

Contributing Authors: Dr. Eric Roy (UVM), Dr. Stephanie Hurley (UVM), Dr. Yongping Yuan (EPA), Eric Perkins (EPA), Mark Voorhees (EPA)

Urbanization and climate change driving increased stormwater volumes

Green stormwater infrastructure increasingly used to manage urban runoff

Bioretention

Stormwater Ponds

Gravel Wetlands

Managing stormwater at its source with GSI

<u>Hydrologic Control</u>:

- Temporarily hold water on the landscape
- Reduce peak flow rates

Water Quality Control

• Remove contaminants (*sediments, nutrients, heavy metals*)

Phosphorus control particularly important for freshwater ecosystems

P removal in GSI is highly variable

Bioretention 60% Sand 40% Compost 100% Sand Pea Stone Gravel

Stormwater Ponds

P sorbing amendments

Fly Ash

Steel Slag

Water Treatment Residuals

Challenging tradeoff

P Sorption

Hydraulic Conductivity

Tradeoff pronounced in urban bioretention

My Research: How can we use DWTRs in bioretention to enhance P removal without restricting flow?

Research methodology

- 1) Material Characterization
- 2) P Sorption Capacity
- 3) Sorption Kinetics

Bioretention Media Design

Media Blends

Media Blends

Media Blends

Large Column Study

Large column results: *hydraulic conductivity*

Large column results: *P removal*

Key takeaways

1) P sorbing materials can provide long-term P removal in GSI

2) Tradeoffs can be mediated through design

Challenges and opportunities

Bioretention:

- Full system retrofits are expensive
- Cartridge filters have potential, but practically challenging

 a) placement (inside or outside the system?)
 b) hydraulic restrictions
 c) hydraulic bypass
- Woodchips coated in DWTRs
- Granularization of DWTRs

Challenges and Opportunities

Stormwater Ponds:

- Placement (pond sediment vs end of pond filter)?
- Reliance on diffusion vs flow?
- How to create hydraulic head?
- Risk of clogging and localized flooding
- Combining DWTR-based filters with pond fountains for simultaneous aeration and P removal?

