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Mechanisms:

A powerful story in the rise of complexity:
 structure arises out of randomness.
 Exhibit A: Random walks.

The essential random walk:
 One spatial dimension.
 Time and space are discrete
 Random walker (e.g., a zombie texter) starts at

origin 𝑥 = 0.
 Step at time 𝑡 is 𝜖𝑡:𝜖𝑡 = { +1 with probability 1/2−1 with probability 1/2
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A few random random walks:
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Random walks:
Displacement after 𝑡 steps:𝑥𝑡 = 𝑡∑𝑖=1 𝜖𝑖
Expected displacement:⟨𝑥𝑡⟩ = ⟨ 𝑡∑𝑖=1 𝜖𝑖⟩ = 𝑡∑𝑖=1 ⟨𝜖𝑖⟩ = 0
 At any time step, we ‘expect’ our zombie texter to

be back at their starting place.
 Obviously fails for odd number of steps...
 But as time goes on, the chance of our texting

undead friend lurching back to 𝑥=0 must diminish,
right?
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Variances sum:∗
Var(𝑥𝑡) = Var( 𝑡∑𝑖=1 𝜖𝑖)
= 𝑡∑𝑖=1 Var (𝜖𝑖) = 𝑡∑𝑖=1 1 = 𝑡

∗ Sum rule = a good reason for using the variance to
measure spread; only works for independent distributions.

So typical displacement from the origin scales as:𝜎 = 𝑡1/2
 A non-trivial scaling law arises out of

additive aggregation or accumulation.
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Random walk basics:

Counting random walks:
 Each specific random walk of length 𝑡 appears

with a chance 1/2𝑡.
 We’ll be more interested in how many random

walks end up at the same place.
 Define 𝑁(𝑖, 𝑗, 𝑡) as # distinct walks that start at𝑥 = 𝑖 and end at 𝑥 = 𝑗 after 𝑡 time steps.
 Random walk must displace by +(𝑗 − 𝑖) after 𝑡

steps.
 Insert question from assignment 3𝑁(𝑖, 𝑗, 𝑡) = ( 𝑡(𝑡 + 𝑗 − 𝑖)/2)
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How does 𝑃 (𝑥𝑡) behave for large 𝑡?
 Take time 𝑡 = 2𝑛 to help ourselves.
 𝑥2𝑛 ∈ {0, ±2, ±4, … , ±2𝑛}
 𝑥2𝑛 is even so set 𝑥2𝑛 = 2𝑘.
 Using our expression 𝑁(𝑖, 𝑗, 𝑡) with 𝑖 = 0, 𝑗 = 2𝑘,

and 𝑡 = 2𝑛, we have
Pr(𝑥2𝑛 ≡ 2𝑘) ∝ ( 2𝑛𝑛 + 𝑘)

 For large 𝑛, the binomial deliciously approaches
the Normal Distribution of Snoredom:

Pr(𝑥𝑡 ≡ 𝑥) ≃ 1√2𝜋𝑡𝑒− 𝑥22𝑡 .
Insert question from assignment 3

 The whole is different from the parts. #nutritious
 See also: Stable Distributions
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Universality is also not left-handed:

 This is Diffusion: the most essential kind of
spreading (more later).

 View as Random Additive Growth Mechanism.
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So many things are connected:

Pascal’s Triangle

 Could have been the
Pyramid of Pingala1or
the Triangle of Khayyam,
Jia Xian, Tartaglia, …

 Binomials tend towards the Normal.
 Counting encoded in algebraic forms (and much

more).
 (ℎ + 𝑡)𝑛 = ∑𝑛𝑘=0 (𝑛𝑘 )ℎ𝑘𝑡𝑛−𝑘 where (𝑛𝑘 ) = 𝑛!𝑘!(𝑛−𝑘)!
 (ℎ + 𝑡)3 = ℎℎℎ + ℎℎ𝑡 + ℎ𝑡ℎ + 𝑡ℎℎ + ℎ𝑡𝑡 + 𝑡ℎ𝑡 + 𝑡𝑡ℎ + 𝑡𝑡𝑡

1Stigler’s Law of Eponymy showing excellent form again.
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Random walks are even weirder than you might
think...
 𝜉𝑟,𝑡 = the probability that by time step 𝑡, a random

walk has crossed the origin 𝑟 times.
 Think of a coin flip game with ten thousand tosses.
 If you are behind early on, what are the chances

you will make a comeback?
 The most likely number of lead changes is... 0.
 In fact: 𝜉0,𝑡 > 𝜉1,𝑡 > 𝜉2,𝑡 > ⋯
 Even crazier:

The expected time between tied scores = ∞
See Feller, Intro to Probability Theory, Volume I [5]
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Applied knot theory:
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❤❡ s✐♠♣❧❡st ♦❢ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡ ❦♥♦ts✱
t❤❡ ❢♦✉r✲✐♥✲❤❛♥❞✱ ❤❛s ✐ts ♦r✐❣✐♥s ✐♥ ❧❛t❡✲
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❲✐♥❞s♦r✱ ❛s ❑✐♥❣ ❊❞✇❛r❞ ❱■■■ ❜❡❝❛♠❡ ❛❢t❡r
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❞✉❝✐♥❣ ✇❤❛t ✐s ♥♦✇ ❦♥♦✇♥ ❛s t❤❡ ❲✐♥❞s♦r
❦♥♦t✱ ❢r♦♠ ✇❤✐❝❤ ✐ts s♠❛❧❧❡r ❞❡r✐✈❛t✐✈❡✱ t❤❡
❤❛❧❢✲❲✐♥❞s♦r✱ ❡✈♦❧✈❡❞✳ ■♥ ✎✾✽✾✱ t❤❡ Pr❛tt
❦♥♦t✱ t❤❡ ❢✐rst ♥❡✇ ❦♥♦t t♦ ❛♣♣❡❛r ✐♥ ❢✐❢t②
②❡❛rs✱ ✇❛s r❡✈❡❛❧❡❞ ♦♥ t❤❡ ❢r♦♥t ♣❛❣❡ ♦❢ ✏✑✒
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❢♦r t❤❡ ♥❡①t s❛rt♦r✐❛❧ ❛❞✈❛♥❝❡✱ ✇❡ ❤❛✈❡
t❛❦❡♥ ❛ ♠♦r❡ ❢♦r♠❛❧ ❛♣♣r♦❛❝❤✳ ❲❡ ❤❛✈❡
❞❡✈❡❧♦♣❡❞ ❛ ♠❛t❤❡♠❛t✐❝❛❧ ♠♦❞❡❧ ♦❢ t✐❡
❦♥♦ts✱ ❛♥❞ ♣r♦✈✐❞❡ ❛ ♠❛♣ ❜❡t✇❡❡♥ t✐❡
❦♥♦ts ❛♥❞ ♣❡rs✐st❡♥t r❛♥❞♦♠ ✇❛❧❦s ♦♥ ❛
tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡✳ ❲❡ ❝❧❛ss✐❢② ❦♥♦ts ❛❝❝♦r❞✲
✐♥❣ t♦ t❤❡✐r s✐③❡ ❛♥❞ s❤❛♣❡✱ ❛♥❞ q✉❛♥t✐❢②
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♦♣t✐♠❛❧ ❦♥♦t ✐♥ ❛ ❝❧❛ss ✐s s❡❧❡❝t❡❞ ❜② t❤❡
♣r♦♣♦s❡❞ ❛❡st❤❡t✐❝ ❝♦♥❞✐t✐♦♥s ♦❢ s②♠♠❡✲
tr② ❛♥❞ ❜❛❧❛♥❝❡✳ ❖❢ t❤❡ ✽✺ ❦♥♦ts t❤❛t ❝❛♥
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✐♥❣ ❦♥♦ts✳
❆ t✐❡ ❦♥♦t ✐s st❛rt❡❞ ❜② ❜r✐♥❣✐♥❣ t❤❡ ✇✐❞❡

✭❛❝t✐✈❡✮ ❡♥❞ t♦ t❤❡ ❧❡❢t ❛♥❞ ❡✐t❤❡r ♦✈❡r ♦r
✉♥❞❡r t❤❡ ♥❛rr♦✇ ✭♣❛ss✐✈❡✮ ❡♥❞✱ ❞✐✈✐❞✐♥❣
t❤❡ s♣❛❝❡ ✐♥t♦ r✐❣❤t ✭❘✮✱ ❝❡♥tr❡ ✭❈✮ ❛♥❞ ❧❡❢t
✭▲✮ r❡❣✐♦♥s ✭❋✐❣✳ ✎❛✮✳ ❚❤❡ ❦♥♦t ✐s ❝♦♥t✐♥✉❡❞
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❛❝t✐✈❡ ❡♥❞ ❢r♦♠ ♦♥❡ r❡❣✐♦♥ t♦ ❛♥♦t❤❡r ✭❋✐❣✳
✎❜✮ s✉❝❤ t❤❛t ✐ts ❞✐r❡❝t✐♦♥ ❛❧t❡r♥❛t❡s
❜❡t✇❡❡♥ ♦✉t ♦❢ t❤❡ s❤✐rt ✭✭✮ ❛♥❞ ✐♥t♦ t❤❡
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“Designing tie knots by random walks”
Fink and Mao,
Nature, 398, 31–32, 1999. [6]

t

FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 

a, The two ways of beginning a knot, L! and L". For knots beginning with L!, the tie must begin 

inside-out. b, The four-in-hand, denoted by the sequence L"  R!  L"  C! T. c, A knot may be represented 

by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the

walk ll
^̂
rr^̂ ll

^̂
cc^̂.
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Applied knot theory:
Table 1 Aesthetic tie knots

h # #/h K(h, #) s b Name Sequence

3 1 0.33 1 0 0 L! R" C! T

4 1 0.25 1 $1 1 Four-in-hand L" R! L" C! T

5 2 0.40 2 $1 0 Pratt knot L! C" R! L" C! T

6 2 0.33 4 0 0 Half-Windsor L" R! C" L! R" C! T

7 2 0.29 6 $1 1 L! R" L! C" R! L" C! T

7 3 0.43 4 0 1 L! C" R! C" L! R" C! T

8 2 0.25 8 0 2 L" R! L" C! R" L! R" C! T

8 3 0.38 12 $1 0 Windsor L" C! R" L! C" R! L" C! T

9 3 0.33 24 0 0 L! R" C! L" R! C" L! R" C! T

9 4 0.44 8 $1 2 L! C" R! C" L! C" R! L" C! T

Knots are characterized by half-winding number h, centre number #, centre fraction #/h, knots per class K(h, #),

symmetry s, balance b, name and sequence.

 ℎ = number of
moves

 𝛾 = number of
center moves

 𝐾(ℎ, 𝛾) =2𝛾−1(ℎ−𝛾−2𝛾−1 )
 𝑠 = ∑ℎ𝑖=1 𝑥𝑖 where 𝑥 = -1

for 𝐿 and +1 for 𝑅.

 𝑏 = 12 ∑ℎ−1𝑖=2 |𝜔𝑖+𝜔𝑖−1|
where 𝜔 = ±1
represents winding
direction.
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Random walks #crazytownbananapants

The problem of first return:
 What is the probability that a random walker in

one dimension returns to the origin for the first
time after 𝑡 steps?

 Will our zombie texter always return to the origin?
 What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an

interesting exponent.
2. Some physical structures may result from random

walks.
3. We’ll start to see how different scalings relate to

each other.
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For random walks in 1-𝑑:

0 5 10 15 20
−4

−2

0

2

4

t

x

 A return to origin can only happen when 𝑡 = 2𝑛.
 In example above, returns occur at 𝑡 = 8, 10, and

14.
 Call 𝑃fr(2𝑛) the probability of first return at 𝑡 = 2𝑛.
 Probability calculation ≡ Counting problem

(combinatorics/statistical mechanics).
 Idea: Transform first return problem into an

easier return problem.
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 Can assume zombie texter first lurches to 𝑥 = 1.
 Observe walk first returning at 𝑡 = 16 stays at or above𝑥 = 1 for 1 ≤ 𝑡 ≤ 15 (dashed red line).

 Now want walks that can return many times to 𝑥 = 1.
 𝑃fr(2𝑛) =2 ⋅ 12 𝑃𝑟(𝑥𝑡 ≥ 1, 1 ≤ 𝑡 ≤ 2𝑛 − 1, and 𝑥1 = 𝑥2𝑛−1 = 1)
 The 12 accounts for 𝑥2𝑛 = 2 instead of 0.

 The 2 accounts for texters that first lurch to 𝑥 = −1.
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Counting first returns:

Approach:
 Move to counting numbers of walks.
 Return to probability at end.
 Again, 𝑁(𝑖, 𝑗, 𝑡) is the # of possible walks between𝑥 = 𝑖 and 𝑥 = 𝑗 taking 𝑡 steps.
 Consider all paths starting at 𝑥 = 1 and ending at𝑥 = 1 after 𝑡 = 2𝑛 − 2 steps.
 Idea: If we can compute the number of walks that

hit 𝑥 = 0 at least once, then we can subtract this
from the total number to find the ones that
maintain 𝑥 ≥ 1.

 Call walks that drop below 𝑥 = 1 excluded walks.
 We’ll use a method of images to identify these

excluded walks.
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Examples of excluded walks:
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Key observation for excluded walks:
 For any path starting at 𝑥=1 that hits 0, there is a

unique matching path starting at 𝑥=−1.
 Matching path first mirrors and then tracks after

first reaching 𝑥=0.
 # of 𝑡-step paths starting and ending at 𝑥=1 and

hitting 𝑥=0 at least once
= # of 𝑡-step paths starting at 𝑥=-1 and ending at𝑥=1 = 𝑁(−1, 1, 𝑡)

 So 𝑁first return(2𝑛) = 𝑁(1, 1, 2𝑛 − 2) − 𝑁(−1, 1, 2𝑛 − 2)
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Probability of first return:
Insert question from assignment 3 :
 Find 𝑁fr(2𝑛) ∼ 22𝑛−3/2√2𝜋𝑛3/2 .
 Normalized number of paths gives probability.
 Total number of possible paths = 22𝑛.
 𝑃fr(2𝑛) = 122𝑛 𝑁fr(2𝑛)

≃ 122𝑛 22𝑛−3/2√2𝜋𝑛3/2= 1√2𝜋(2𝑛)−3/2 ∝ 𝑡−3/2.
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 We have 𝑃(𝑡) ∝ 𝑡−3/2, 𝛾 = 3/2.
 Same scaling holds for continuous space/time walks.

 𝑃(𝑡) is normalizable.

 Recurrence: Random walker always returns to origin

 But mean, variance, and all higher moments are
infinite. #totalmadness

 Even though walker must return, expect a long wait...

 One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions:

 Walker in 𝑑 = 2 dimensions must also return

 Walker may not return in 𝑑 ≥ 3 dimensions

 Associated genius: George Pólya
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Random walks

On finite spaces:
 In any finite homogeneous space, a random

walker will visit every site with equal probability
 Call this probability the Invariant Density of a

dynamical system
 Non-trivial Invariant Densities arise in chaotic

systems.

On networks:
 On networks, a random walker visits each node

with frequency ∝ node degree #groovy
 Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy
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Scheidegger Networks [17, 4]

 Random directed network on triangular lattice.
 Toy model of real networks.
 ‘Flow’ is southeast or southwest with equal

probability.
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Scheidegger networks

 Creates basins with random walk boundaries.
 Observe that subtracting one random walk from

another gives random walk with increments:

𝜖𝑡 = ⎧{⎨{⎩ +1 with probability 1/40 with probability 1/2−1 with probability 1/4
 Random walk with probabilistic pauses.
 Basin termination = first return random walk

problem.
 Basin length ℓ distribution: 𝑃(ℓ) ∝ ℓ−3/2
 For real river networks, generalize to 𝑃(ℓ) ∝ ℓ−𝛾.
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Connections between exponents:

 For a basin of length ℓ, width ∝ ℓ1/2
 Basin area 𝑎 ∝ ℓ ⋅ ℓ1/2 = ℓ3/2
 Invert: ℓ ∝ 𝑎2/3
 dℓ ∝ d(𝑎2/3) = 2/3𝑎−1/3d𝑎
 Pr(basin area = 𝑎)d𝑎= Pr(basin length = ℓ)dℓ∝ ℓ−3/2dℓ∝ (𝑎2/3)−3/2𝑎−1/3d𝑎= 𝑎−4/3d𝑎= 𝑎−𝜏d𝑎
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Connections between exponents:
 Both basin area and length obey power law

distributions
 Observed for real river networks
 Reportedly: 1.3 < 𝜏 < 1.5 and 1.5 < 𝛾 < 2
Generalize relationship between area and length:
 Hack’s law [10]: ℓ ∝ 𝑎ℎ.
 For real, large networks [13] ℎ ≃ 0.5 (isometric

scaling)
 Smaller basins possibly ℎ > 1/2 (allometric

scaling).
 Models exist with interesting values of ℎ.
 Plan: Redo calc with 𝛾, 𝜏 , and ℎ.
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Connections between exponents:
 Given ℓ ∝ 𝑎ℎ, 𝑃 (𝑎) ∝ 𝑎−𝜏, and 𝑃(ℓ) ∝ ℓ−𝛾
 dℓ ∝ d(𝑎ℎ) = ℎ𝑎ℎ−1d𝑎
 Find 𝜏 in terms of 𝛾 and ℎ.
 Pr(basin area = 𝑎)d𝑎= Pr(basin length = ℓ)dℓ∝ ℓ−𝛾dℓ∝ (𝑎ℎ)−𝛾𝑎ℎ−1d𝑎= 𝑎−(1+ℎ (𝛾−1))d𝑎
 𝜏 = 1 + ℎ(𝛾 − 1)
 Excellent example of the Scaling Relations found

between exponents describing power laws for
many systems.
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Connections between exponents:

With more detailed description of network
structure, 𝜏 = 1 + ℎ(𝛾 − 1) simplifies to: [3]𝜏 = 2 − ℎ
and 𝛾 = 1/ℎ
 Only one exponent is independent (take ℎ).
 Simplifies system description.
 Expect Scaling Relations where power laws are

found.
 Need only characterize Universality class with

independent exponents.
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Death …

Failure:
 A very simple model of failure/death
 𝑥𝑡 = entity’s ‘health’ at time 𝑡
 Start with 𝑥0 > 0.
 Entity fails when 𝑥 hits 0.

Explaining mortality rate plateaus
Joshua S. Weitz*† and Hunter B. Fraser‡§
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Edited by Kenneth W. Wachter, University of California, Berkeley, CA, and approved October 24, 2001 (received for review May 8, 2001)

We propose a stochastic model of aging to explain deviations from

exponential growth in mortality rates commonly observed in

empirical studies. Mortality rate plateaus are explained as a generic

consequence of considering death in terms of first passage times

for processes undergoing a random walk with drift. Simulations of

populations with age-dependent distributions of viabilities agree

with a wide array of experimental results. The influence of cohort

size is well accounted for by the stochastic nature of the model.

Fundamental studies of the aging process have of late attracted
the interest of researchers in a variety of disciplines, linking

ideas and theories from biochemistry to mathematics (1–3).
Much of this recent activity is due to the possibility that one of
the supposedly fundamental tenets of aging, namely the expo-
nential growth of mortality rates proposed by Gompertz (4), may
fail to describe the behavior of observed populations adequately.
More specifically, studies using populations or ‘‘cohorts’’ of
Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila,
and humans demonstrate that mortality rates tend to level off
and even decrease at later stages of life (5–9). Attempts have
been made to explain these plateaus via parabolic hazard
functions (10), age-dependent demographics (11, 12), and phe-
nomenological bifurcation models (8). In this paper we propose
a simple model that incorporates heterogeneous dynamics to
explain the generic plateau in mortality rates commonly ob-
served in large cohorts of organisms.

Consider a population of N organisms with a distribution of
viabilities, vi ! 0, where vi ! 0 signifies death. The dynamics of
an individual viability will be modeled as follows:

vi"t " 1# # vi"t# $ % " &'i"t#, [1]

where % $ 0 is a constant drift, & $ 0 is the standard deviation
of the fluctuations, and 'i(t) is an uncorrelated Gaussian random
variable with zero mean and unit standard deviation. The linear
decline of viability is justified by the observation of a linear
decline of physiological functions noted by Strehler and Mildvan
(13) as well as similar results in more recent surveys (14). The
stochasticity in the system may be related to the competition for
resources, phenotypic differences, local environmental changes,
or even stochastic gene expression (15) but does not necessarily
depend on heterogeneity in the initial genotypic distribution.
The inclusion of stochasticity at the individual level implies that
Eq. 1 may be considered a changing frailty model as opposed to
a fixed frailty model. A fixed frailty model preserves any initial
heterogeneity in v throughout each individual lifespan (16).

Biologically, this model states that each organism drifts toward
death but with low probability may occasionally increase its
long-term chances for survival. The probability of dying at time
t is equivalent to the probability of first passage time P(t!v0) of
a random walk that begins at v ! v0 and reaches the origin, v !
0, at time t. The likelihood of death is controlled by the relative
strength of drift and fluctuations. In this paper we explain the
basic mechanism associated with first passage time problems and
then proceed to show how such a model captures the essential
features of late life mortality plateaus.

Theory of First Passage Time Problems

Eq. 1 may be better understood by considering the limits of
vanishing noise and then vanishing drift. When & 3 0, the

organisms move in lock step toward an inevitable death. The
hazard rate, ((t), may be solved at t $ 0 for any initial
distribution of viabilities, n0(v),

("t# #
D"t#

N0 $ "
t% # 0

t $ 1
D"t%#

, [2]

where N0 is the total number of initial organisms, and D(t) is the
number of organisms that die at time t,

D"t# # #
%"t $ 1#

%t

dvn0"v#. [3]

For a uniform distribution of initial viabilities, 0 & vi(0) & 1, the
hazard rate reduces to

("t# #
%

1 $ %t
,

$ % exp"%t#, %t&&1. [4]

In the limit of slow drift the hazard rate grows exponentially for
small t and continues to grow until the system is left desolate at
t ! 1%%. At intermediate times the hazard rate is not increasing
exponentially as one might expect from a Gompertz model.
Regardless of its precise form, the monotonic increase of
mortality rates as evidenced in this simple example leads to the
natural question of what causes mortality rates to plateau in
populations of fruit f lies, yeast, and other organisms.

The first step in answering this question is to consider the
other limit of Eq. 1, namely %3 0, when fluctuations dominate
the dynamics. In this regime an individual viability vi(t) follows
a random walk that ends when v ) 0. Qualitatively the removal
of individuals with v ) 0 is tantamount to increasing the average
viability of the remaining cohort. With time the average viability
should increase, and therefore the hazard rate should decrease.
It is important to note that as the population dies off, it will
become more susceptible to fluctuations and may exhibit an
intermittent rise in hazard rate near complete elimination. This
caveat notwithstanding, we begin to see why the combination of
these two effects, drift and fluctuation, might give rise to just the
sort of behavior observed in large-scale mortality studies.

In order to simplify the analytical calculation of hazard rates
we rewrite Eq. 1 in the case of continuous time,

dvi # '%dt " &dWi"t#, [5]

where Wi(t) is a stochastic Wiener process that satisfies dWi

(t%)dWj(t) ! *ij*(t% ' t)dt. The difference between Eqs. 1 and
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… and the NBA:

Basketball and other sports [2]:
 Three arcsine laws (Lévy [12]) for

continuous-time random walk last time 𝑇 :1𝜋 1√𝑡(𝑇 − 𝑡) .
The arcsine distribution applies for:
(1) fraction of time positive, (2) the last time the
walk changes sign,
and (3) the time the maximum is achieved.

 Well approximated by basketball score lines [8, 2].
 Australian Rules Football has some differences [11].
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More than randomness

 Can generalize to Fractional Random
Walks [15, 16, 14]

 Fractional Brownian Motion, Lévy flights
 See Montroll and Shlesinger for example: [14]

“On 1/𝑓 noise and other distributions with long
tails.”
Proc. Natl. Acad. Sci., 1982.

 In 1-d, standard deviation 𝜎 scales as𝜎 ∼ 𝑡𝛼𝛼 = 1/2 — diffusive𝛼 > 1/2 — superdiffusive𝛼 < 1/2 — subdiffusive
 Extensive memory of path now matters...
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 First big studies of movement and interactions of
people.

 Brockmann et al. [1] “Where’s George” study.
 Beyond Lévy: Superdiffusive in space but with

long waiting times.
 Tracking movement via cell phones [9] and

Twitter [7].
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