B and C.

Section A.

In this section you may quote without proof basic theorems and classifications from group theory

as long as you state clearly what facts you are using.

1. Let G be a group of order 9045 (note that 9045 = 33 · 5 · 67).

(a) Compute the number, np, of Sylow p-subgroups permitted by Sylow’s Theorem for each
of p = 3, 5, and 67; for each of these np give the order of the normalizer of a Sylow
p-subgroup.

(b) Show that G has a normal Sylow p-subgroup for some prime p dividing |G|.
(c) Show that G must have a normal Sylow 5-subgroup.

Solution:

(a) Direct computation shows that n3 = 1 or 67; n5 = 1 or 3 · 67 = 201; and n67 = 1 or
335 = 135. If Pp is a Sylow p-subgroup, then in the cases were Pp is not normal in G we have
|NG(P3)| = 335; |NG(P5)| = 325; and |NG(P67)| = 67.

(b) If G does not have a normal Sylow 67-subgroup, then since distinct Sylow 67-subgroups
intersect in the identity, by (a) there are 135(67 − 1) = 8910 elements of order 67. Only 135
elements remain. If G does not have a normal Sylow 5-subgroup, then analogously there are
201(5 − 1) = 804 elements of order 5. Thus G must have either a normal Sylow 67-subgroup or a
normal Sylow 5-subgroup.

[Alternatively, if G does not have a normal Sylow 67-subgroup or a normal Sylow 3-subgroup,
then the normalizer of a Sylow 3-subgroup, which has order 135, must account for all the elements
of G that are not of order 67. Thus NG(P3) is normal in G. This is impossible as P3 is characteristic
in NG(P3), and so P3 would be normal in G, contrary to assumption.]

(c) If P5 is not normal in G, then by (b), P67 is normal. Let overbars denote passage to G/P67.
By Sylow’s Theorem P5 is normal in G. If H is the complete preimage in G of P5, then H is a
normal subgroup of G of order 5 · 67. By Sylow’s Theorem in H we see that P5 is normal, hence
characteristic, in H. Since H is normal in G, this gives P5 is normal in G too.

[Alternatively, the corresponding argument will work if P3 is normal in G. Or, simply consider
H = P67P5 or P3P5 and derive a contradiction from (a) by showing 67 or 33

∣

∣ |NH(P5)| respectively.]

2. Let p be a prime and let G be a finite group whose order is divisible by p. Let P be a normal
p-subgroup of G (i.e., |P | = pb for some b).

(a) Prove that P is contained in every Sylow p-subgroup of G.

(b) Prove that if M is any maximal subgroup of G, then either P ≤ M or |G : M | = pc for
some c ≤ b.

Solution: (a) By Sylow’s Theorem P is contained in one Sylow p-subgroup, Q, of G. Thus for all
g ∈ G we have P = gPg−1 ≤ gQg−1. By Sylow’s Theorem every Sylow p-subgroup equals gQg−1

for some g ∈ G, so P is contained in every Sylow p-subgroup.
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(b) If P is not contained in M , then since P is normal, PM is a subgroup of G that properly
contains M . By maximality, PM = G. By the Second (Diamond) Isomorphism Theorem, G/P =
PM/P ∼= M/(P ∩ M). Looking at the other “parallel” sides of this diamond lattice gives that
|G : M | = |P : P ∩ M |. The latter index is a power of p by Lagrange’s Theorem so the second
conclusion of (b) holds.

3. Let G be a group acting faithfully and transitively (on the left) on a finite set Ω, and let ω ∈ Ω.
Let Gω be the stabilizer of the point ω:

Gω = {g ∈ G | gω = ω}.

(a) For any g ∈ G, prove that gGωg−1 = Ggω.

(b) Show that if Gω is a normal subgroup of G, then Gω = 1.

(c) Suppose in addition that G is the quaternion group of order 8. Deduce that we must have
|Ω| = 8.

Solution: (a) It is straightforward from the definition to show gGωg−1 ⊆ Ggω. Because these
subgroups have the same order (G is finite here), we obtain equality. Alternatively (for infinite G
too), conjugating the first containment by g−1 and applying the containment for g−1 gives

Gω ⊆ g−1Ggωg ⊆ Gg−1
·gω.

Since g−1 · gω = ω all three subgroups above are equal, as desired.

(b) If Gω is normal in G then by (a) we have Gω = Ggω for every g ∈ G. Since G is transitive
on Ω, this shows Gω fixes every point of Ω. Since G acts faithfully on Ω, Gω = 1.

(c) Since every subgroup of the quaternion group of order 8 is normal, by (b) we must have
Gω = 1 for any ω ∈ Ω. Since G is transitive on Ω, by results from group actions we have
|Ω| = |G : Gω | = 8.

Section B.

4. Let R = Z[
√

−13] and let N(a + b
√

−13) = a2 + 13b2 be the usual field norm. (You may
assume N : R → Z is multiplicative.)

(a) Let α = 1 +
√

−13. Show that α2 ∈ (2) but α /∈ (2).

(b) Show that 2 is irreducible in R, and determine if (2) is a prime ideal.

(c) Is R is a Unique Factorization Domain? (Justify.)

Solution: (a) Clearly α2 = −12 + 2
√

−13 ∈ (2). Since 1,
√

−13 are linearly independent over Q,
α 6= 2(a + b

√
−13) for any integers a, b, i.e., α /∈ (2).

(b) Suppose 2 = βγ for some β, γ ∈ R. Then 4 = N(βγ) = N(β)N(γ). In the quadratic integer
ring R the elements of norm 1 are units (no norms are negative); so if neither β nor γ is a unit,
both must have norm 2. For β = a+ b

√
−13 we would have N(β) = a2 +13b2 = 2, which is clearly

impossible for integers a, b. This proves 2 is irreducible.

(c) Since 2 is irreducible but not prime, R is not a U.F.D.
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5. Let x be an indeterminate over the field Q. Describe explicitly all isomorphism types of
Q[x]-modules that are 2-dimensional vector spaces over Q. (Be sure to quote explicitly any
theorems that you use.)

Solution: By the Fundamental Theorem for Finitely Generated Modules over a P.I.D. (such as
Q[x]), any 2-dimensional module, M—which is necessarily finitely generated, even over Q, by a
basis—is a direct sum of cyclic modules:

M ∼= Q[x]

(a1(x))
⊕ Q[x]

(a2(x))
⊕ · · · ⊕ Q[x]

(an(x))

for monic polynomials a1, a2, . . . , an, each dividing the next (the Invariant Factor Decomposition).
Since the Q-dimension of each Q[x]/(ai(x)) is the degree of ai, we must have n = 1 or 2. Further-
more, if n = 1 then M ∼= Q[x]/(a1(x)) for a monic quadratic polynomial in Q[x]. If n = 2 then the
divisibility condition forces a1 = a2 and both are degree 1, i.e, M ∼= Q[x]/(x − a) ⊕ Q[x]/(x − a).
By the Fundamental Theorem these are all possibilities, and all are distinct (nonisomorphic).

6. (a) Find, with justification, the smallest positive integer n such that there is an n × n matrix
A with rational number entries satisfying A9 = I but Ai 6= I for 1 ≤ i ≤ 8.

(b) Exhibit an explicit matrix A satisfying the conditions of (a) for the smallest n you found.

(c) Find, with justification, the smallest positive integer k such that there are two, nonsimilar

k × k matrices with rational number entries, both satisfying X9 = I but Xi 6= I for
1 ≤ i ≤ 8.

Solution: (a) and (b) First factor the cyclotomic polynomial x9 − 1 = (x3)3 − 1 into irreducibles
in Q[x] as

x9 − 1 = (x − 1)(x2 + x + 1)(x6 + x3 + 1)

where the last irreducible factor is Φ9(x) of degree φ(9) = 6. The given conditions are equivalent
to the minimal polynomial of A dividing x9 − 1 but not x3 − 1. Thus the minimal polynomial of
A must have a factor of Φ9(x). The degree of such a matrix A is at least 6. Since the companion
matrix of Φ9(x) is a 6 × 6 matrix whose characteristic and minimal polynomials are both Φ9(x),
this matrix satisfies the given conditions.

(c) As noted above, the specified conditions are equivalent to the minimal polynomial dividing
x9 − 1 and containing a factor of Φ9(x). If A and B are nonsimilar matrices of smallest degree
satisfying the conditions, then the two lists of invariant factors resulting in the smallest degree
matrices (= the degree of the product of all invariant factors) are seen to be:

(i) a1(x) = x − 1, a2(x) = (x − 1)Φ9(x), and

(ii) a1(x) = (x2 + x + 1)Φ9(x).

The lists are distinct, so the matrices are nonsimilar; and there is no possible pair of invariant
factor lists—each invariant factor dividing the next with Φ9(x) dividing the last invariant factor—
for degrees 6 or 7. The minimal degree of A and B is therefore 8.
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Section C.

7. Let K be the splitting field of x6 − 2 over Q.

(a) Find the isomorphism type of the Galois group of K over Q.

(b) Find all subfields of K that are quadratic over Q. (Justify why you found all of them.)

(c) Find a subfield of K that is normal over Q of degree 6.

Solution: (a) The roots of x6 − 2 are ζi 6
√

2, i = 0, 1, . . . , 5, where ζ is a primitive sixth root

of unity in C, and 6
√

2 is the real, positive sixth root of 2. Argue as usual that K = Q( 6
√

2, ζ)
by easily showing containment in both directions. The irreducible polynomial of ζ in Q[x] is

Φ6(x) = x2 − x + 1. By Eisenstein for p = 2, x6 − 2 is irreducible over Q, hence [Q( 6
√

2) : Q] = 6.

Since ζ is not real, ζ /∈ Q( 6
√

2); and since ζ is a root of a quadratic with rational coefficients we
obtain

[K : Q] = [Q(
6
√

2, ζ) : Q] = [Q(
6
√

2, ζ) : Q(
6
√

2)][Q(
6
√

2) : Q] = 2 · 6 = 12. (7.1)

Each Galois automorphism, σ, of K is uniquely determined by its action on 6
√

2 and ζ. Since σ
fixes Q, σ( 6

√
2) must be a root of x6 − 2 and σ(ζ) must be a root of x2 − x + 1. There are at most

12 possible choices, hence by (7.1) all such indeed do determine automorphisms of K/Q. Let ρ
and σ be the Galois automorphisms defined by

(i) ρ( 6
√

2) = ζ 6
√

2 and ρ(ζ) = ζ, and

(ii) σ( 6
√

2) = 6
√

2 and σ(ζ) = ζ5 = ζ (complex conjugation restricted to K).

Easy direct computation shows that |ρ| = 6, |σ| = 2 and ρσ = σρ−1. Thus ρ and σ satisfy
the familiar presentation relations for generators (r and s respectively) in the dihedral group of
order 12. This proves Gal(K/Q) ∼= D12.

(b) The field generated by all quadratic extensions of Q that are contained in K is of 2-power

degree over Q. Clearly
√

2 = ( 6
√

2)3 and ζ generate distinct quadratic extensions of Q, so L =

Q(
√

2, ζ) = Q(
√

2,
√

−3) is a normal biquadratic extension of degree 4 over Q. Since 8 6
∣

∣ [K : Q],

all quadratic extensions lie in L. The three quadratic subfields of L (and hence of K) are Q(
√

2),
Q(

√
−3) and Q(

√
−6).

(c) Since ( 6
√

2)2 = 3
√

2 is a root of x3−2 and ζ2 is a primitive cube root of unity (which generates

the same field as ζ), the subfield Q(( 3
√

2, ζ) is the splitting field of x3 − 2, hence is normal over
Q. Alternatively, 〈 ρ3 〉 is a normal subgroup of Gal(K/Q) of index 6 (it has order 2 and is the
center of the Galois group); its fixed field is thus the required subfield (and this fixed field is seen
to be L).

8. Let F be the finite field with 320 elements.

(a) Draw the lattice of all subfields of F .

(b) Give an expression for the number of field generators for the extension F/F3, i.e., the
number of primitive elements for this extension (you need not compute the actual numerical
value).

(c) Give an expression for the number of generators for the multiplicative group, F×, of
nonzero elements of F (you need not compute the actual numerical value).

(d) Does F contain a primitive eighth root of 1? (Briefly justify.)
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Solution: (a) Since Fpn is a subfield of Fpm if and only if n
∣

∣ m, the lattice of subgroups of F320

is the same as the lattice of subgroups of the cyclic group of order 20 (which is the same lattice as
that of Z/12Z in Section 2.5 of Dummit–Foote).

(b) An element α ∈ F is a primitive element if and only if α does not lie in either of the two
maximal subfields of F , namely α /∈ F310 ∪F34 . The number of such α is therefore 320−310−34+32,
where we’ve added on the last term because the order of F310 ∩ F34 = F32 has been subtracted
twice.

(c) The number of multiplicative generators for the cyclic group F× is φ(320 − 1), where φ is
Euler’s function.

(d) Yes, F contains a primitive eighth root of unity because 8 divides the order of the cyclic
group F×, so this group contains a (cyclic) subgroup of order 8. (Easily, 320 = (32)10 ≡ 1 (mod 8);
or use the equivalent fact that F×

9
≤ F×.)

9. Let a and b be relatively prime odd integers, both > 1. Let ζ be a primitive (ab)th root of 1 in
C. Prove that the Galois group of Q(ζ)/Q is not a cyclic group. (Be sure to quote explicitly
any theorems that you use.)

Solution: By the basic theory of cyclotomic extensions, Gal(Q(ζ)/Q) ∼= (Z/abZ)×. By the
Chinese Remainder Theorem (applied to the units in the ring Z/abZ), since (a, b) = 1,

(Z/abZ)× ∼= (Z/aZ)× × (Z/bZ)×. (9.1)

Note that |(Z/nZ)×| = φ(n) is seen from its formula to be even for all odd integers n > 1. Thus
the direct product in (9.1) is not cyclic since both factors have even order (it contains a noncyclic
subgroup, the Klein 4-group).


