Optimal Supply Networks III: Redistribution

Last updated: 2020/09/12, 12:45:25 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution

Public versus Private

These slides are brought to you by:

PoCS, Vol. 1 Optimal Supply Networks III 2 of 48

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat 🗹

PoCS, Vol. 1 Optimal Supply Networks III 3 of 48

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution Public versus Private

Outline

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

PoCS, Vol. 1 Optimal Supply Networks III 4 of 48

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

How do we distribute sources?

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

How do we distribute sources?

Focus on 2-d (results generalize to higher dimensions).

PoCS, Vol. 1 **Optimal Supply** Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivation Public versus Private

How do we distribute sources?

Focus on 2-d (results generalize to higher dimensions).

Sources = hospitals, post offices, pubs, ...

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivatio
Global redistribution
Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal?

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivatio
Global redistribution
Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

PoCS, Vol. 1 Optimal Supply Networks III 5 of 48

Distributed Sources

Cartograms

A reasonable derivatio Global redistribution Public versus Private

LOHETRIC BODIES

PoCS, Vol. 1

Optimal Supply Networks III 6 of 48

Distributed Sources

ze-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private
References

Solidifying the basic problem

PoCS, Vol. 1 Optimal Supply Networks III 7 of 48

Distributed Sources

size-density law

Cartograms
A reasonable derivation

Public versus Private

Solidifying the basic problem

Given a region with some population distribution ρ , most likely uneven.

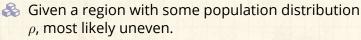
PoCS, Vol. 1 **Optimal Supply** Networks III 7 of 48

Distributed Sources

Cartograms

A reasonable derivation Public versus Private

Solidifying the basic problem



& Given resources to build and maintain N facilities.

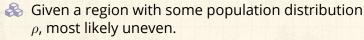
PoCS, Vol. 1 Optimal Supply Networks III 7 of 48

Distributed Sources

Cartograms

A reasonable derivatio
Global redistribution
Public versus Private

Solidifying the basic problem



& Given resources to build and maintain N facilities.

Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

PoCS, Vol. 1 Optimal Supply Networks III 7 of 48

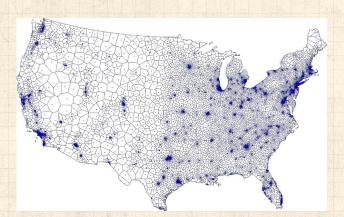
Distributed Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

"Optimal design of spatial distribution networks" (2"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

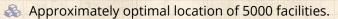


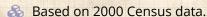
PoCS, Vol. 1 Optimal Supply Networks III 8 of 48

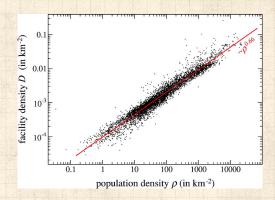
Distributed Sources

Size-density law Cartograms

A reasonable derivatio Global redistribution Public versus Private





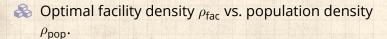


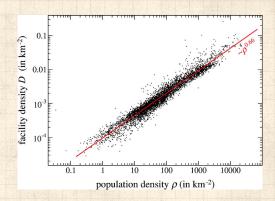
PoCS, Vol. 1 Optimal Supply Networks III 9 of 48

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private





PoCS, Vol. 1 Optimal Supply Networks III 9 of 48

Distributed Sources

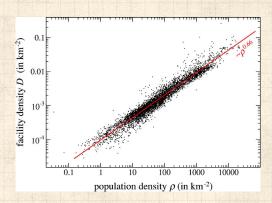
Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

References

 \Leftrightarrow Optimal facility density $ho_{
m fac}$ vs. population density $ho_{
m pop}.$

 $\mbox{\&}$ Fit is $\rho_{\rm fac} \propto \rho_{\rm pop}^{0.66}$ with $r^2 = 0.94$.



PoCS, Vol. 1 Optimal Supply Networks III 9 of 48

Distributed Sources

Cartograms

A reasonable derivatio

Global redistribution

References

 \Leftrightarrow Optimal facility density $ho_{
m fac}$ vs. population density $ho_{
m pop}.$

- \Leftrightarrow Fit is $\rho_{\rm fac} \propto \rho_{\rm pop}^{0.66}$ with $r^2 = 0.94$.
- & Looking good for a 2/3 power ...

Outline

Distributed Sources Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

PoCS, Vol. 1 Optimal Supply Networks III 10 of 48

Sources Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Size-density law:

 $\rho_{\rm fac} \propto \rho_{\rm pop}^{2/3}$

PoCS, Vol. 1 Optimal Supply Networks III 11 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

PoCS, Vol. 1 Optimal Supply Networks III 11 of 48

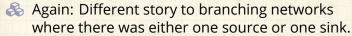
Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$



PoCS, Vol. 1 Optimal Supply Networks III 11 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

PoCS, Vol. 1 Optimal Supply Networks III 11 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, 196, 523-524, 1977. [4]

We first examine Stephan's treatment (1977) [4, 5]

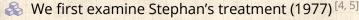
PoCS, Vol. 1 **Optimal Supply** Networks III 12 of 48

Sources Size-density law

A reasonable derivation Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]



Zipf-like approach: invokes principle of minimal effort.

PoCS, Vol. 1 Optimal Supply Networks III 12 of 48

Sources Size-density law

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- We first examine Stephan's treatment (1977) [4, 5]
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

PoCS, Vol. 1 Optimal Supply Networks III 12 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

a single functional center that everyone needs to access every day.

PoCS, Vol. 1 **Optimal Supply** Networks III 13 of 48

Sources

Size-density law

A reasonable derivation Public versus Private

Build up a general cost function based on time expended to access and maintain center. PoCS, Vol. 1 Optimal Supply Networks III 13 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

PoCS, Vol. 1 Optimal Supply Networks III 13 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

PoCS, Vol. 1 Optimal Supply Networks III 13 of 48

Sources Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

PoCS, Vol. 1 Optimal Supply Networks III 13 of 48

Sources Size-density law

Size-density law

Cartograms

A reasonable derivation

Global redistribution
Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

PoCS, Vol. 1 **Optimal Supply** Networks III 14 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

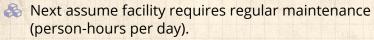
& Call this quantity τ .

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private



& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

 \clubsuit Replace P by $\rho_{pop}A$ where ρ_{pop} is density.

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Cartograms

Global redistribution
Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

 \red{lem} Replace P by $ho_{\mathsf{pop}} A$ where ho_{pop} is density.

Important assumption: uniform density.

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Cartograms

Global redistribution
Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A)$$

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{pop}A).$$

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

 $\red {\Bbb S}$ Now Minimize with respect to $A \dots$

PoCS, Vol. 1 Optimal Supply Networks III 14 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Differentiating ...

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right)$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} \end{split}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation

Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = \mathbf{0} \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = \mathbf{0} \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3} \propto \rho_{\mathsf{pop}}^{-2/3}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3} \propto \rho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 15 of 48

Sources Size-density law

A reasonable derivation Public versus Private

An issue:

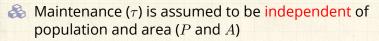
 \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)

PoCS, Vol. 1 **Optimal Supply** Networks III 16 of 48

Sources Size-density law

A reasonable derivation Public versus Private

An issue:



- Stephan's online book "The Division of Territory in Society" is here

 ✓.

PoCS, Vol. 1 Optimal Supply Networks III 16 of 48

Sources Size density law

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Outline

Distributed Sources

Size-density lav

Cartograms

A reasonable derivation Global redistribution Public versus Private

References

PoCS, Vol. 1 Optimal Supply Networks III 17 of 48

Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Standard world map:

PoCS, Vol. 1 Optimal Supply Networks III 18 of 48

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Cartogram of countries 'rescaled' by population:

Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

PoCS, Vol. 1 Optimal Supply Networks III 20 of 48

Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private

Diffusion-based cartograms:

Idea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).

PoCS, Vol. 1 **Optimal Supply** Networks III 20 of 48

Sources

Cartograms

A reasonable derivation Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.

PoCS, Vol. 1 Optimal Supply Networks III 20 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

PoCS, Vol. 1 Optimal Supply Networks III 20 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

- $\ \ \,$ Idea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries. PoCS, Vol. 1 Optimal Supply Networks III 20 of 48

Sources Size-density law

Cartograms
A reasonable derivation

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$ Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

PoCS, Vol. 1 Optimal Supply Networks III 20 of 48

Sources Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Child mortality:

PoCS, Vol. 1 Optimal Supply Networks III 21 of 48

Sources

Size-density lav

Cartograms

A reasonable derivation Global redistribution Public versus Private

Energy consumption:

PoCS, Vol. 1 Optimal Supply Networks III 22 of 48

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Gross domestic product:

PoCS, Vol. 1 Optimal Supply Networks III 23 of 48

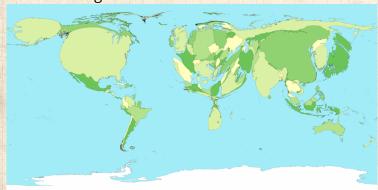
Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Greenhouse gas emissions:



PoCS, Vol. 1 Optimal Supply Networks III 24 of 48

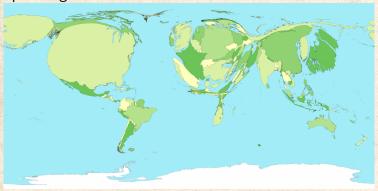
Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Spending on healthcare:



PoCS, Vol. 1 Optimal Supply Networks III 25 of 48

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

People living with HIV:



PoCS, Vol. 1 Optimal Supply Networks III 26 of 48

Sources

Size-density lav

Cartograms

A reasonable derivation Global redistribution Public versus Private

The preceding sampling of Gastner & Newman's cartograms lives here ☑.

W RLDMAPPER The world as you've never seen it before

PoCS, Vol. 1 Optimal Supply Networks III 27 of 48

Sources Size-density law

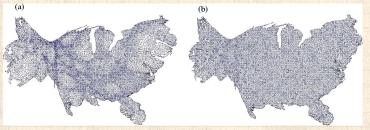
Cartograms

A reasonable derivation Global redistribution

Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]



Left: population density-equalized cartogram.

PoCS, Vol. 1 **Optimal Supply** Networks III 28 of 48

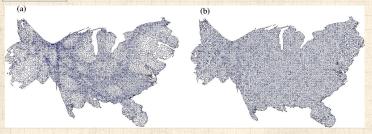
Sources

Cartograms

A reasonable derivation Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



Left: population density-equalized cartogram.

Right: (population density)^{2/3}-equalized cartogram.

PoCS, Vol. 1 **Optimal Supply** Networks III 28 of 48

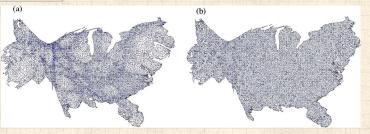
Sources

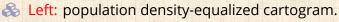
Cartograms

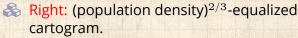
Public versus Private

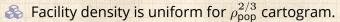
"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]









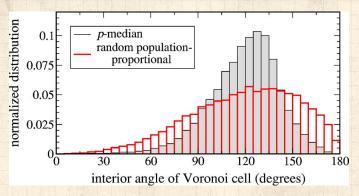
PoCS, Vol. 1 Optimal Supply Networks III 28 of 48

Sources

Size-density law Cartograms

A reasonable derivati

Global redistribution Public versus Private



From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

PoCS, Vol. 1 Optimal Supply Networks III 29 of 48

Sources

Cartograms

A reasonable deriva

Public versus Private

Outline

Distributed Sources

Cartograms
A reasonable derivation

Global redistribution Public versus Private

References

PoCS, Vol. 1 Optimal Supply Networks III 30 of 48

Sources Size-density law

Size-density lav Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Deriving the optimal source distribution:

PoCS, Vol. 1 **Optimal Supply** Networks III 31 of 48

Sources

Cartograms A reasonable derivation

Public versus Private

Deriving the optimal source distribution:

Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]

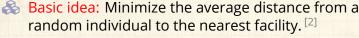
PoCS, Vol. 1 **Optimal Supply** Networks III 31 of 48

Sources

Cartograms

A reasonable derivation Public versus Private

Deriving the optimal source distribution:



Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region Ω .

PoCS, Vol. 1 Optimal Supply Networks III 31 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation

Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

PoCS, Vol. 1 Optimal Supply Networks III 31 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

.

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

Also known as the p-median problem.

PoCS, Vol. 1 Optimal Supply Networks III 31 of 48

Sources Size-density law

Cartograms
A reasonable derivation

Global redistribution
Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]

PoCS, Vol. 1 Optimal Supply Networks III 31 of 48

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

PoCS, Vol. 1 Optimal Supply Networks III 31 of 48

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

Approximations:

 \Re For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}_n$ the region Ω is divided up into Voronoi cells \mathbb{Z} , one per source.

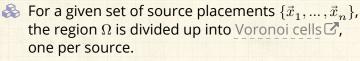
PoCS, Vol. 1 **Optimal Supply** Networks III 32 of 48

Sources

Cartograms

A reasonable derivation Public versus Private

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

PoCS, Vol. 1 Optimal Supply Networks III 32 of 48

Sources Size density law

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Approximations:

- & For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \vec{C} , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

PoCS, Vol. 1 Optimal Supply Networks III 32 of 48

Sources Size-density law Cartograms

Cartograms

A reasonable derivation

Global redistribution

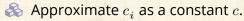
Public versus Private

Approximations:

- & For a given set of source placements $\{\vec{x}_1, ..., \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \vec{C} , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.



PoCS, Vol. 1 Optimal Supply Networks III 32 of 48

Sources
Size-density law
Cartograms

A reasonable derivation Global redistribution Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

PoCS, Vol. 1 Optimal Supply Networks III 33 of 48

Sources Size-density law

Size-density law Cartograms

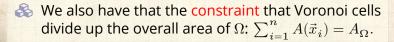
A reasonable derivation Global redistribution

Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,.$$



PoCS, Vol. 1 Optimal Supply Networks III 33 of 48

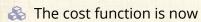
Sources Size-density law

Size-density law Cartograms

A reasonable derivation

Public versus Private

Carrying on:



$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

PoCS, Vol. 1 Optimal Supply Networks III 33 of 48

Sources Size density law

Size-density law Cartograms

A reasonable derivation

Global redistribution

Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

 $\red{solution}$ Within each cell, $A(\vec{x})$ is constant.

PoCS, Vol. 1 Optimal Supply Networks III 33 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation

Global redistribution
Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \clubsuit Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

PoCS, Vol. 1 Optimal Supply Networks III 33 of 48

Sources Size-density law

Cartograms

A reasonable derivation

Public versus Private

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

PoCS, Vol. 1 **Optimal Supply** Networks III 34 of 48

Cartograms

A reasonable derivation Public versus Private

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

PoCS, Vol. 1 **Optimal Supply** Networks III 34 of 48

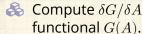
Cartograms A reasonable derivation

Public versus Private

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??



& Compute $\delta G/\delta A$, the functional derivative \Box of the

PoCS, Vol. 1 **Optimal Supply** Networks III 34 of 48

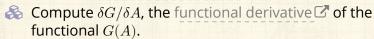
A reasonable derivation

Public versus Private

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??



This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

PoCS, Vol. 1 **Optimal Supply** Networks III 34 of 48

Size-density law

A reasonable derivation

Public versus Private

 $\begin{cases} \& \end{cases}$ By varying $\{ec{x}_1,\ldots,ec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

- & I Can Haz Calculus of Variations ??
- & Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x})\right]^{-2}\right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

PoCS, Vol. 1 Optimal Supply Networks III 34 of 48

Sources
Size-density law

A reasonable derivation
Global redistribution
Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

PoCS, Vol. 1 **Optimal Supply** Networks III 35 of 48

Sources

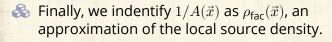
Cartograms

A reasonable derivation Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$



PoCS, Vol. 1 **Optimal Supply** Networks III 35 of 48

Cartograms A reasonable derivation

Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

- \Longrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{fac}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{fac} = 1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

PoCS, Vol. 1 **Optimal Supply** Networks III 35 of 48

Sources

Cartograms

A reasonable derivation Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

- $\ref{eq:property}$ Finally, we indentify $1/A(\vec{x})$ as $ho_{
 m fac}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{\mathsf{fac}} = 1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

PoCS, Vol. 1 Optimal Supply Networks III 35 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private

Outline

Distributed Sources

Cartograms
A reasonable derivation
Global redistribution

Tublic versus i rivat

References

PoCS, Vol. 1 Optimal Supply Networks III 36 of 48

Sources Size density law

Size-density law Cartograms

A reasonable derivation
Global redistribution

Public versus Private

One more thing:

How do we supply these facilities?

PoCS, Vol. 1 **Optimal Supply** Networks III 37 of 48

Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

PoCS, Vol. 1 **Optimal Supply** Networks III 37 of 48

Sources

Cartograms

A reasonable derivation

Global redistribution Public versus Private

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

How do we get beer to the pubs?

PoCS, Vol. 1 Optimal Supply Networks III 37 of 48

Sources Size density law

Size-density law Cartograms

Cartograms

A reasonable derivation

Global redistribution
Public versus Private

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

 $C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$

PoCS, Vol. 1 Optimal Supply Networks III 37 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

 \ref{A} Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

PoCS, Vol. 1 Optimal Supply Networks III 37 of 48

Sources Size-density law

Cartograms A reasonable derivat

Global redistribution Public versus Private

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

 \ref{A} Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

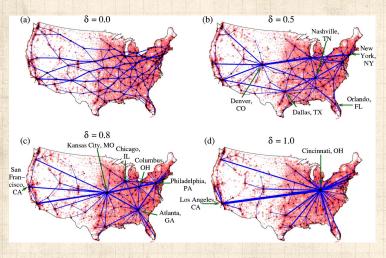
$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

PoCS, Vol. 1 Optimal Supply Networks III 37 of 48

Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Public versus Private
References



From Gastner and Newman (2006) [2]

PoCS, Vol. 1 Optimal Supply Networks III 38 of 48

Distributed Sources

Size-density lav Cartograms

A reasonable derivation Global redistribution

Public versus Private

PHETRIC BADIS

PoCS, Vol. 1 Optimal Supply Networks III 39 of 48

Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Outline

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution

Public versus Private

References

PoCS, Vol. 1 Optimal Supply Networks III 40 of 48

Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private

Public versus private facilities

Beyond minimizing distances:

PoCS, Vol. 1 Optimal Supply Networks III 41 of 48

Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private

Beyond minimizing distances:

"Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]

PoCS, Vol. 1 **Optimal Supply** Networks III 41 of 48

Sources

Cartograms

A reasonable derivation

Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

PoCS, Vol. 1 Optimal Supply Networks III 41 of 48

Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private

5 6

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;

PoCS, Vol. 1 Optimal Supply Networks III 41 of 48

Sources

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- When the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

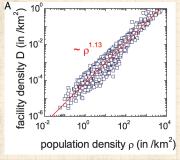
does not universally hold with $\alpha = 2/3$.

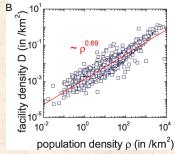
- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

PoCS, Vol. 1 Optimal Supply Networks III 41 of 48

Distributed Sources Size-density law

Cartograms
A reasonable derivatio
Global redistribution
Public versus Private





Left plot: ambulatory hospitals in the U.S.

Right plot: public schools in the U.S.

PoCS, Vol. 1 Optimal Supply Networks III 42 of 48

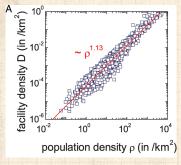
Distributed Sources

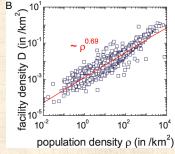
Size-density law Cartograms

Cartograms

A reasonable der

Global redistribution Public versus Private





- Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.
- Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop} \simeq 100$.

PoCS, Vol. 1 Optimal Supply Networks III 42 of 48

Distributed Sources

Size-density lav Cartograms

A reasonable deriva

Global redistribution
Public versus Private

US facility	α (SE)	R ²	
Ambulatory hospital	1.13(1)	0.93	
Beauty care	1.08(1)	0.86	
Laundry	1.05(1)	0.90	
Automotive repair	0.99(1)	0.92	
Private school	0.95(1)	0.82	
Restaurant	0.93(1)	0.89	
Accommodation	0.89(1)	0.70	Rough tr
Bank	0.88(1)	0.89	between
Gas station	0.86(1)	0.94	
Death care	0.79(1)	0.80	and priva
* Fire station	0.78(3)	0.93	$\alpha \simeq 0.8$.
* Police station	0.71(6)	0.75	$\alpha = 0.6$.
Public school	0.69(1)	0.87	
SK facility	α (SE)	R ²	Note: * ii
Bank	1.18(2)	0.96	analysis i
Parking place	1.13(2)	0.96	
* Primary clinic	1.09(2)	1.00	state/pro
* Hospital	0.96(5)	0.97	level; oth
* University/college	0.93(9)	0.89	ievei, otii
Market place	0.87(2)	0.90	county le
* Secondary school	0.77(3)	0.98	
* Primary school	0.77(3)	0.97	
Social welfare org.	0.75(2)	0.84	
* Police station	0.71(5)	0.94	
Government office	0.70(1)	0.93	
* Fire station	0.60(4)	0.93	
* Public health center	0.09(5)	0.19	

Rough transition between public and private at

Note: * indicates analysis is at state/province level; otherwise county level.

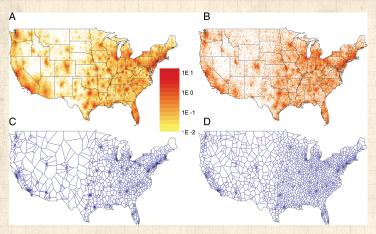
PoCS, Vol. 1 **Optimal Supply** Networks III 43 of 48

Sources

Cartograms

A reasonable derivation

Public versus Private



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

PoCS, Vol. 1 Optimal Supply Networks III 44 of 48

Distributed Sources

Size-density la

Cartograms A reasonable derivati

Public versus Private

Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

PoCS, Vol. 1 **Optimal Supply** Networks III 45 of 48

Sources

Cartograms

A reasonable derivation Public versus Private

Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

Commercial institutions seek to maximize the number of visitors.

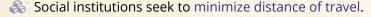
PoCS, Vol. 1 **Optimal Supply** Networks III 45 of 48

Sources

Cartograms A reasonable derivation

Public versus Private

So what's going on?



Commercial institutions seek to maximize the number of visitors.

& Defns: For the *i*th facility and its Voronoi cell V_i , define

 n_i = population of the *i*th cell;

 $\langle r_i \rangle$ = the average travel distance to the ith facility.

 A_i = area of ith cell (s_i in Um et al. [6])

PoCS, Vol. 1 Optimal Supply Networks III 45 of 48

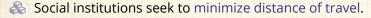
Sources Size-density law

Size-density law

Cartograms

Global redistribution Public versus Private

So what's going on?



Commercial institutions seek to maximize the number of visitors.

& Defns: For the ith facility and its Voronoi cell V_i , define

 n_i = population of the *i*th cell;

 $\langle r_i \rangle$ = the average travel distance to the ith facility.

 A_i = area of ith cell (s_i in Um ith ith cell (s_i in Um ith ith cell (s_i th ith ith cell (s_i th ith ith ith cell (s_i th ith ith

Objective function to maximize for a facility (highly constructed):

 $v_i = n_i \langle r_i \rangle^{\beta}$ with $0 \le \beta \le 1$.

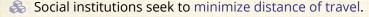
PoCS, Vol. 1 Optimal Supply Networks III 45 of 48

Sources Size-density law Cartograms

Cartograms
A reasonable derivation

Global redistribution Public versus Private

So what's going on?



Commercial institutions seek to maximize the number of visitors.

& Defns: For the ith facility and its Voronoi cell V_i , define

 n_i = population of the *i*th cell;

 $\langle r_i \rangle$ = the average travel distance to the ith facility.

 A_i = area of ith cell (s_i in Um ith ith cell (s_i in Um ith ith cell (s_i th ith ith cell (s_i th ith ith ith cell (s_i th ith ith

Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

PoCS, Vol. 1 Optimal Supply Networks III 45 of 48

Sources
Size-density law
Cartograms

Cartograms
A reasonable derivatio

Global redistribution Public versus Private

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofactor} \begin{split} \rho_{\mathrm{fac}}(\vec{x}) &= n \frac{[\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

PoCS, Vol. 1 **Optimal Supply** Networks III 46 of 48

Sources

Cartograms

Public versus Private

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} \rho_{\mathrm{fac}}(\vec{x}) &= n \frac{[\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 $\ensuremath{\mathfrak{S}}$ For $\beta=0$, $\alpha=1$: commercial scaling is linear.

PoCS, Vol. 1 Optimal Supply Networks III 46 of 48

Sources Size-density law

Size-density law Cartograms

A reasonable derivatio Global redistribution Public versus Private

5.6

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} \rho_{\rm fac}(\vec{x}) &= n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 $\ensuremath{\mathfrak{S}}$ For $\beta=0$, $\alpha=1$: commercial scaling is linear.

 $\mbox{\&}$ For $\beta=1$, $\alpha=2/3$: social scaling is sublinear.

PoCS, Vol. 1 Optimal Supply Networks III 46 of 48

Sources Size-density law

Cartograms

A reasonable derivatio Global redistribution Public versus Private

Deference

References I

[1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

PoCS, Vol. 1 Optimal Supply Networks III 47 of 48

Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private

References II

[5] G. E. Stephan.
Territorial subdivision.

Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf

PoCS, Vol. 1 Optimal Supply Networks III 48 of 48

Sources Size-density law

Cartograms
A reasonable derivat

Global redistribution Public versus Private

