Lake Champlain Bass Tournaments

Practices that Increase Survival and Dispersal Rates

A ‘Fish-Friendly’ Guide” (Tufts and Morlock 2004). At a minimum, these two publications serve as excellent documents for participants and tournament organizers to review prior to each tournament season.

Since longer livewell transport distances increase stress responses, any measures to promote shorter livewell transport distances will reduce stress to fish brought to weigh-in events. Water temperature has long been known as a key to fish stress and survival, and observations at Plattsburgh-based tournaments corroborated many earlier studies. Both largemouth and smallmouth bass were less likely to exhibit dorsal fin erection as temperatures rose from 16°C (61°F) to 22°C (72°F). Tournament organizers, biologists, and anglers recognize that higher water temperatures (typically found in summer) are associated with lower dissolved oxygen levels. This may pose challenges to fish that are unable to find cooler temperatures due to confinement in livewells, staging tanks, and release boat tanks. Though most tournament organizers already attempt to manage water temperatures and associated dissolved oxygen levels, vigilant attention to these water quality parameters could further reduce stress and subsequent mortality.

Specific recommendations for holding tanks

At a minimum, weigh-in and release boat tank systems should include:

- shading
- thermometers
- water pumps
- air pumps
- plastic tubing for air delivery
- air stones
- air chilling system (see below) or ice during summer months

Table 1. Physical indicators of fish stress

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight abdomen</td>
<td>Abdomen swollen, feels tight when touched</td>
<td>TA</td>
</tr>
<tr>
<td>Exophthalmia</td>
<td>Eyes protruding out of orbit</td>
<td>PE</td>
</tr>
<tr>
<td>Bloody fins</td>
<td>Hemorrhaging present in fins</td>
<td>BF</td>
</tr>
<tr>
<td>Ocular Emphysema</td>
<td>Gas present in eye</td>
<td>OE</td>
</tr>
<tr>
<td>Esophageal Eversion</td>
<td>Eversion of esophageal tissue into the buccal cavity</td>
<td>EE</td>
</tr>
<tr>
<td>Absence of Dorsal Erection</td>
<td>Fins do not become erect when fish is restrained</td>
<td>DE</td>
</tr>
<tr>
<td>Absence of Mouth Clamp</td>
<td>Mouth does not clamp shut when lifted or opened</td>
<td>MC</td>
</tr>
<tr>
<td>Absence of Restraint Resistance</td>
<td>Fish does not exhibit muscle flex for escape</td>
<td>RR</td>
</tr>
<tr>
<td>Hook Wound</td>
<td>Wounding in or around the mouth</td>
<td>HW</td>
</tr>
<tr>
<td>Fin Damage</td>
<td>Fins frayed or missing parts</td>
<td>FD</td>
</tr>
<tr>
<td>Lamprey wound</td>
<td>Noticeable circular wounding from lamprey</td>
<td>LW</td>
</tr>
</tbody>
</table>

Table references

Tufts, B.L., Morlock, P. 2004. The Shimanow water weigh-in system “a fish friendly” guide. Shimano Sport Fisheries Initiative, Peterborough, ON.

References

Additional information about catch-and-release bass tournament recommendations is available from:
Mark Malchoff, Lake Champlain Basin Program, Plattsburgh State University of NY, 1368 Hudson Hall, Plattsburgh, NY 12901-2681, E-mail: mark.malchoff@plattsburgh.edu
Weigh-in tank systems should include provisions to keep water temperature similar to that of lake temperature. While ice is commonly added to holding tanks, homemade air chillers may be more effective at controlling tank temperatures. This system offsets the heat gain of pumped air systems, and allows for more even cooling than may be achieved by adding bags of ice to weigh-in tanks. Chillers can be made of ice chests modified by adding 1.5 inch entrance and exit holes. Garden hose can then be routed in, coiled, and then routed out of the chest. During weigh-in setup (and as necessary during the event), the cooler is filled with ice and air pumps positioned to pump air through the chilled hose coil, to deliver chilled air through the air stones in the holding tanks.

Observable indicators of stress

Even with good management of dissolved oxygen levels and water temperatures, fish may still exhibit internal or external signs of stress. We recorded the presence or absence of a suite of stress indicators that could be readily observed by anglers and tournament managers. These conditions and associated descriptions are given in Table 1 (see back page).

Three of these indicators were positively correlated with other tournament variables. The probability of fish exhibiting fin damage increased with the distance fish traveled in a livewell, and the likelihood of bloody fins increased with fish length. Similarly, the likelihood of fish failing to exhibit dorsal fin erosion was linked to higher lake temperatures. The presence of these stress indicators provides indirect predictions of post tournament mortality. As such, tournament managers should monitor these indicators and consider ways to minimize stress during tournament operations.

Dispersal and release sites

The lag time between release and bass dispersal presents a problem for using a release site close to the tournament weigh-in site. In Plattsburgh, we observed heavy angling harvest associated with several popular fishing areas and boat launches in western Cumberland Bay, adjacent to the tournament release site (Fig. 1). Research on other water bodies has shown that the more times a fish is caught, the higher its stress levels and the lower its chance for survival. Because the fish are released so close to the New York shoreline, they tend to remain in these areas of localized heavy fishing pressure for several weeks post-release, thus decreasing their chances for survival. Moving the release point farther away from areas of heavy shore-based angling has been successful for reducing bass capture vulnerability post-release at other venues. With this in mind, we recommend locating the release point further offshore and suggest that tournaments use one of two designated release zones approximately 3-4 km from the Plattsburgh waterfront (Fig. 1). However, we recognize this may not be logistically possible due to weather conditions; therefore, we also recommend there be a secondary release zone designated as a "foul-weather release site." (Note: additional discussion of release site recommendations may be found in the LCBP Technical Report #77).

Fizzling/Barotrauma

Four stress indicators recorded by LCRI staff were indicative of barotrauma – the rapid depressurization of blood gasses and swimbladder brought on by retrieval of fish caught at depth. These indicators were tight abdomen (TA), exophthalmia or "pop-eye" (PE), ocular emphysema, or "clouded eye" (OE), and esophageal eversion (EE). The occurrence of this suite of indicators was relatively rare in Plattsburgh-based bass tournaments (Figure 2). This is not surprising given that most tournament fish are caught in relatively shallow waters.

Given the relatively low occurrence of barotrauma, we caution against the routine use of a "fizzling" technique whereby swimbladders are deflated by release-boat tournament staff. Fishery biologists management agencies are divided on the utility of fizzling as a treatment for barotrauma.

Fishery management agencies in New York, Vermont, and Quebec do not advocate fizzling. Fizzling should be viewed as a measure of "last resort" for fish unable to submerge.

Our recommendations based on post-tournament release observations and research are as follows:

- Don't confuse a fish's inability to maintain equilibrium with barotrauma. Signs of barotrauma include bloating, along with hemorrhaging inside the mouth, on the body surface, or within the dorsal, caudal, anal, pelvic, and pectoral fins.

- Use hollow needle devices and sterilize devices prior to reuse in succeeding fishes.

- Carefully locate the insertion point. First view an imaginary line connecting the notch between the spiny/soft-ray portion of the dorsal fin, downward to the anus. Position the needle on the imaginary line. 3-5 scale rows below the lateral line. Carefully lift a scale and insert the needle through the body wall into the swimbladder.

- Do NOT attempt to access the swimbladder through the mouth (Figure 3a). Such improper technique may well damage the esophagus, yet still leave the swimbladder distended. The correct technique is demonstrated in Figure 3b.

To read LCBP’s full report, please visit the LCBP’s publications database at