Use of drinking water treatment residuals in green stormwater infrastructure retrofits for enhanced P removal

Mike Ament, Ph.D. Candidate, University of Vermont

Contributing Authors: Dr. Eric Roy (UVM), Dr. Stephanie Hurley (UVM), Dr. Yongping Yuan (EPA), Eric Perkins (EPA), Mark Voorhees (EPA)
Urbanization and climate change driving increased stormwater volumes
Green stormwater infrastructure increasingly used to manage urban runoff

Bioretention Stormwater Ponds Gravel Wetlands
Managing stormwater at its source with GSI

Hydrologic Control:
- Temporarily hold water on the landscape
- Reduce peak flow rates

Water Quality Control
- Remove contaminants (*sediments, nutrients, heavy metals*)
Phosphorus control particularly important for freshwater ecosystems
P removal in GSI is highly variable

Bioretention

Stormwater Ponds
P sorbing amendments

Fly Ash

Steel Slag

Water Treatment Residuals
Challenging tradeoff

P Sorption

Hydraulic Conductivity
Tradeoff pronounced in urban bioretention
My Research: How can we use DWTRs in bioretention to enhance P removal without restricting flow?
Research methodology

1) Material Characterization
2) P Sorption Capacity
3) Sorption Kinetics

Bioretention Media Design
Media Blends

Control

- 90% Sand + 10% Low P Compost
- 100% Sand
- Pea Stone
- Gravel

Layer

100% Sand
90% Sand + 10% Low P Compost
Pea Stone
Gravel

12"
12"
3"
9"
Media Blends

Control

- 90% Sand + 10% Low P Compost
- 100% Sand
- Pea Stone
- Gravel

Solid Layer

- 12”
- 10.8”
- 1.2”
- 9”
Media Blends

Control
- 90% Sand + 10% Low P Compost
- 100% Sand
- Pea Stone
- Gravel

Solid Layer
- 12”
- 10.8”
- 1.2”
- 9”

Mixed Layer
- 12”
- 12”
- 3”
- 3”
- 9”
Large Column Study
Large column results: hydraulic conductivity
Large column results: \(P \) removal

Graph showing the removal of phosphorus (P) over simulated storm numbers for solid and mixed layers. The graph includes data points for different treatment types: Control, CWD, Port, and UNH, with error bars indicating variability. The y-axis represents P removal (%) and the x-axis represents simulated storm number.
1) P sorbing materials can provide long-term P removal in GSI

2) Tradeoffs can be mediated through design
Challenges and opportunities

Bioretention:
- Full system retrofits are expensive
- Cartridge filters have potential, but practically challenging
 a) placement *(inside or outside the system?)*
 b) hydraulic restrictions
 c) hydraulic bypass
- Woodchips coated in DWTRs
- Granularization of DWTRs
Challenges and Opportunities

Stormwater Ponds:
- Placement (*pond sediment vs end of pond filter*)?
- Reliance on diffusion vs flow?
- How to create hydraulic head?
- Risk of clogging and localized flooding

- Combining DWTR-based filters with pond fountains for simultaneous aeration and P removal?
Questions?