COMPLEX VARIABLES PH.D. QUALIFYING EXAM

May 20, 2008

There are ten questions. A passing paper consists of seven problems done completely correctly, or six problems done correctly with substantial progress on two others. Let \(\mathbb{D} \) denote the open disc of radius 1 centered at the origin.

1. Let \(f \) be holomorphic on a connected open set \(U \). Prove that if \(f(z)^2 = \overline{f(z)} \) for all \(z \in U \) then \(f \) is constant on \(U \). Find all possible values for \(f \).

Solution: Write \(f(z) = u(z) + iv(z) \) for real valued functions \(u \) and \(v \) on \(U \). Then

\[
 f^2 = (u^2 - v^2) + i(2uv) = u - iv = \overline{f}.
\]

Equating imaginary parts gives \(u = -1/2 \) whenever \(v \neq 0 \). When \(v = 0 \), equating real parts gives \(u = 0 \) or \(1 \). Thus the continuous function \(u \) takes at most three values on the connected set \(U \), hence must be constant there. By Cauchy–Riemann, \(v \) is likewise constant on \(U \). If \(v \) is identically zero on \(U \), then \(f(z) = 0 \) or \(1 \) on \(U \). If \(v \neq 0 \) on \(U \) then \(u = -1/2 \) and so \(v^2 = 3/4 \). In this case \(f(z) = (-1 \pm i\sqrt{3})/2 \), which are the two primitive cube roots of unity.

Alternatively, \(f^3 = |f|^2 \) shows that \(f^3 \) is non-negative real and of absolute value 0 or 1. Thus the only values \(f \) may take are 0 and cube roots of unity. Since \(f \) is continuous on a connected set, its image is connected and so must be constant.

2. Let \(\gamma \) be the circle of radius 5 centered at 0. Evaluate with brief justification the integrals:

(a) \(\int_{\gamma} \frac{z}{z - 1} \, dz \),
(b) \(\int_{\gamma} e^{1/z} \, dz \).

Solution: (a): On \(\gamma \) we have \(z \bar{z} = 25 \) so \(\bar{z} = 25/z \). Thus

\[
 \int_{\gamma} \frac{z}{z - 1} \, dz = \int_{\gamma} \frac{25}{z(z - 1)} \, dz = \int_{\gamma} \frac{25}{z - 1} - \frac{25}{z} \, dz = 2\pi i(25 - 25) = 0
\]

by the Cauchy Integral Formula (or otherwise).

(b): On and inside the disc bounded by \(\gamma \) the function \(e^{1/z} \) has a Laurent series expansion (plug \(1/z \) into the exponential power series) which converges uniformly on any region \(|z| > \epsilon \), for \(\epsilon > 0 \). Moreover \(e^{1/z} = 1/z + h(z) \) where \(h \) has a primitive on that region. Thus

\[
 \int_{\gamma} e^{1/z} \, dz = \int_{\gamma} \frac{1}{z} \, dz + \int_{\gamma} h(z) \, dz = 2\pi i + 0.
\]

Alternatively, some versions of the Residue Theorem cover this situation and it is just a matter of finding the residue at \(z = 0 \).
3. Find a Laurent series expansion valid in some bounded annulus centered at 0 that contains the point \(z = 2 \) for the following function (explain briefly how the inner and outer radii of the annulus are determined):

\[
f(z) = \frac{z}{1-z^2} + \frac{6}{(z-4)^2}.
\]

Solution: As usual, write

\[
f(z) = -\frac{z}{z^2} \frac{1}{1-(1/z^2)} + \frac{1}{16} \frac{6}{(1-(z/4))^2}
\]

Since \(1/(1-u)^2 = \frac{d}{du} 1/(1-u) \) we obtain from familiar geometric series expansions:

\[
f(z) = -\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{2n}} + \frac{3}{8} \sum_{n=1}^{\infty} n(z/4)^{n-1}.
\]

The first series converges for \(|z| > 1 \) and the second for \(|z| < 4 \).

4. Use the calculus of residues to evaluate the improper integral

\[
\int_{-\infty}^{\infty} \frac{\cos 2x}{x^2 + 1} \, dx.
\]

Solution: For \(R > 0 \) let \(C_R \) be the semicircle in the upper half plane with diameter the interval \([-R, R]\), let \(\gamma_R \) be the closed curve consisting of \(C_R \) and \([-R, R]\) (oriented counterclockwise), and let \(f(z) = e^{2iz}/(z^2 + 1) \). Since \(\cos(2x) = \text{Re}(e^{2ix}) \), the integral may be found by taking the real part of \(\int_{\gamma_R} f(z) \, dz \) as \(R \to \infty \). This is because, by familiar estimates, the integral of \(f \) along \(C_R \) tends to 0 as \(R \to \infty \). For all \(R > 1 \), \(f(z) \) has one pole inside \(\gamma_R \): a simple pole at \(z = i \) with residue \(e^{-2}/2i \). Thus the specified integral is \(2\pi i (e^{-2}/2i) = \pi/e^2 \) (which is already a real number).

5. Prove that if \(f \) is entire and there are positive real numbers \(A, B \) and \(k \) such that \(|f(z)| \leq A + B|z|^k \) for all \(z \in \mathbb{C} \), then \(f \) is a polynomial.

Solution: By a standard Cauchy estimate, the \(N \)th derivative of \(f \) vanishes at 0 for all \(N > k \). Thus the Taylor series for \(f \) expanded about the origin is a polynomial.

6. Let \(f \) be analytic on the closed unit disc \(\overline{\mathbb{D}} \), and assume \(|f(z)| < 1 \) on its boundary. Prove that there is one and only one point \(z_0 \in \mathbb{D} \) such that \(f(z_0) = z_0 \).

Solution: Apply Rouché’s Theorem to the functions \(f(z) - z \) and \(-z \) to obtain this.
7. (a) Exhibit an entire function, $P(z)$, that has simple zeros at the numbers \sqrt{n} for each positive integer n, and no other zeros.

(b) For the function P you gave in part (a), describe P'/P as an infinite series (not necessarily a Taylor series however).

Solution: Since $\sum_{n=1}^{\infty} (1/\sqrt{n})^3$ converges, the following Weierstrass product is entire:

$$P(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{\sqrt{n}} \right) \exp \left(\frac{z}{\sqrt{n}} + \frac{1}{2} \left(\frac{z}{\sqrt{n}} \right)^2 \right)$$

Its logarithmic derivative is

$$\frac{P'}{P}(z) = \sum_{n=1}^{\infty} \frac{z^2}{n(z - \sqrt{n})}.$$

Alternatively, one may know that $1/\Gamma(z)$ is entire with simple zeroes at the non-positive integers. Thus $1/\Gamma(1 - z^2)$ provides an example of the desired type. One then needs to know the product formula for $\Gamma(z)$, which leads to a similar infinite series.

8. Define $f(z) = \int_0^1 \frac{dt}{1 + tz}$.

(a) Show by using Morera’s Theorem that f is analytic on the open unit disc \mathbb{D}.

(b) Find a power series expansion for $f(z)$ valid on \mathbb{D}.

Solution: (a): Let γ be a closed curve in \mathbb{D} (it is sufficient to consider γ just a triangle or rectangle). Since $1/(1 + tz)$ is continuous on the compact set $\gamma \times [0,1]$ it is permissible to interchange order of integration:

$$\int_\gamma f(z) \, dz = \int_\gamma \int_0^1 \frac{dt}{1 + tz} \, dz = \int_0^1 \int_\gamma \frac{1}{1 + tz} \, dz \, dt.$$

For every $t > 0$ the integrand has a primitive $\frac{1}{t} \log_\gamma(1 + tz)$ in the variable z on \mathbb{D}, and so each inner integral is zero by Cauchy (we can discard the single point $t = 0$ when computing the outer integral). By Morera f is analytic on \mathbb{D}.

(b): By using the familiar power series expansion for $1/(1 + u)$ we obtain

$$f(z) = \int_0^1 \frac{dt}{1 + tz} = \int_0^1 \left(\sum_{n=0}^{\infty} (-1)^n (tz)^n \right) \, dt = \sum_{n=0}^{\infty} \left(\int_0^1 (-1)^n t^n \, dt \right) z^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} z^n.$$
9. Let \(P(z) \) and \(Q(z) \) be polynomials with degree \(Q \geq \) degree \(P + 2 \). Prove that

\[
\sum_{z_i} \text{Res}_{z=z_i} \frac{P(z)}{Q(z)} = 0
\]

where the sum is over all poles \(z_i \) in \(\mathbb{C} \) of the rational function \(\frac{P}{Q} \).

Solution: Let \(C_R \) be the circle of radius \(R \) centered at the origin. By cancelling common factors if necessary, we may assume \(P/Q \) is in lowest terms, so its poles occur at the zeros of \(Q \). For any \(R \) greater than the largest modulus of a zero for \(Q \), by the Residue Theorem

\[
2\pi i \sum_{z_i} \text{Res}_{z=z_i} \frac{P(z)}{Q(z)} = \int_{C_R} \frac{P(z)}{Q(z)} \, dz.
\]

The length of \(C_R \) is \(2\pi R \); and it follows easily from the hypothesis that the integrand is asymptotically bounded in modulus by a constant times \(1/R^2 \). Thus the usual estimates on the size of \(\int_{C_R} P/Q \, dz \) show that this integral tends to zero as \(R \to \infty \). Since the left hand side of (9.1) is constant, it must be 0, as needed.

10. Suppose \(f \) is analytic on the punctured unit disc \(\mathbb{D} - \{0\} \) and the real part of \(f \) is positive there. Prove that \(f \) has a removable singularity at 0.

Solution: Consider \(g = (1 - f)/(1 + f) \), which is bounded by 1 on the set where Re \(f > 0 \). The filled-in value of \(g(0) \) is some \(b \) with \(|b| \leq 1 \). By the Maximum Principle (\(f \) isn’t identically infinite, therefore \(|g| < 1 \) for \(z \) near \(0 \)), \(|b| < 1 \). The filled-in value of \(f(0) \) is \(g^{-1}(b) \), which is a finite complex number.

Alternatively, by Casorati-Weierstrass \(f \) does not have an essential singularity at 0. If \(f \) has a pole at 0, one can write \(f = cz^{-n}(1 + h(z)) \) where \(h \) is analytic and \(h(0) = 0 \). Then it is easy to see that the real part of \(f \) must be negative arbitrarily close to 0.

Or, one can consider \(g(z) = e^{-f(z)} \) at zero (which is bounded and analytic on the punctured disc), taking special care to eliminate the case when \(g(0) = 0 \).