Pass the Salt: Efficient Snow & Ice Management
GET OUT EARLY
Typically anti-icing is most effective if applied 1-2 hours before the precipitation begins however it can be applied up to 24 hours in advance.

TRY IT FIRST
Trying anti-icing for the first time? Make a 23.3% brine solution and before a storm spray pavement on your own property using a masonry/plant sprayer. Use this experiment to determine how best to use it with your clients.

LEAVE SOME PAVEMENT BARE
It’s always best to use stream nozzles instead of fan tip to avoid creating a slippery condition. If the anti-icing liquid freezes the bare pavement will still provide a traction surface.

USE A FILTER
Having a filter in your liquid dispensing system will reduce clogs in your nozzle. Automotive in line fuel filters work quiet well. If your liquid dispenser is not functioning properly be sure to check the filter first.

A Proactive Treatment
Anti-icing before a storm is very similar to using a non-stick spray on a pan before cooking. Just like a non-stick spray prevents food from bonding to the pan, anti-icing prevents snow and ice from bonding to the pavement so that it can be plowed away. Anti-icing can save you money as it costs 50% less than reactive deicing.

Make Your Own Salt Brine
When making brine it is important to add enough salt to produce a 23.3% solution which freezes around 0°F. Roughly 2.5lb per gallon of water will produce a 23.3% solution. You can verify using a salometer (~$20) a 23.3% solution will have a specific gravity of 1.176, or 85% salinity. Consult the Brine Making BMP sheet for more info.

How Much Should I Use and When?
You can apply brine up to 24 hours in advance of the storm. Typical application rates range from 0.5 to 0.75 gallon per 1000 sq.ft. (10’ x 100’ area). Other chemicals such as magnesium are also available—consult your supplier for application rates. Anti-icing is not advised prior to freezing rain events.

Getting Started
Try making your own salt brine by putting 13 lb of salt in 5 gallons of water to get a 23.3% salt brine solution. Mix the brine until all of the salt is dissolved. Using a masonry sprayer apply the liquid several hours before a storm. Start by applying about 0.25—0.5 gallons to a 10’ x 50’ area. Adjust the application rates based on your experience. Being careful not to over apply and cause a slippery condition.
PRE-WETTING?
Pre-wetting is the process of coating a solid de-icer with a liquid before it is spread on a roadway.

WHY PRE-WET?
De-icing chemicals must form a brine before they can begin melting ice. Pre-wetting your chemicals accelerates the brine making process, which improves the melting action of the material. Pre-wetting also reduces bounce and scatter of material during spreading, and reduces the total amount of de-icer needed to obtain the desired results.

REDUCED RATES
If you are pre-wetting, don’t forget to reduce your application rates accordingly. Reductions in the range of 15-20% are typical.

HOW MUCH LIQUID?
A good rule of thumb is to use 8-10 gallons of pre-wetting liquid for every ton of de-icer. For other chemicals, such as magnesium chloride, consult your supplier for application rates.

Getting Started
Wet the pile! There are two ways to pre-wet your de-icing chemicals. The easiest way to get started with pre-wetting is to spread your salt pile, spray it with pre-wetting liquid, mix it around, and re-pile it. More advanced truck mounted pre-wet systems can be installed on your trucks if you decide to make the investment.

Pre-wetting Liquids
You have a few options for pre-wetting liquids. The most commonly used is a 23% sodium chloride brine solution. Calcium chloride at 32% solution is also used, as well as Magic Minus Zero™ and other patented products.

Spraying the Pile
This is the easiest and most cost effective way to get started in pre-wetting. The first step is to spread your salt pile on a flat, impermeable surface. Next, spray the salt while it is spread out, and mix it around to ensure adequate and consistent liquid coverage. After the salt is sufficiently covered, re-stack the salt in your storage shed for later use.

Truck Mounted Systems
These systems are mounted in the truck bed and coat the de-icer with liquid as it comes off the conveyor/auger onto the spinner. These systems have the benefit of applying liquid only to the material you use as you use it. However, these systems must be installed on every truck that will be used to spread pre-wetted material.
How Do We Melt Ice?
Ice can be melted by increasing the temperature, or lowering the freezing point of the water. It’s not cost effective to use heat to melt ice on our roads so we use chemicals to reduce the freezing point—anything that will dissolve in water will work, including: salt, sugar, even alcohol!

Why Use Salt?
Salt (Sodium Chloride) is the cheapest and most readily available chemical that efficiently melts ice and can be easily applied to our roadways and parking lots. However salt does corrode our cars and bridges, contaminates drinking water and pollutes our streams. Alternatives include potassium acetate, and calcium magnesium acetate (CMA), — all of which are considerably more expensive than calcium chloride, and have their own environmental concerns.

Brine Makes It Happen
The first step in melting ice is the formation of a brine. Salt crystals pull water molecules out of ice formation which creates a brine with a lower freeze point. Once the brine is formed melting is greatly accelerated. Save time and money by pre-wetting your salt with a brine before it hits the pavement to jump start melting! See the Pre-Wetting fact sheet for more information.

Save $$ and the Environment
In New Hampshire there are over 40 watersheds currently contaminated from road salt. As the pavement temperature drops more salt is required. As the pavement temperature rises less salt is required. Save money and the environment by using only what is needed to do the job. See NH application rate charts for recommended rates.
Material Storage and Housekeeping
NH Best Management Practices

IMPERMEABLE SURFACE STORAGE
Store salt and liquids on an impermeable surface to prevent groundwater contamination.

COVERED STORAGE AREAS
If possible, store your salt in a covered shed to prevent runoff. If there is not a shed available, cover your salt pile well with an impermeable membrane or tarp.

SECONDARY CONTAINMENT
Keep your liquids in an appropriate storage container. Secondary containment should be used in case a leak develops in the primary container.

PROPER DRAINAGE & COLLECTION
Protect your groundwater supply! A drainage system should be in place to collect runoff from your salt pile, as well as to collect any liquids that may escape containment. Remember, the collected liquid can be used as a base for salt brine.

Proper Material Storage
Proper storage of materials (especially chemicals) is essential. If impermeable surfaces are NOT used in your storage facilities and brine infiltrates the ground or groundwater, you need to register with the DES under the Groundwater Discharge Permit and Registration Rules, Env-Wq 402. It is a free registration used for tracking potential contaminant sources.

Secondary Containment
Secondary containment for your liquid storage is a HIGHLY recommended technique to help reduce soil and groundwater contamination. If a tank begins to leak, the secondary containment prevents liquid from seeping into sensitive environments.

Liquid Storage
Brine stored using holding tanks must be managed so that there are no releases to drains, groundwater or surface water.

NHDES Fact Sheet DWGB-22-30
This fact sheet outlines the basic required specifications for salt and chemical storage facilities. For additional information, please contact the Drinking Water and Groundwater Bureau at (603)271-2513 or dwgbinfo@des.nh.gov, or visit their website at: http://des.nh.gov/organization/divisions/water/dwgb/index.html. The Salt Storage Handbook contains more information and guidelines that should be referenced.
WHY CALIBRATE?

You can’t reduce your salt use if you don’t know how much salt you actually use! The goal of calibrating is to know how much material you are putting down on a roadway or parking lot for every setting on your truck that you use. This is why calibrating your equipment is the first step to reducing salt use and saving money!

REMEMBER:

Each truck must be independently calibrated for each material it will be used to spread (the salt calibration card will be different than the sand calibration card).

Calibrations should be performed annually, or after a spreader is serviced.

CALCULATIONS:

There are a few simple calculations you must perform in order to complete the calibration. Once all of the necessary data is recorded, head back inside and warm up! Refer to the reverse side of this fact sheet for calculation instructions. The formula you will be using is shown below:

\[D = \frac{B \times C}{A} \]

Step 1: Load the Truck

Partially load the truck. Half of a full load should be more than adequate for calibration purposes.

Step 2: Set Your Controls

- **Gate Height:** Set the gate height to its lowest practical setting to start (approximately 1” to 1.5”). After the truck is calibrated for the lowest gate setting, calibrate for each 1/2” increment greater than the lowest setting. Continue until all gate settings you use are calibrated.
- **Engine Speed:** Set the pony motor speed to the maximum setting, or to the setting you would normally use.

Step 3: Measure Spread Width

Measure the width that the material covers during spreading. Do this for each gate setting you are calibrating. Round your numbers to the nearest half foot and record them in column “W” of the calibration chart (see reverse side).

Step 4: Collect & Weigh Material

You will need either a sheet of canvas, a tarp, or a bucket to collect the material that is dispensed from the spreader, as well as a scale. Weight the object you are using to collect the material in, and record that value in the purple box above the discharge rate column. Collect material for 1 minute. Weigh the collected material and subtract the weight of the tarp/canvas/bucket. Record this value in the first purple column of the calibration chart. Do this 3 times for each gate opening that is typically used. Average these three values together and record in the orange column in the calibration chart.

Step 5: Perform Calculations

Go inside and calculate your discharge rate using the calibration chart for each truck speed and gate setting you normally use. Refer to the reverse side of this fact sheet for calculation instructions. The formula you will be using is shown below:

Step 6: Distribute Completed Calibration Cards!

Put a copy of the calibration card in the truck you just calibrated. Also, leave a copy of the calibration card in the office so you have a copy incase the original is damaged.
<table>
<thead>
<tr>
<th>Gate Opening</th>
<th>Spread Width (ft.)</th>
<th>Discharge Rate (lb/min.)</th>
<th>Average Discharge Rate ((Run1 + Run2 + Run3)/3)</th>
<th>Pounds of Material Discharged per 1000 square ft. (D = B × C ÷ A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 3</td>
</tr>
<tr>
<td>1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>14</td>
<td>5.28 × 14 = 73.92</td>
<td>87</td>
<td>92</td>
</tr>
</tbody>
</table>

Calculation Instructions:

Multiply the spread width from column **W** by **5.28** and record the answer in column **A**. For each gate setting, add **Run 1**, **Run 2**, and **Run 3** together. Divide the result by **3** and record in column **B** to get the average discharge rate. To find the pounds of material discharged per 1000 square feet, you must know the number of minutes it takes to travel one mile at every truck speed you intend to calibrate for. These numbers are designated as variable “**C**”. The “**C**” value for each travel speed is shown in red under that given speed. Multiply column **B** by the “**C**” value for that speed and divide by the **A** column to find the number of pounds of material discharged per 1000 square feet for the given speed. Record these numbers in the **D** columns. The full equation is shown here:

\[D = \frac{B \times C}{A} \]
WHY CALIBRATE?
You can’t reduce your salt use if you don’t know how much salt you actually use! The goal of calibrating is to know how much material you are putting down on a roadway or parking lot for every setting on your truck that you use. This is why calibrating your equipment is the first step to reducing salt use and saving money!

REMEMBER:
Each truck must be independently calibrated for each material it will be used to spread (the salt calibration chart will be different than the sand calibration chart).

Calibrations should be performed annually, or after a spreader is serviced.

CALCULATIONS:
There are a few simple calculations you must perform in order to complete the calibration. Once all of the necessary data is recorded, head back inside and warm up! Refer to the reverse side of this fact sheet for calculation instructions.

Step 1: Load the Truck
Partially load the truck. Half of a full load should be more than adequate for calibration purposes.

Step 2: Set Your Controls
Gate Height: Set the gate height to its lowest practical setting (~ 2”). This should be kept constant throughout the calibration process. If you find that not enough material is dispensed with this setting, try 2.5” to 3”.

Engine Speed: Warm the truck up and run the engine at the typical rate seen during spreading (approximately 2000 rpm).

Step 3: Measure Spread Width
Measure the width that the material covers during spreading. Do this for each conveyor/auger setting you are calibrating. Round your numbers to the nearest half foot and record them in column “W” of the calibration chart (see reverse side).

Step 4: Collect & Weigh Material
You will need either a sheet of canvas, a tarp, or a bucket to collect the material that is dispensed from the spreader, as well as a scale. Weight the object you are using to collect the material in, and record that value in the purple box above the discharge rate column. Collect material for 1 minute. Weigh the collected material and subtract the weight of the tarp/canvas/bucket. Record this value in the first purple column of the calibration chart. Do this 3 times for each conveyor/auger setting that is typically used. Average these three values together and record in the orange column in the calibration chart.

Step 5: Perform Calculations
Go inside and calculate your discharge rate using the calibration chart for each truck speed and conveyor/auger setting you normally use. Refer to the reverse side of this fact sheet for calculation instructions. The formula you will be using is shown below:

\[
D = \frac{B \times C}{A}
\]

Step 6: Distribute Completed Calibration Cards!
Put a copy of the calibration chart in the truck you just calibrated. Also, leave a copy of the calibration chart in the office so you have a copy incase the original is damaged.

Produced in partnership with:

[Environmental Services]
[New Hampshire DOT]
[Technology Transfer Center, New Hampshire UAP at UNH]
Calibration Chart (Hydraulic Type)

<table>
<thead>
<tr>
<th>Conveyor or Auger Setting</th>
<th>W</th>
<th>A</th>
<th>Discharge Rate (lb/min.)</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average Discharge Rate (>({Run1 + Run2 + Run3})/3)</td>
<td>Pounds of Material Discharged per 1000 square ft. (D = B × C ÷ A)</td>
</tr>
<tr>
<td></td>
<td>Spread Width (ft.)</td>
<td>5.28 × W</td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>14</td>
<td>5.28 × 14 = 73.92</td>
<td>87</td>
<td>92</td>
<td>93</td>
</tr>
</tbody>
</table>

Calculation Instructions: Multiply the spread width from column **W** by 5.28 and record the answer in column **A**. For each conveyor/auger setting, add **Run 1**, **Run 2**, and **Run 3** together. Divide the result by 3 and record in column **B** to get the average discharge rate. To find the pounds of material discharge per 1000 square feet, you must know the number of minutes it takes to travel one mile at every truck speed you intend to calibrate for. These numbers are designated as variable “C”. The “C” value for each travel speed is shown in red under that given speed. Multiply column **B** by the “C” value for that speed and divide by the **A** column to find the number of pounds of material discharged per 1000 square feet for the given speed. Record these numbers in the **D** columns. The full equation is shown here:

\[D = \frac{B \times C}{A} \]
GET THE LOWEST FREEZE POINT
When salt brine is 23% salt (measured with a hydrometer: 1.176, or with a salimeter: 85%) it has the lowest freeze point possible (about 0°F).

BRINE STORAGE
23% brine solution may be stored outside, however if temperatures get below 0°F the brine may freeze. A circulator pump will reduce the risk of freezing. If possible store brine indoors to eliminate risk of freezing.

COST OF BRINE
Calcium chloride brine costs about 7¢ / gallon (assuming $58/ton for salt) after you have your equipment setup.

MULTIPLE USES
Brine can be used directly for anti-icing, for prewetting salt as it is dispensed from your truck, or to pretreat salt before it is loaded into your truck. Brine can be safely stored for up to a year, however, the concentration should be tested before use.

What Do You Need?
Brine making is a fairly simple process—the only ingredients are salt and water, and the only equipment you’ll need is an open top mixing tank, a holding tank, a small pump, and a salimeter.

Step 1: Fill Mixing Tank
Add Salt: Add about 2.5 lb of salt per gallon of water you plan to add. Make sure your mixing tank has a large opening to make adding salt easy.

Add Water: Slowly add water from the bottom of your brine mixing tank. This will allow it to percolate up through the salt and overflow into the holding tank.

Step 2: Check Concentration
Float a hydrometer or salimeter directly in your holding tank and read the value at the surface of the water. The number should be either 85% or 1.176 depending on the units of your device.

If the values are too low, pump some brine from your holding tank back into the mixing tank and allow it to overflow. If values are too high simply add some fresh water.

Quality Control & Documentation
Make sure that you record the date when you create each batch of brine and document who mixed it and checked the concentration. It is also a good idea to note the final concentration. These records should be kept for at least two years to protect your group in the event of litigation.
<table>
<thead>
<tr>
<th>Pavement Temp. (°F) and Trend (↑↓)</th>
<th>Weather Condition</th>
<th>Maintenance Actions</th>
<th>Application Rate (lbs/per 1000 sq.ft.)</th>
<th>Salt Prewetted/Pre treated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30 ↑</td>
<td>Snow</td>
<td>Plow, treat intersections only</td>
<td>4.5</td>
<td>4</td>
<td>4.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>5.75</td>
<td>5.25</td>
<td>6.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>5.75</td>
<td>5.25</td>
<td>6.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>6.5</td>
<td>5.75</td>
<td>7</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>25 - 30 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>5.75</td>
<td>5.25</td>
<td>6.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>6.5</td>
<td>5.75</td>
<td>7</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>25 - 30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>5.75</td>
<td>5.25</td>
<td>6.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>7</td>
<td>6.5</td>
<td>8.25</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or frz. Rain</td>
<td>Plow and apply chemical</td>
<td>7</td>
<td>6.5</td>
<td>8.25</td>
<td>10.5 for frz. Rain</td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>5.75</td>
<td>7.5</td>
<td>9.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>7</td>
<td>7.5</td>
<td>10</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>9.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>8.75</td>
<td>7.5</td>
<td>10</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↓</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>8.25</td>
<td>7.5</td>
<td>10</td>
<td>10.5 for frz. Rain</td>
<td></td>
</tr>
<tr>
<td>0 to 15 ↑</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>10</td>
<td>Not recommended</td>
<td>13 and spot-treat as needed</td>
<td></td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>23</td>
<td>Not recommended</td>
<td>13 and spot-treat as needed</td>
<td></td>
</tr>
</tbody>
</table>

Table 19. Application Rates for Deicing

The format and methodology are based on (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.
<table>
<thead>
<tr>
<th>Pavement Temp. (°F) and Trend (↑↓)</th>
<th>Weather Condition</th>
<th>Maintenance Actions</th>
<th>Salt Prewetted/Pretreated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30 ↑</td>
<td>Snow</td>
<td>Plow, treat intersections only</td>
<td>150</td>
<td>125</td>
<td>150</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>175</td>
<td>150</td>
<td>200</td>
<td>Not recommended</td>
</tr>
<tr>
<td>30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>175</td>
<td>150</td>
<td>200</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>200</td>
<td>175</td>
<td>225</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25 - 30 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>200</td>
<td>175</td>
<td>225</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>225</td>
<td>200</td>
<td>225-275</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25 - 30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>250</td>
<td>200</td>
<td>275</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>275</td>
<td>250</td>
<td>275-300</td>
<td>450</td>
</tr>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply chemical</td>
<td>275</td>
<td>275</td>
<td>275-300</td>
<td>450 for frz. Rain</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>300</td>
<td>275</td>
<td>325-400</td>
<td>450</td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>275</td>
<td>250</td>
<td>300-325</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>300</td>
<td>275</td>
<td>325</td>
<td>Not recommended</td>
</tr>
<tr>
<td>15 - 20 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>300</td>
<td>275</td>
<td>325</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>300-375</td>
<td>275-350</td>
<td>325-400</td>
<td>450</td>
</tr>
<tr>
<td>15 - 20 ↓</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>325</td>
<td>300</td>
<td>350</td>
<td>450 for frz. Rain</td>
</tr>
<tr>
<td>0 to 15 ↑↓</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>300-350</td>
<td>Not recommended</td>
<td>600 and spot-treat as needed</td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>350-500</td>
<td>Not recommended</td>
<td>600 and spot-treat as needed</td>
</tr>
</tbody>
</table>

Table 19. Application Rates for Deicing

These rates are based on road application guidelines (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.
<table>
<thead>
<tr>
<th>Pavement Temp. (°F) and Trend (↑ ↓)</th>
<th>Weather Condition</th>
<th>Maintenance Actions</th>
<th>Application Rate (lbs/per 1000 sq.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30 ↑</td>
<td>Snow</td>
<td>Plow, treat intersections only</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td>30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25 - 30 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25 - 30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>3.25</td>
</tr>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or frz. Rain</td>
<td>Plow and apply chemical</td>
<td>3.25 for frz. Rain</td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>3.25</td>
</tr>
<tr>
<td>15 - 20 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
</tr>
<tr>
<td></td>
<td>Frz. Rain</td>
<td>Apply chemical</td>
<td>3.25</td>
</tr>
<tr>
<td>15 - 20 ↓</td>
<td>Snow or frz. Rain</td>
<td>Plow and apply chemical</td>
<td>3.25 for frz. Rain</td>
</tr>
<tr>
<td>0 to 15 ↑</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

Table 19. Application Rates for Deicing

These rates & table format are based on road application guidelines (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.
<table>
<thead>
<tr>
<th>Pavement Temp. (°F) and Trend (↑↓)</th>
<th>Weather Condition</th>
<th>Maintenance Actions</th>
<th>Application Rate (lbs/per lane mile)</th>
<th>Salt Prewetted/Pretreated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30 ↑</td>
<td>Snow</td>
<td>Plow, treat intersections only</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 30 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 30 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply chemical</td>
<td>450 for frz. Rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frz. Rain</td>
<td></td>
<td>Apply chemical</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↓</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>450 for frz. Rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 15 ↑↓</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>600 and spot-treat as needed</td>
<td></td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>600 and spot-treat as needed</td>
<td></td>
</tr>
</tbody>
</table>

Table 19. Application Rates for Deicing

These rates are based on road application guidelines (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.
Winter Maintenance Guidelines for Porous Pavements

<table>
<thead>
<tr>
<th>Winter Maintenance Guidelines</th>
<th>Snow Maintenance Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Road surfaces, porous and non-porous, are commonly not treated and plowed until 2 or more inches of snow accumulation.</td>
<td>• Plow after every storm. If possible plow with a slightly raised blade, while not necessary, this will help prevent pavement scarring.</td>
</tr>
<tr>
<td>• Up to ~75% salt reduction for porous asphalt can be achieved. Salt reduction amounts are site specific and are affected by degree of shading. USE SALT REDUCTION NUMBERS WITH CAUTION!!!</td>
<td>• Pervious concrete salt reduction will vary and is heavily dependent upon shading. For shaded areas, pervious concrete may not achieve salt reduction.</td>
</tr>
<tr>
<td>• Pervious concrete salt reduction will vary and is heavily dependent upon shading. For shaded areas, pervious concrete may not achieve salt reduction.</td>
<td>• Apply anti-icing treatments prior to storms. Anti-icing has the potential to provide the benefit of increased traffic safety at the lowest cost and with less environmental impact.</td>
</tr>
<tr>
<td>• Deicing is NOT required for black ice development. Meltwater readily drains through porous surfaces thereby preventing black ice.</td>
<td>• Deicing is NOT required for black ice development. Meltwater readily drains through porous surfaces thereby preventing black ice.</td>
</tr>
<tr>
<td>• Apply deicing treatments during, and after storms as necessary to control compact snow and ice not removed by plowing.</td>
<td>• Sand application should be limited since its use will increase the need for vacuuming</td>
</tr>
<tr>
<td>• Sand application should be limited since its use will increase the need for vacuuming</td>
<td>• Vacuum porous areas a minimum of 2-4 times per year, especially after winter and fall seasons when debris accumulation and deposition is greatest.</td>
</tr>
<tr>
<td>• If ponding water is observed during precipitation cleaning is recommended.</td>
<td>• If ponding water is observed during precipitation cleaning is recommended.</td>
</tr>
</tbody>
</table>

Winter Maintenance Challenges

<table>
<thead>
<tr>
<th>Winter Maintenance Challenges</th>
<th>Snow Maintenance Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mixed precipitation and compact snow or ice is problematic for all paved surfaces, but is particularly problematic for porous surfaces. This is corrected by application of excess deicing chemicals.</td>
<td>• De-icing chemicals work by lowering the freezing point of water. Generally, the longer a de-icing chemical has to react, the greater the amount of melting. Meltwater readily drains through porous surfaces thereby reducing chemical contact time. This is corrected by excess salt application.</td>
</tr>
<tr>
<td>• Excess salt application in these instances is offset by the overall reduced salt during routine winter maintenance and salt reduction.</td>
<td>• Excess salt application in these instances is offset by the overall reduced salt during routine winter maintenance and salt reduction.</td>
</tr>
</tbody>
</table>

Additional Resources

<table>
<thead>
<tr>
<th>Additional Resources</th>
<th>Snow Maintenance Guidelines</th>
</tr>
</thead>
</table>
Calibration Chart (Hydraulic Type)

Material: ________________________________

Truck/Spreader ID: ________________________________

Date: ________________________________

Performed by: ________________________________

- **Tarp/Canvas/Bucket Weight:** __________

<table>
<thead>
<tr>
<th>Conveyor or Auger Setting</th>
<th>W</th>
<th>A</th>
<th>Discharge Rate (lb/min.)</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spread Width (ft.)</td>
<td>5.28 × W</td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 3</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>73.92</td>
<td>87</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>EX</td>
<td>5.28 × 14 = 73.92</td>
<td>87</td>
<td>92</td>
<td>93</td>
<td>(87+92+93) ÷ 3 = 90.67</td>
</tr>
</tbody>
</table>

Calculation Instructions: Multiply the spread width from column **W** by **5.28** and record the answer in column **A**. For each conveyor/auger setting, add **Run 1**, **Run 2**, and **Run 3** together. Divide the result by **3** and record in column **B** to get the average discharge rate. To find the pounds of material discharged per 1000 square feet, you must know the number of minutes it takes to travel one mile at every truck speed you intend to calibrate for. These numbers are designated as variable **“C”**. The **“C”** value for each travel speed is shown in red under that given speed. Multiply column **B** by the **“C”** value for that speed and divide by the **A** column to find the number of pounds of material discharged per 1000 square feet for the given speed. Record these numbers in the **D** columns. The full equation is shown here:

\[D = \frac{B \times C}{A} \]
Calibration Chart (Pony Motor Type)

<table>
<thead>
<tr>
<th>Gate Opening</th>
<th>Spread Width (ft.)</th>
<th>A</th>
<th>Discharge Rate (lb/min.)</th>
<th>B</th>
<th>Pounds of Material Discharged per 1000 square ft. (D = B \times C ÷ A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.28 x W</td>
<td></td>
<td>Run 1 Run 2 Run 3</td>
<td>5 mph</td>
<td>10 mph</td>
</tr>
<tr>
<td>1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 mph (C = 12)</td>
</tr>
<tr>
<td>1.5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>14</td>
<td></td>
<td>87</td>
<td>92</td>
<td>93</td>
</tr>
</tbody>
</table>

Calculation Instructions: Multiply the spread width from column \(W\) by 5.28 and record the answer in column \(A\). For each gate setting, add \(\text{Run 1, Run 2, and Run 3}\) together. Divide the result by 3 and record in column \(B\) to get the average discharge rate. To find the pounds of material discharged per 1000 square feet, you must know the number of minutes it takes to travel one mile at every truck speed you intend to calibrate for. These numbers are designated as variable “\(C\)”. The “\(C\)” value for each travel speed is shown in red under that given speed. Multiply column \(B\) by the “\(C\)” value for that speed and divide by the \(A\) column to find the number of pounds of material discharged per 1000 square feet for the given speed. Record these numbers in the \(D\) columns. The full equation is shown here:

\[D = \frac{B \times C}{A} \]
Pass the Salt: Efficient Snow & Ice Management Refresher

Presenter: Patrick Santoso

Program Overview

- Chloride Impacts Review
- Pre-Season Preparation & Calibration
- Pre-Treatment: Before the Storm
- During The Storm Activities
- Record Keeping & Salt Accounting System

We Are the Experts!

- Each and every storm provides a unique situation
- The benefit of education is work to together and share our knowledge & Determine How we can best use all of the tools at our disposal
The Most Challenging Season!

February 2011: I-93 Safety is Priority #1

Snow & Ice Management Cost ($) and Capacity Curve

February/2011 - DB
Chloride Impacts Review
- Salt has hidden infrastructure costs
 - Concrete & Steel Structures Big & Small
- Salt Negatively Impacts Life:
 - Plants
 - Fish/Aquatic Life
 - Humans Health
- Chloride Contamination Develops from Winter Maintenance
- No Viable Clean Up Solution

Impacts of Winter Sand/Abrasives Use
- Impacts of Sand are generally WORSE than those of chloride based deicers
- Sand is generally not recommended for temperatures above 15°F
- Sand that is applied must be cleaned up
- Even after cleanup 50-90% remains in the environment

Basics of Sand Contamination
- Clogs roadside drainage structures
 - Ditches
 - Culverts
 - Drains
- Causes sedimentation of rivers and streams
- Reduces water quality as regulated by EPA via the clean water act!
Too Much Material?

Calibration
- Measure & Mark Test Grid
- Drive over the test grid at a typical application speed
- Sweep up material and weigh to determine application rate
- Settings to keep track of:
 - Gate Height
 - Auger/Belt Speed
 - Pony Motor RPMs

Parking Spaces
Typical 10' lane

Test Grid Layout in Owatonna, Minnesota—June 2008
Traditional Field Calibration

- Set Gate Height & Auger/Pony Motor speed
- Discharge and Record Spread Width
- Run spreader for 30 seconds & capture salt to weigh.
- Perform calculations!
- Mark the gate height settings!

Spreader Example

<table>
<thead>
<tr>
<th>Gate Opening</th>
<th>WA</th>
<th>Discharge Rate (lb/min.)</th>
<th>BD</th>
<th>Spread Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.28 x W</td>
<td></td>
<td>5.28 x (12/C)</td>
</tr>
<tr>
<td>1”</td>
<td></td>
<td>12</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>1.5”</td>
<td></td>
<td>11.4</td>
<td>2.5</td>
<td>60</td>
</tr>
<tr>
<td>2”</td>
<td></td>
<td>10.75</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>2.5”</td>
<td></td>
<td>10.75</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>3”</td>
<td></td>
<td>10.75</td>
<td>5</td>
<td>60</td>
</tr>
</tbody>
</table>

EX: 14 5.28 x 14 = 73.92
87 92 93 (87 + 92 + 93) ÷ 3 = 90.67
12 x 90.67 ÷ 73.92 = 14.72
6 x 90.67 ÷ 73.92 = 7.36
4 x 90.67 ÷ 73.92 = 4.91
3 x 90.67 ÷ 73.92 = 3.68
2.4 x 90.67 ÷ 73.92 = 2.94
2 x 90.67 ÷ 73.92 = 2.45
Calibration Discussion

- Drive your Plow Route Early
- Note Steep inclines
- Sharp Curves
- Areas which are shaded by Trees or Buildings
- Broken or missing snow fences

Plow Route Site Inspection

- Porous Pavement allows water to drain through
- Winter maintenance performance is highly dependent on sun exposure & traffic (reduced salt is likely NOT possible)
- Sand should not be used
- Should be vacuumed 2-4 times annually to prevent clogging
Porous Pavements

Automatic Vehicle Location (AVL)

- Tracks Your:
 - Position
 - Spreader
 - Plow
- Can report to a database
- Can show results live to other plow drivers
- Extremely useful in urban areas
Pre-Season Review

- Calibration saves material & money
 - Know how much material you're applying
 - Keep calibration charts in the truck
 - Allows you to prescribe the correct application rate for the conditions
- Review your sites & technologies

Before The Storm Activities: Pre-Treatment

- Anti-icing why do it?
 - Science of anti-icing
 - Cost savings & improved results
- Anti-icing chemicals
- Brine making & storage (Demonstration)
- Application methods
- Application rates
- Tips & getting started

Pre-Treatment: Anti-icing

- “A strategy in which a chemical is applied directly to a roadway surface before a storm begins or before any snow or ice has bonded to the pavement.”
- Proactive approach to winter maintenance
- Forms a “bond-breaker” between the road surface and the snow/ice layer (just like greasing a pan before cooking)
- Jump starts the melting process
Anti-icing

- Reduces the amount of time required to clear pavement
- Up to 75% material reduction
- Up to 90% cost savings
- Improved results because snow/ice bond never forms with the pavement

Source: http://www.icenator.com/liquid-deicer.htm

Why Not Pretreat? A Parallel Example:

"Stick" Frying Pan ➔ Cook Without Butter or Oil ➔ Effect:

Cleaning Time?
Soap & Water?

Would You Ever Do This?

Effect of Anti-Icing
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Working Temp</th>
<th>Eutectic Temp</th>
<th>Form</th>
<th>Application Rate</th>
<th>Cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride (Salt -DRY)</td>
<td>+20° F</td>
<td>-6° F</td>
<td>Solid Brine</td>
<td>4-23lb/1000 sqft</td>
<td>$30-$40</td>
<td>Most Common De-icer</td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>+5° F</td>
<td>-28° F</td>
<td>Brine</td>
<td>Liquid 25-35 gal/1000 sqft</td>
<td>$0.45-$0.75/ Gal</td>
<td>Need Periodic Agitation</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>20° F</td>
<td>-51° F</td>
<td>Brine</td>
<td>Anti-Ice 0.25-0.55 gal/1000 sqft</td>
<td>$258.97/ ton</td>
<td>Corrosive Flakes hygroscopic</td>
</tr>
<tr>
<td>Calcium Magnesium Acetate (CMA)</td>
<td>20° F</td>
<td>-18° F</td>
<td>Pellets</td>
<td>Anti-Ice 0.25-0.4 gal/1000 sqft</td>
<td>Liquid $1.30/gal Dry $1,000/ton</td>
<td>No Chlorides Liquids needs agitation</td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>-23° F</td>
<td>-76° F</td>
<td>Liquid 50%</td>
<td>Anti-Ice 0.25-0.55 gal</td>
<td>$3.00/gal</td>
<td>Insufficient storage life No agitation needed No chloride</td>
</tr>
</tbody>
</table>

Diagram:

- **Phase Diagram for Salt**
 - **Straight Water**
 - **Cooling Curve**
 - **Freezing Curve**
 - **Temperature of Salt**
 - **Solution Concentration (% by Weight)**
 - **Saturated Solution**
 - **Unsaturated Solution**
 - **Concentration Solubility Point**

Notes:

- Source: Steve Gray, NHDOT.
23% Salt Brine:
2.5 lb. Salt Per Gallon

Simple Salt Brine Making

Note: Test brine & recirculate through salt if not at 23%
Liquids Material Storage

- NHDES Fact Sheet WD-DWGB-22-30
- Use double walled tanks, or appropriate secondary containment.
- Locate storage tanks at least 500 feet from any Class 2 surface water used for fishing, fish culture, bathing, or any other recreational use.
- Tanks should have good surveillance for inspection and must be tamper proof.
- Contents of tanks must be properly displayed on tanks.
Liquids - Secondary Containment

- Secondary containment must be completely impervious and should be able to contain at a minimum 100% of the largest tanks capacity or 10% of all tank volumes in the containment area.
- All necessary pipes, hoses, valves, and pumps should be within the containment area.
- Top loading and unloading pipe is recommended.

Liquids Material Storage

Wrong!

- No Labels
- No Secondary Containment – MAYBE Okay if Double Walled
- No Tamper Proofing
- Good Visibility for Inspection!

Correct!

- Proper labels
- Secondary containment with tamper-proofing
- Visible and accessible inspection points
Application Rates & Guidelines

- Apply only when above pavement temperature is between 15°F & 35°F
- DO NOT APPLY MAGNESIUM CHLORIDE OR CALCIUM CHLORIDE ABOVE 35°F IT CAN BECOME VERY SLIPPERY!!!
- Apply 1-2 hours prior to the storm (Still works up to 24 hrs. in advance)
- You can apply brine up to 24 hours in advance of the storm.
- Typical application rates range from 0.5 to 0.75 gallon per 1000 sq. ft. Other chemicals such as magnesium are also available—consult your supplier for application rates.
- Anti-icing is not advised prior to freezing rain events.

Application Methods

- ¼” streamer nozzles with a 10” spacing
- Leave some bare pavement
- AVOID OVER APPLYING – less is more & safer!
- If you’re applying at above 20 mph drop hoses are advised
- Anti-icing may only be necessary in travel lanes – tires will transport it to parking spaces
Various Anti-Icing Setups

Other Anti-Icing Alternatives

Earthway’s Walk Behind sprayer

Practical Tips:

- Remember to Calibrate your sprayers!
- Large half full tanks can have SEVERE slosh effects – consider:
 - Baffled Tanks or “Baffle Balls”
- Also – Beware of Clogging!!
Always Installs Filters to Prevent Clogs

Be Cautious Applying Around Doorways

May track and become SLIPPERY

What About Anti-Icing With Solids?

- Does it work? – YES, it CAN but:
 - Application time is key – apply as soon as possible after precipitation has fallen
 - Use only in low-speed areas to reduce material loss
 - When you plow you can remove a significant portion of your material – making it ineffective.
 - It is not very effective in areas with little or no traffic.
 - Ideally use a finer gradation salt for anti-icing purposes.
Getting Started: Experiment!

- Mix a small batch of salt brine
 - Say 11 lb of salt in a 5 gal. bucket
- Check concentration using hydrometer (23% solution) — see links to purchase on your CD
- Use a small handheld sprayer to apply brine to a low traffic area — preferably on your own property (Remember less than 1 gallon for 10’x100’ area!)
- Document your results and refine your techniques before using commercially!

Source: http://www.icenator.com/liquid-deicer.htm

Before The Storm Review

- Anti-icing is proactive and can significantly reduce time and costs!
- Anti-icing prevents snow and ice from bonding to pavement
- Brine is most effective at 23% solution — ALWAYS check concentration before applying
- Anti-icing with Magnesium Chloride & Calcium Chloride to pavement above 35°F
- Anti-icing with Sodium Chloride (Salt) brine is most effective between 15-35°F
- Stream-type nozzles leave some dry pavement which can provide traction in the event of a slippery condition

During the Storm Activities

- Plowing
 - Discussion of plow blade options
- Deicing alternatives
 - How Salt works
- Pre-wetting/Pretreating
 - Application rates
 - Route & Scatter
 - Savings
- Salt application rates, timing & effective temperatures
 - Application rate examples and calculations
- Material Storage
Plowing

- Plowing is the most cost effective way to remove snow with least environmental impact
- Plow early & often to avoid compaction
- ALWAYS PLOW BEFORE APPLYING SALT
- NEVER BURN SNOW OFF WITH SALT – Mechanically Remove It

Types of Plow Blades

- Steel (most common)
- Carbide Inserts (cost 2x more but last 3-5 times as long)
 - Can break with obstacles
- Rubber blades
- New Joma sectional blades

Rubber Blades
Underbody Plow

- Useful for removing hard pack & ice
- Use only on high quality pavements
- Not commonly used at this time for parking lots

Multi-Edged Plow Blades

Being Tested in Indiana, Iowa, Wisconsin, and Ohio

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Working Temp</th>
<th>Eutectic Temp</th>
<th>Form</th>
<th>Application Rate</th>
<th>Cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride (Salt - DRY)</td>
<td>+20° F</td>
<td>-6° F</td>
<td>Solid Brine 23%</td>
<td>4-23lb/1000 sqft</td>
<td>$30-$40 Ton</td>
<td>Most Common De-Icer</td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>+5° F</td>
<td>-28° F</td>
<td>Brine 25%-35%</td>
<td>Liquid 25-35 gal/1000 sqft</td>
<td>Prewet 8-10 gals/ton</td>
<td>$.45-$0.75/Gal</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>+20° F</td>
<td>-51° F</td>
<td>Flake Brine 25%-35%</td>
<td>Anti-Ice 25-35 gal/1000 sqft</td>
<td>Prewet 8-10 gals/ton</td>
<td>Flakes= $258.97/ton Brine= 5.82 gal</td>
</tr>
<tr>
<td>Chemical</td>
<td>Working Temp</td>
<td>Eutectic Temp</td>
<td>Form</td>
<td>Application Rate</td>
<td>Cost</td>
<td>Comment</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Calcium Magnesium Acetate (CMA)</td>
<td>20° F</td>
<td>-18° F</td>
<td>Pellets</td>
<td>Anti-ice: 25-4 gal/1000 sqft</td>
<td>Liquid $1.90/gal, Dry $1,000/ton</td>
<td>No Chlorides, Liquid needs agitation</td>
</tr>
<tr>
<td></td>
<td>20° F</td>
<td>-18° F</td>
<td>Liquid</td>
<td>De-ice: 5-1 gal/1000 sqft, Dry: 4-23 lbs/1000 sqft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>23° F</td>
<td>-70° F</td>
<td>Liquid 50%</td>
<td>Anti-ice: 16-25 gal/1000 sqft, De-ice: 25-5 gal</td>
<td>Liquid $3.00/gal, Insufficient storage life</td>
<td>No agitation needed, No chloride</td>
</tr>
</tbody>
</table>

How Salt Works

- Salt molecules pull water molecules out of ice formations to form a salt brine with a reduced freezing temperature.
- Once the brine is formed, the melting process is greatly accelerated.
- The effectiveness of salt changes with temperature.

Melting Capacities of Salt

<table>
<thead>
<tr>
<th>Pavement Temp (°F)</th>
<th>1 lb. salt will melt this amount of ice</th>
<th>Time it takes to melt this amount of ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>46.0 lbs.</td>
<td>5 mins.</td>
</tr>
<tr>
<td>25</td>
<td>14.4 lbs.</td>
<td>10 mins.</td>
</tr>
<tr>
<td>20</td>
<td>8.6 lbs.</td>
<td>20 mins.</td>
</tr>
<tr>
<td>15</td>
<td>6.3 lbs.</td>
<td>60 mins.</td>
</tr>
<tr>
<td>10</td>
<td>4.9 lbs.</td>
<td>ineffective</td>
</tr>
<tr>
<td>5</td>
<td>4.1 lbs.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3.7 lbs.</td>
<td></td>
</tr>
</tbody>
</table>
USE PAVEMENT TEMPERATURE

Truck Mounted Thermometer

Cab Display

Influence of Pavement Temperature

Temperature – **DOWN** Rates – **UP**

Temperature – **UP** Rates – **DOWN**

Salt Pre-wet Salt
Salt

Pre-wet Salt

1 cm 5°F

Salt

Pre-wet Salt

1 cm 5°F

Salt

Pre-wet Salt

1 cm 5°F
Other Reasons To Pre-Wet Salt With Brine

- REDUCED BOUNCE & SCATTER!!
- Allows you to use ¼ less material!

How to Use Brine: Pretreating

- Pre-Treating
 - Wet salt with brine before application
 - at pile, or in loader bucket
 - Easy to implement, minimal new equipment needed
 - Use 6-10 gallons per ton for salt brine (23% Solution!!)

- TIP:
 - Apply dye to your brine so that you know which salt has been pre-wet!

Pretreating Overhead Shower
Do It Yourself:

Spread it! Spray it!

For 23% Salt Brine: 6-10 gallons/ton

Over Application = Leaching

- Uses special equipment to spray salt with brine as it leaves the spinner
- Brine is stored on saddle tanks and automatically sprayed on at the spinner
- Efficient and effective way to wet salt
- Allows rates to be easily adjusted on the fly
- Use 8-14 gallons/ton of 23.3% salt brine
Pre-wetting at the spinner

Use 8-14 gallons/ton of 23.3% salt brine

Parking Lot Application Rates

<table>
<thead>
<tr>
<th>Pavement Temp (°F) and Trend (↑↓)</th>
<th>Weather Condition</th>
<th>Maintenance Action</th>
<th>Salt Application Rate (lbs/1000 sq ft)</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>7 6.5 8.25 10.5 for Frz. Rain</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>0 to 15°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td>23 and optional as needed</td>
<td></td>
</tr>
<tr>
<td>15 to 20°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td>23 and optional as needed</td>
<td></td>
</tr>
<tr>
<td>20 to 25°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>7 6.5 8.25 10.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>25 to 30°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>7 6.5 8.25 10.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>> 30°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>6.5 5.25 6.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>> 30°C</td>
<td>No Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>6.5 5.25 6.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
</tbody>
</table>

Parking Lot Application Rates – (Continued)

<table>
<thead>
<tr>
<th>Pavement Temp (°F) and Trend (↑↓)</th>
<th>Weather Condition</th>
<th>Maintenance Action</th>
<th>Application Rate (lbs/1000 sq ft)</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 20°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>7 6.5 8.25 10.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>20 to 25°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td>23 and optional as needed</td>
<td></td>
</tr>
<tr>
<td>25 to 30°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td>23 and optional as needed</td>
<td></td>
</tr>
<tr>
<td>> 30°C</td>
<td>Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>6.5 5.25 6.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>> 30°C</td>
<td>No Snow or Frz. Rain</td>
<td>Plow and Apply Chemical</td>
<td>6.5 5.25 6.5</td>
<td>Not recommended</td>
<td>10 Not recommended</td>
<td>13 and spot-treat as needed</td>
</tr>
<tr>
<td>Pavement Temp (°F)</td>
<td>Weather Condition</td>
<td>Maintenance Actions</td>
<td>Application Rate (lbs per lane mile)</td>
<td>Dry Salt</td>
<td>Min Salt</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>30-5</td>
<td>Snow</td>
<td>Prewetted/Pretreated with salt brine</td>
<td>125</td>
<td>150</td>
<td>200</td>
<td>Not recommended</td>
</tr>
<tr>
<td>30-5</td>
<td>Prec. Rain</td>
<td>Apply chemical</td>
<td>175</td>
<td>250</td>
<td>200</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25-30</td>
<td>Snow</td>
<td>Prewetted/Pretreated with other blends</td>
<td>200</td>
<td>175</td>
<td>225</td>
<td>Not recommended</td>
</tr>
<tr>
<td>25-30</td>
<td>Prec. Rain</td>
<td>Apply chemical</td>
<td>300</td>
<td>250</td>
<td>300</td>
<td>Not recommended</td>
</tr>
<tr>
<td>20-25</td>
<td>Snow or frz. Rain</td>
<td>Plow and apply chemical</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>300</td>
</tr>
<tr>
<td>20-25</td>
<td>Prec. Rain</td>
<td>Apply chemical</td>
<td>650</td>
<td>275</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>15-20</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>300</td>
<td>275</td>
<td>300</td>
<td>Not recommended</td>
</tr>
<tr>
<td>15-20</td>
<td>Prec. Rain</td>
<td>Apply chemical</td>
<td>600</td>
<td>275</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>0-15</td>
<td>Snow or frz. Rain</td>
<td>Plow and apply chemical</td>
<td>325</td>
<td>300</td>
<td>300</td>
<td>450 for frz. Rain</td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Prewetted/Pretreated with blends, sand, de-icing agents</td>
<td>350-500</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

Application Rate Example 1:
- At 5pm Pavement Temperature is 23°F
- It is snowing and it should get colder over night.
- What application rate should you select for:
 - A.) Salt Pre-Wet with Salt BRINE
 - B.) Dry Salt
- Roughly how much total salt would you expect to use if the parking lot was ~5000 Square Feet?
Parking Lot Application Rates – (Continued)

<table>
<thead>
<tr>
<th>Pavement Temp (°F)</th>
<th>Situation Condition</th>
<th>Maintenance Action</th>
<th>Application Rate</th>
<th>Salt Prewetted/Pretreated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry Salt</th>
<th>Winter Sand</th>
<th>Weather Condition</th>
<th>Maintenance Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>7 7.5 8.25</td>
<td>10 10.5 for Frz. Rain</td>
<td>Not recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>5.75 7.5 9.5</td>
<td>Not recommended</td>
<td></td>
<td>5.75 7.5 9.5</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5 7.5 9.5</td>
<td>Not recommended</td>
<td></td>
<td>7.5 7.5 9.5</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↓</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td></td>
<td>8.25 7.5 10</td>
<td>Not recommended</td>
<td>Frz. Rain</td>
<td></td>
</tr>
<tr>
<td>0 to 15 ↑↓</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>25 23 10</td>
<td>25 and optional as needed</td>
<td></td>
<td>25 23 10</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0</td>
<td>Snow</td>
<td>Plow, treat with blends, sand hazardous areas</td>
<td>23 23 10</td>
<td>25 and optional as needed</td>
<td></td>
<td>23 23 10</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate Total Amount To Be Used

- For Dry Salt: 5 x 9.5 = 47.5lb ~ 50lb
- For Salt Pre-Wet with Brine: 5 x 5.75 = 28.75lb ~ 30lb
- This gives you a rough guideline of how much salt to apply

Example 2

- Pavement temperature is 8°F at 9am
- It should be warming up during the day

- What application rate should be used for dry salt?
- What is the total amount of dry salt that should be used?
Application Rates – (Continued)

<table>
<thead>
<tr>
<th>Pavement Temp. (°F) and Trend</th>
<th>Situation Condition</th>
<th>Salt Prewetted/Pretreated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry Salt</th>
<th>Winter Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 25 ↑</td>
<td>Snow or frz. Rain</td>
<td>7</td>
<td>6.5</td>
<td>8.25</td>
<td>10/25 for frz. Rain</td>
</tr>
<tr>
<td>20 - 25 ↓</td>
<td>Snow</td>
<td>5.75</td>
<td>7.5</td>
<td>9.5</td>
<td>Not recommended</td>
</tr>
<tr>
<td>0 - 15 ↑</td>
<td>Snow</td>
<td>7.5</td>
<td>7.5</td>
<td>9.5</td>
<td>Not recommended</td>
</tr>
<tr>
<td>0 - 15 ↓</td>
<td>Snow or frz. Rain</td>
<td>8.75</td>
<td>7.5</td>
<td>10</td>
<td>10.5</td>
</tr>
<tr>
<td>0 to < -15 ↑↓</td>
<td>Snow</td>
<td>10</td>
<td>10.5</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>< -15</td>
<td>Snow</td>
<td>23</td>
<td>13 and spot treated as needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Rates Bottom Line

- You might not be able to calibrate your equipment to these precise rates
- Use the blank sheet provided to determine your own rates (using our suggested rates as a guide)
- Make sure as temperature goes up you use less
- As temperature goes down you use more
- Maximum rate of ~24lb per 1000 square feet is fairly well established for freezing rain – generally you should not exceed this

Salt Storage Guidelines

- All De-Icing materials should be stored on impervious surface
- Surface flooring should be sloped to prevent run-off
- Deicing materials should be covered minimally with a water-proof tarp
- Load equipment as close to salt pile as possible to reduce spillage
- Spillage should be swept and returned to stockpile
- See NHDES Storage & Management of Deicing Materials: WD-DWGB-22-30 for more information (included in your course packet)
During The Storm Activities - Review

- Plowing is the #1 winter maintenance activity! Mechanical removal of snow and ice is preferred
- Salt does not begin melting until a brine is formed
- Pre-wet salt is more efficient and effective than dry salt
- Salt be used to loosen the ice/pavement bond – NOT to ‘burn off’ the ice
- Salt application rates vary with PAVEMENT temperature
- Know how to use the application rate chart!
- Cover deicing materials, store on an impervious surface, and control Drainage

Chloride Impacts Review

- Salt has hidden infrastructure costs
 - Concrete & Steel Structures Big & Small
- Salt Negatively Impacts Life:
 - Plants
 - Fish/Aquatic Life
 - Humans Health
- Chloride Contamination Exists in NH
- No Viable Clean Up Solution

Pre-Season Review

- Contracts & policies make expectations clear and can protect you in the event of a lawsuit
 - Remember to have your attorney review or draft a contract for you
- Calibration saves material & money
 - Know how much material you're applying
 - Keep calibration charts in the truck
 - Allows you to prescribe the correct application rate for the conditions
Before The Storm Review

- Anti-icing is proactive and can significantly reduce time and costs!
- Anti-icing prevents snow and ice from bonding to pavement
- Brine is most effective at 23% solution — ALWAYS check concentration before applying
- Anti-icing with Magnesium Chloride & Calcium Chloride to pavement above 35°F
- Anti-icing with Sodium Chloride (Salt) brine is most effective between 15-35°F
- Stream-type nozzles leave some dry pavement which can provide traction in the event of a slippery condition

Application Rate Example 1:

- At 5pm Pavement Temperature is 20°F
- It is snowing and it should get colder over night.
- What application rate should you select for:
 - A.) Salt Pre-Wet with Salt BRINE
 - B.) Dry Salt
- Roughly how much total salt would you expect to use if the parking lot was ~5000 Square Feet?

<table>
<thead>
<tr>
<th>Pavement Temp. (°F)</th>
<th>Situation Condition</th>
<th>Maintenance Action</th>
<th>Application Rate (lbs/per 1000 sq.ft.)</th>
<th>Salt Prewetted/Pretreated with salt brine</th>
<th>Salt Prewetted/Pretreated with other blends</th>
<th>Dry salt</th>
<th>Winter sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 25 ↑↑</td>
<td>Snow or Frz. Rain</td>
<td>Plow and apply chemical</td>
<td>7</td>
<td>6.5</td>
<td>8.25</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↑↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↓↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>20 - 25 ↓↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↑↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↑↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↓↑</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ↓↓</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>15 - 20 ≤0</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>< 15</td>
<td>Snow</td>
<td>Plow and apply chemical</td>
<td>7.5</td>
<td>7.5</td>
<td>6.4</td>
<td>Not recommended</td>
<td></td>
</tr>
</tbody>
</table>
During The Storm Activities - Review

- Plowing is the #1 winter maintenance activity! Mechanical removal of snow and ice is preferred.
- Salt does not begin melting until a brine is formed.
- Pre-wet salt is more efficient and effective than dry salt.
- Salt be used to loosen the ice/pavement bond – NOT to ‘burn off’ the ice.
- Salt application rates vary with PAVEMENT temperature.
- Know how to use the application rate chart!
- Cover deicing materials, store on an impervious surface, and control Drainage.