
ALGEBRA PH.D. QUALIFYING EXAM

September 27, 2008

A passing paper consists of four problems solved completely plus significant progress on two other

problems; moreover, the set of problems solved completely must include one from each of Sections

A, B and C.

Section A.

In this section you may quote without proof basic theorems and classifications from group theory

and group actions as long as you state clearly what facts you are using.

1. Let p and q be distinct primes and let G be a group of order p3q.

(a) Show that if p > q then a Sylow p-subgroup of G is normal in G.

(b) Assume G has more than one Sylow p-subgroup. Show that if the intersection of any pair
of distinct Sylow p-subgroups is the identity, then G has a normal Sylow q-subgroup.

(c) Assume the Sylow p-subgroups of G are abelian. Show that G is not a simple group.
(Do not quote Burnside’s paqb-Theorem.)

Solution: (a): By Sylow’s Theorem the number of Sylow p-subgroups, np, is congruent to 1
(mod p) and divides q, hence is equal to 1 or q. If p > q the congruence condition forces np = 1.

(b): As in (a), if np > 1 then np = q. In this case each Sylow p-subgroup contains p3 − 1
nonidentity elements. By hypothesis distinct Sylow p-subgroups have no nonidentity elements in
common, so the number of nonidentity elements in all Sylow p-subgroups is (p3 − 1)q. Only q
elements remain, and since a Sylow q-subgroup has q elements, there must be a unique, hence
normal, Sylow q-subgroup.

(c): Assume G is simple. Thus np > 1, nq > 1 and, by (b), there are distinct Sylow p-subgroups
P1, P2 such that H = P1 ∩ P2 6= 1. Let N = NG(H). Since Pi is abelian H E Pi, i.e., Pi ≤ N for
i = 1, 2. Since N contains more than one Sylow p-subgroup, it is not a p-group. Order considerations
force N = G, i.e., H E G, contrary to the assumed simplicity of G.

Note that all arguments hold when p3 is replaced by an arbitrary power of p.

2. Let G be a finite group acting transitively (on the left) on a nonempty set Ω. For ω ∈ Ω let Gω

be the usual stabilizer of the point ω:

Gω = {g ∈ G | gω = ω}

where gω denotes the action of the group element g on the point ω.

(a) Prove that hGωh−1 = Ghω, for every h ∈ G.

(b) Assume G is abelian. Let N be the kernel of the transitive action. Prove that N = Gω for
every ω ∈ Ω, and deduce that |G : N | = |Ω|.

Solution: (a): To show hGωh−1 ≤ Ghω consider an arbitrary element hgh−1 ∈ hGωh−1, where
g ∈ Gω. This group element fixes the set element hω because, by the axioms of a group action,

(hgh−1)(hω) = hg(h−1h)ω = hgω = hω,

where the last equality holds because g ∈ Gω. This proves the containment hGωh−1 ≤ Ghω. The
reverse containment holds by applying this containment with h−1 in place of h and hω in place of
ω (or because these two finite subgroups have the same order, hence coincide).
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(b): By definition of the kernel of an action, N is the subgroup of G that fixes every point, i.e.,

N =
⋂

ω∈Ω

Gω. (2.1)

Fix some α ∈ Ω. For any ω ∈ Ω, the transitive action gives that ω = hα for some h ∈ G. By (a)
therefore Gω = hGαh−1. Since G is assumed to be abelian, hGαh−1 = Gα. Putting these together:
every term in the intersection (2.1) is equal to Gα, whence N = Gα. Finally, by the transitive
action and usual results on group actions, |Ω| = |G : Gα| = |G : N |, as desired.

3. Let N be a normal subgroup of the group G and for each g ∈ G let φg denote conjugation by
g acting on N , i.e.,

φg(x) = gxg−1 for all x ∈ N.

(a) Prove that φg is an automorphism of N for each g ∈ G.

(b) Prove that the map Φ : g 7→ φg is a homomorphism from G into Aut(N), where Aut(N) is
the automorphism group of N .

(c) Prove that ker Φ = CG(N) and deduce that G/CG(N) is isomorphic to a subgroup of
Aut(N).

Solution: (a): Since N is normal, φg maps N to itself. It is a homomorphism because φg(xy) =
g(xy)g−1 = (gxg−1)(gyg−1) = φg(x)φg(y). Finally, one checks by direct computation that φg has
the 2-sided inverse φg−1 , hence is an automorphism. (Or, by (b) we have φg ◦ φg−1 = φ1 = id.)

(b): By applying both sides to an arbitrary element x ∈ N one checks directly that φg◦φh = φgh.
This shows Φ(g)Φ(h) = Φ(gh), as needed for (b).

(c): Now ker Φ = {g ∈ G | φg = id = φ1} = {g ∈ G | gxg−1 = x for all x ∈ N} = CG(N). By
the First Isomorphism Theorem, G/CG(N) is isomorphic to Φ(G), which is a subgroup of Aut(N).

Section B.

4. Let X be any nonempty set and let R be the (commutative) ring of all integer-valued functions
on X under the usual pointwise operations of addition and multiplication of functions:
R = {f | f : X −→ Z}. For each a ∈ X define Ma = {f ∈ R | f(a) = 0}.

(a) Prove that Ma is a prime ideal in R.

(b) Prove that Ma is not a maximal ideal in R.

(c) Find all units in R.

(d) Find all zero divisors in R.

Solution: (a): Since Ma is the kernel of the surjective ring homomorphism from R to Z given by
evaluation at a, R/Ma

∼= Z. The latter is an integral domain, hence Ma is a prime ideal.

(b): By (a), R/Ma
∼= Z, which is not a field, so Ma is not a maximal ideal.

(c): Let u be a unit in R, so there is some v ∈ R such that uv = 1. Thus u(a)v(a) = 1 in Z for
every a ∈ X. This means u(a) and v(a) are both 1 or both −1 for every a (these are the only units
in Z). Conversely, if u is any function on X that takes only the values ±1, then u is its own inverse
in R, hence is a unit.
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(d): A nonzero element f is a zero divisor in R if and only if this function f is not identically
zero but takes the value zero at least once: There is some g ∈ R such that fg = 0 if and only if
f(a)g(a) = 0 in Z for every a ∈ X. Thus g(a) must be zero whenever f(a) 6= 0; and g(a) can be
any value when f(a) = 0. Given f we may construct one g such that fg = 0 by defining

g(a) =

{

0 if f(a) 6= 0

1 if f(a) = 0,

and this g is not the zero function precisely when f has at least one zero on X.

5. Let F and K be finite fields with F ⊆ K. Let F [x] and K[x] denote the respective polynomial
rings in the variable x, so F [x] is a subring of K[x].

(a) Prove that if M is any maximal ideal in K[x], then M ∩ F [x] is a maximal ideal in F [x].

(b) Give an explicit example of commutative rings A ⊆ B and a maximal ideal I of B such
that I ∩ A is not a maximal ideal of A.

Solution: (a): Since M is a maximal ideal in K[x], the quotient ring K[x]/M is a field, and is
isomorphic to a finite extension of K. Thus K[x]/M is a finite field. The image of F [x] in this
quotient ring is F [x]/(M ∩ F [x]), and this is a subring of a finite field. Since any finite integral
domain is a field (a familiar result), F [x]/(M ∩ F [x]) is a field. This proves M ∩ F [x] is a maximal
ideal in F [x].

(b): Take A = Z, B = Q and I = (0). Or, take A = Z[x], B = Q[x] and I = (x).

6. Let R be a Principal Ideal Domain, let p and q be distinct primes in R, and let a = pαqβ for
some α, β ∈ Z+. Let M be any R-module annihilated by (a). Prove that

M ∼= Mp ⊕ Mq

where Mp is the submodule of M annihilated by (pα) and Mq is the submodule of M annihilated
by (qβ).

Solution: Because R is a P.I.D., we have (pα, qβ) = (1), so pαs + qβt = 1 for some s and t in R.
One checks that the isomorphism is given by sending m to (qβm, pαm), with inverse sending (x, y)
to tx + sy.

7. (a) How many similarity classes of 8×8 matrices A with rational number entries are there that
satisfy A8 = A? (Explain briefly; you need not explicitly list all classes.)

(b) How many similarity classes of 3 × 3 matrices A with entries from the field Z/7Z are there
that satisfy A8 = A? (Explain briefly; you need not explicitly list all classes.)

Solution: (a): This is equivalent to counting rational 8 × 8 matrices in rational canonical form
with minimal polynomial dividing x8 − x = x(x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1). These
factors are irreducible, the last one being the 7th cyclotomic polynomial Φ7(x). There are then
potentially 7 possibilities for the minimal polynomial mA(x), one for each nonempty subset of these
three irreducible factors. For each of these, one counts the number of ways of choosing a sequence
of invariant factors, each dividing the next, so that the last one is the minimal polynomial and the
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degree of the product is 8. Here one finds that mA cannot be Φ7(x). For each of the remaining 6
choices of mA(x), one finds a single such sequence, except when mA(x) = x(x − 1) and there are 7
choices. This makes 12 in all.

(b): By the same theory of rational canonical forms, we reduce to counting 3 × 3 matrices with
entries in Z/7Z whose minimal polynomial divides x(x − 1)7. Now mA(x) may be x, x(x − 1),
x(x−1)2, x−1, (x−1)2, or (x−1)3. For each of these, we count one possible sequence of invariant
factors, except that for x(x − 1) we count two. This makes 7 in all.

Section C.

8. Let E be the splitting field in C of the polynomial p(x) = x6 + 3x3 − 10 over Q, and let α be
any root of p(x) in E.

(a) Find [Q(α) : Q].

(b) Describe the roots of p(x) in terms of radicals involving rational numbers and roots of unity.

(c) Find [E : Q]. (Justify)

(d) Prove that E contains a unique subfield F with [F : Q] = 2.

Solution: (a): Note that p(x) = (x3 − 2)(x3 + 5), and both of these factors are irreducible over Q

by Eisenstein. A root of p(x) is then a root of one of these irreducible cubics, and thus generates
an extension of degree 3.

(b): Let ω be a primitive 3rd root of unity in C. Let α and β be the real cube roots of 2 and −5
respectively. Then the roots of p(x) are α, ωα, ω2α, β, ωβ, and ω2β, which are radical expressions.

(c): Clearly E = Q(α, β, ω). Let E0 = Q(α, ω) so that E0 is the splitting field of x3 − 2 and
Gal(E0/Q) ∼= S3. We claim x3 + 5 is irreducible over E0, in which case

[E : Q] = [E : E0][E0 : Q] = 3 · 6 = 18. (8.1)

If not, then the cubic polynomial x3 + 5 must have a root in E0, hence must have all its roots in
E0 (as ω ∈ E0). Thus if x3 + 5 is reducible over E0 we get E0 = E is of degree 6 over Q. In this
situation there is a unique real subfield of degree 3 over Q, and so Q(α) = Q(β). There are a number
of ways to see that this leads to a contradiction; one way without computation is as follows: View
E as the splitting field of x3 − 2 over Q and let Gal(E/Q) = 〈 σ, τ 〉 where τ is complex conjugation
and σ(α) = ωα. Now β, being real, is fixed by τ ; and σ(β) is another (different) root of x3 + 5;
thus σ(β) = ωβ or ω2β. One immediately checks that σ fixes α/β (in the first case) or fixes αβ (in
the second case). Thus either α/β or αβ is fixed by both σ and τ , hence is fixed by all of G, so
is a rational number. This is a contradiction because α/β is a root of 5x3 + 2 and αβ is a root of
x3 + 10, both of which are irreducible over Q by Eisenstein. This contradiction proves (8.1).

(d): A subfield F of degree 2 over Q, corresponds via Galois theory to a subgroup of order 9 in
the Galois group of order 18. Such a subgroup is a Sylow 3-subgroup. The conditions of Sylow’s
Theorem imply that there can be only one such subgroup, hence F is likewise unique. (Or, if there
were two quadratic extensions of Q in E, their composite would have degree 4, whereas 4 6

∣

∣ 18.)

9. Let p be a prime, let F be a field of characteristic 0, let E be the splitting field over F of an
irreducible polynomial of degree p, and let G = Gal(E/F ).

(a) Explain why [E : F ] = pm for some integer m with (p, m) = 1.
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(b) Prove that if G has a normal subgroup of order m, then [E : F ] = p (i.e., m = 1).

(c) Assume p = 5 and E is not solvable by radicals over F . Show that there are exactly 6 fields
K with F ⊆ K ⊆ E and [E : K] = 5.
(You may quote without proof basic facts about groups of small order.)

Solution: (a): If α is any root of the irreducible polynomial, then [F (α) : F ] = p. Hence
[E : F ] = [E : F (α)][F (α) : F ] = mp. Also, the degree over F of the splitting field of any degree p
polynomial divides p! (G is isomorphic to a subgroup of Sp, the group of all permutations of the p
roots). So p does not divide m as p2 does not divide p!.

(b): Suppose N is a normal subgroup of G of index p, let α be any root of the irreducible
polynomial and let H be the subgroup of G fixing F (α). By Galois theory |G : H| = p as well. If
H 6= N , then the Diamond Isomorphism Theorem gives HN = G and p = |G : N | = |H : H ∩ N |.
In this case p2 = |G : H ∩ N |, contrary to p2 not dividing pm = |G|. Since α was arbitrary, this
contradiction proves that N = H is the subgroup of G that fixes every root, hence N = 1. Thus
|G| = p = [E : F ], as needed.

(c): By the solvability by radicals theorem, this means that G is not a solvable group. We count
subgroups of order 5, which must be Sylow 5-subgroups in G, where |G| = 5m, and m divides
4! = 24. If there is only one Sylow 5-subgroup P , it must be normal and cyclic, hence abelian.
The quotient G/P has order less than 25, and hence is solvable, so G is solvable and this is a
contradiction. Hence by Sylow’s Theorem the number n5 of Sylow 5-subgroups must satisfy n5 ≡ 1
(mod 5), n5 6= 1, and n5

∣

∣ 24. The only solution is n5 = 6. The Galois correspondence then gives
that there are six fields K, as asserted. (Alternatively, you may just quote that the only nonsolvable
subgroups of S5 are S5 and A5, and these each have 6 Sylow 5-subgroups by inspection or by Sylow.)

10. Let p be a prime, let Fp be the field of order p, and let f(x) be a nonconstant polynomial in
Fp[x]. Assume f factors as

f(x) = q1(x)α1q2(x)α2 · · · qr(x)αr (10.1)

for some distinct irreducible polynomials q1, . . . , qr in Fp[x] and α1, . . . , αr ∈ Z+. Let E be a
splitting field of f over Fp.

(a) Give an expression for [E : Fp] in terms of the qi in (10.1).
[Hint: Your answer should only involve the degrees of the qi’s, and not depend on the αi’s.]

(b) Fix a natural number N and assume q1, . . . , qr are all the distinct irreducible polynomials
of degree ≤ N in Fp[x]. Find an expression for [E : Fp] in terms of N , where f is as in
(10.1).

Solution: (a): Note that the splitting field for f is the same as the splitting field for q1q2 . . . qr; so
in both parts we may assume all αi = 1. Since finite fields of the same order are isomorphic, E must
simply be the smallest finite field of characteristic p and degree divisible by each of the degrees of
the qi. Thus [E : Fp] is the least common multiple of the degrees of the qi’s.

(b): In this case, [E : Fp] = d is the least common multiple of the positive integers up to N .
For each prime r define rer to be the largest power of r that is ≤ N . Note that rer = 1 whenever
r > N . Then one easily see that d =

∏

rer , where the product is over all primes r in Z+.


