Mechanisms for Generating Power-Law Size Distributions, Part 1

Last updated: 2020/09/14, 23:31:24 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

These slides are brought to you by:

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

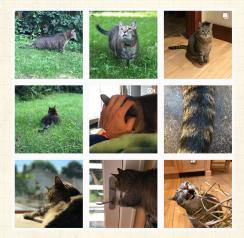
Scaling Relations

Death and Sports

Fractional **Brownian Motion**

These slides are also brought to you by:

Special Guest Executive Producer



On Instagram at pratchett the cat

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations Death and Sports

Fractional **Brownian Motion**

Outline

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

The Boggoracle Speaks:

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

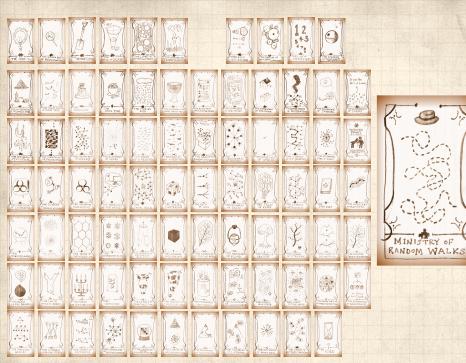
The First Return Problem

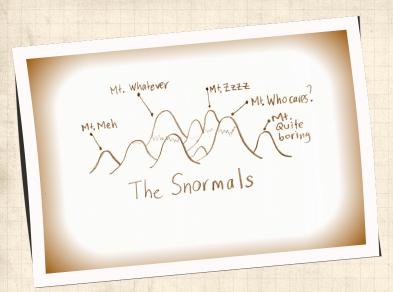
Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**





PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

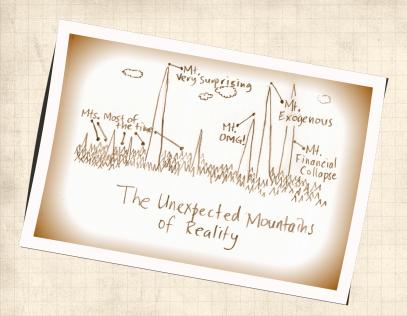
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Mechanisms:

A powerful story in the rise of complexity:

A: Random walks.

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a zombie texter) starts at origin x=0.
- & Step at time t is ϵ_t :

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability 1/2} \\ -1 & \text{with probability 1/2} \end{array} \right.$

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

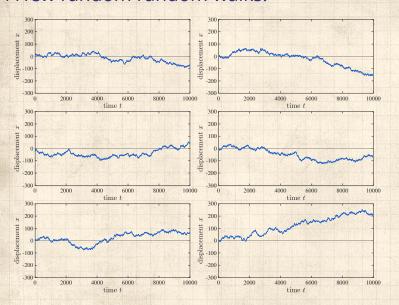
Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

A few random random walks:



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

Random walks:

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

- At any time step, we 'expect' our zombie texter to be back at their starting place.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our texting undead friend lurching back to x=0 must diminish, right?

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

Variances sum: ☑*

$$\begin{aligned} & \operatorname{Var}(x_t) = \operatorname{Var}\left(\sum_{i=1}^t \epsilon_i\right) \\ & = \sum_{i=1}^t \operatorname{Var}\left(\epsilon_i\right) = \sum_{i=1}^t 1 = t \end{aligned}$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

$$\sigma = t^{1/2}$$

A non-trivial scaling law arises out of additive aggregation or accumulation.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Great moments in Televised Random Walks:

http://www.youtube.com/watch?v=05gqx6eSyO0?rel=0 Plinko! Trom the Price is Right.

Also known as the bean machine , the quincunx (simulation) , and the Galton box.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

Random walk basics:

Counting random walks:

- & Each specific random walk of length t appears with a chance $1/2^t$.
- We'll be more interested in how many random walks end up at the same place.
- $lap{Rel}{l}$ Define N(i,j,t) as # distinct walks that start at x=i and end at x=j after t time steps.
- $lap{Random walk must displace by } + (j-i)$ after t steps.
- Insert question from assignment 3

$$N(i,j,t) = \binom{t}{(t+j-i)/2}$$

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

How does $P(x_t)$ behave for large t?

 \clubsuit Take time t = 2n to help ourselves.

 $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$

 $\Re x_{2n}$ is even so set $x_{2n} = 2k$.

 $lap{S}$ Using our expression N(i,j,t) with i=0, j=2k, and t=2n, we have

$$\Pr(x_{2n} \equiv 2k) \propto \binom{2n}{n+k}$$

For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\mathbf{Pr}(x_t \equiv x) \simeq \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

Insert question from assignment 3 2

The whole is different from the parts. #nutritious

See also: Stable Distributions

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

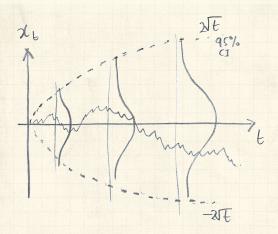
Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Universality is also not left-handed:



A This is Diffusion : the most essential kind of spreading (more later).

View as Random Additive Growth Mechanism.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

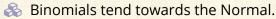
Death and Sports

Fractional **Brownian Motion**

So many things are connected:

Pascal's Triangle

Could have been the Pvramid of Pingala <a>C¹¹ or the Triangle of Khayyam, Jia Xian, Tartaglia, ...



Counting encoded in algebraic forms (and much more).

$$\mbox{\&} \ (h+t)^n = \sum_{k=0}^n \binom{n}{k} h^k t^{n-k} \ \mbox{where} \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $(h+t)^3 = hhh + hht + hth + thh + htt + tht + tth + ttt$

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports Fractional Brownian Motion

PoCS, Vol. 1 @pocsvox

¹Stigler's Law of Eponymy ✓ showing excellent form again.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

Random walks are even weirder than you might think...

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.
- & In fact: $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$
- Even crazier: The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I [5]

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Applied knot theory:

"Designing tie knots by random walks" Fink and Mao, Nature, 398, 31-32, 1999. [6]

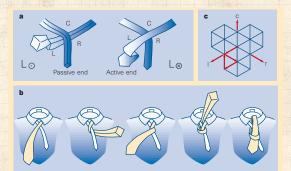


Figure 1 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. a, The two ways of beginning a knot, Lo and Lo. For knots beginning with Lo, the tie must begin inside-out. b, The four-in-hand, denoted by the sequence L. R. L. C. T. c, A knot may be represented by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the walk î fî ĉ.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

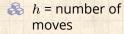
Death and Sports

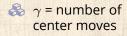
Fractional Brownian Motion

Applied knot theory:

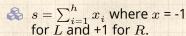
Table 1 Aesthetic tie knots							
h	γ	γ/h	K(h, γ)	S	b	Name	Sequence
3	1	0.33	1	0	0		$L_{\circ}R_{\otimes}C_{\circ}T$
4	1	0.25	1	-1	1	Four-in-hand	$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
5	2	0.40	2	-1	0	Pratt knot	L₀C⊗R₀L⊗C₀T
6	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
7	2	0.29	6	-1	1		$L_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
7	3	0.43	4	0	1		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
8	2	0.25	8	0	2		$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
8	3	0.38	12	-1	0	Windsor	$L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
9	3	0.33	24	0	0		$L_{\circ}R_{\otimes}C_{\circ}L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
9	4	0.44	8	-1	2		LoCoRoCoLoCoRoLoCo

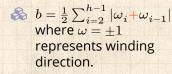
Knots are characterized by half-winding number h, centre number γ , centre fraction γ/h , knots per class $K(h, \gamma)$, symmetry s, balance b, name and sequence.





$$\begin{array}{c} \clubsuit \quad K(h,\gamma) = \\ 2^{\gamma-1} {h-\gamma-2 \choose \gamma-1} \end{array}$$





PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Random walks #crazytownbananapants

The problem of first return:

What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?

Will our zombie texter always return to the origin?

What about higher dimensions?

Reasons for caring:

- 1. We will find a power-law size distribution with an interesting exponent.
- 2. Some physical structures may result from random walks.
- 3. We'll start to see how different scalings relate to each other.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

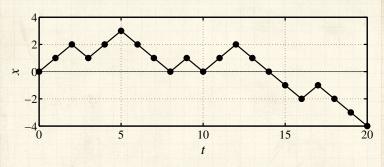
The First Return Problem

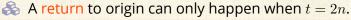
Random River Networks

Scaling Relations

Death and Sports Fractional Brownian Motion

For random walks in 1-d:





Arr In example above, returns occur at t=8, 10, and 14.

 \Leftrightarrow Call $P_{fr(2n)}$ the probability of first return at t=2n.

Arr Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).

ldea: Transform first return problem into an easier return problem.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

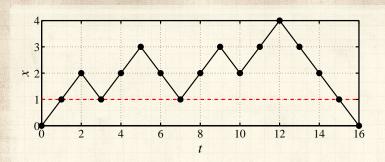
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



- $\ensuremath{\&}$ Can assume zombie texter first lurches to x=1.
- Observe walk first returning at t=16 stays at or above x=1 for $1 \le t \le 15$ (dashed red line).
- Now want walks that can return many times to x = 1.
- $\begin{array}{l} & P_{\rm fr}(2n) = \\ & 2 \cdot \frac{1}{2} Pr(x_t \geq 1, 1 \leq t \leq 2n-1, \text{ and } x_1 = x_{2n-1} = 1) \end{array}$
- \clubsuit The 2 accounts for texters that first lurch to x = -1.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

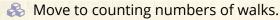
Scaling Relations

Death and Sports

Fractional Brownian Motion

Counting first returns:

Approach:



Return to probability at end.

 \mathbb{A} Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.

 Consider all paths starting at x = 1 and ending at x = 1 after t = 2n - 2 steps.

🚵 Idea: If we can compute the number of walks that hit x = 0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.

Call walks that drop below x = 1 excluded walks.

We'll use a method of images to identify these excluded walks.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

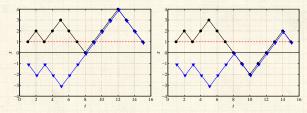
The First Return Problem

Random River Networks

Scaling Relations

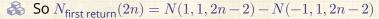
Death and Sports Fractional Brownian Motion

Examples of excluded walks:



Key observation for excluded walks:

- For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- \Re Matching path first mirrors and then tracks after first reaching x=0.
- # of t-step paths starting and ending at x=1 and hitting x=0 at least once = # of t-step paths starting at x=-1 and ending at x=1 = N(-1,1,t)



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Probability of first return:

Insert question from assignment 3 2:

$$N_{\rm fr}(2n) \sim \frac{2^{2\,n-3/2}}{\sqrt{2\pi}n^{3/2}}.$$

Normalized number of paths gives probability.

 \clubsuit Total number of possible paths = 2^{2n} .

$$\begin{split} P_{\mathrm{fr}}(2n) &= \frac{1}{2^{2n}} N_{\mathrm{fr}}(2n) \\ &\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}} \\ &= \frac{1}{\sqrt{2\pi}} (2n)^{-3/2} \propto t^{-3/2}. \end{split}$$

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

- \clubsuit We have $P(t) \propto t^{-3/2}$, $\gamma = 3/2$.
- Same scaling holds for continuous space/time walks.
- P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. #totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions 2:

- A Walker in d=2 dimensions must also return
- Walker may not return in $d \ge 3$ dimensions
- 🚳 Associated genius: George Pólya 🗹

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Random walks

On finite spaces:

- 🚵 In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency ∝ node degree #groovy
- Equal probability still present: walkers traverse edges with equal frequency. #totallygroovy

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

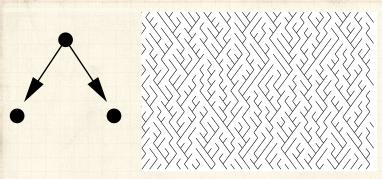
The First Return Problem

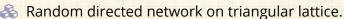
Random River Networks

Scaling Relations

Death and Sports Fractional Brownian Motion

Scheidegger Networks [17, 4]





Toy model of real networks.

'Flow' is southeast or southwest with equal probability.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports Fractional

Brownian Motion

Scheidegger networks

Creates basins with random walk boundaries.

Observe that subtracting one random walk from another gives random walk with increments:

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- \clubsuit Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$
- \clubsuit For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

 \red For a basin of length ℓ , width $\propto \ell^{1/2}$

 \clubsuit Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$

A Invert: $\ell \propto a^{2/3}$

 $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$

 \Re **Pr**(basin area = a)da = **Pr**(basin length $= \ell$)d ℓ $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}da$ $= a^{-4/3} da$ $= a^{-\tau} da$

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

- Both basin area and length obey power law distributions
- Observed for real river networks
- $\ref{Reportedly: } 1.3 < au < 1.5 ext{ and } 1.5 < \gamma < 2$

Generalize relationship between area and length:

A Hack's law [10]:

 $\ell \propto a^h$.

- For real, large networks [13] $h \simeq 0.5$ (isometric scaling)
- Smaller basins possibly h > 1/2 (allometric scaling).
- & Models exist with interesting values of h.
- \red{length} Plan: Redo calc with γ , τ , and h.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

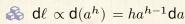
Random River Networks

Scaling Relations

Death and Sports
Fractional

Brownian Motion

$$\ell \propto a^h, \ P(a) \propto a^{-\tau}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$



 \clubsuit Find τ in terms of γ and h.

 \mathbf{R} **Pr**(basin area = a)da = **Pr**(basin length $= \ell$)d ℓ $\propto \ell^{-\gamma} d\ell$ $\propto (a^h)^{-\gamma}a^{h-1}\mathsf{d}a$ $=a^{-(1+h(\gamma-1))}da$

$$\tau = 1 + h(\gamma - 1)$$

Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports Fractional Brownian Motion

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: [3]

$$\tau = 2 - h$$

and

$$\gamma = 1/h$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize Universality C class with independent exponents.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports Fractional

Brownian Motion

Death ...

Failure:

- & A very simple model of failure/death
- x_t = entity's 'health' at time t
- \clubsuit Start with $x_0 > 0$.
- \clubsuit Entity fails when x hits 0.

"Explaining mortality rate plateaus" ✓ Weitz and Fraser, Proc. Natl. Acad. Sci., **98**, 15383–15386, 2001. [18]

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

... and the NBA:

Basketball and other sports [2]:

A Three arcsine laws (Lévy [12]) for continuous-time random walk last time T:

$$\frac{1}{\pi} \frac{1}{\sqrt{t(T-t)}}.$$

The arcsine distribution applies for:

(1) fraction of time positive, (2) the last time the walk changes sign,

and (3) the time the maximum is achieved.

 \aleph Well approximated by basketball score lines [8, 2].

Australian Rules Football has some differences [11].

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**

More than randomness

Can generalize to Fractional Random Walks [15, 16, 14]

🚓 Fractional Brownian Motion 🗹, Lévy flights 🖸

See Montroll and Shlesinger for example: [14] "On 1/f noise and other distributions with long tails."

Proc. Natl. Acad. Sci., 1982.

 \triangle In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\alpha}$

 $\alpha = 1/2$ — diffusive $\alpha > 1/2$ — superdiffusive

 $\alpha < 1/2$ — subdiffusive

Extensive memory of path now matters...

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

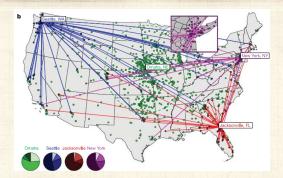
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional **Brownian Motion**



First big studies of movement and interactions of people.

Brockmann et al. [1] "Where's George" study.

Beyond Lévy: Superdiffusive in space but with long waiting times.

Tracking movement via cell phones [9] and Twitter [7].

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

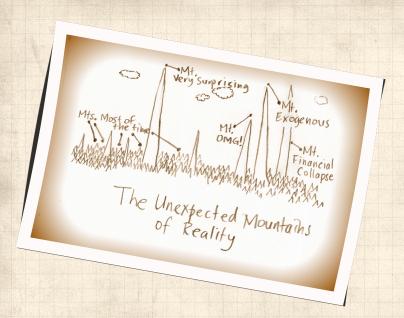
Scaling Relations

Death and Sports

Fractional Brownian Motion

References

2 0 0 40 of 48



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

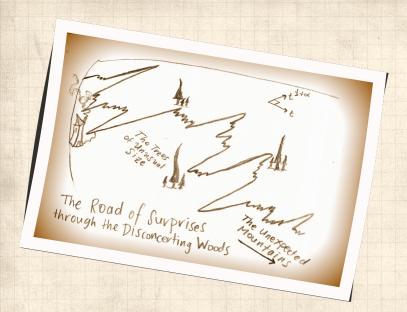
Scaling Relations

Death and Sports

Fractional Brownian Motion

References

9 a ○ 41 of 48



PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References I

[1] D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel.

Nature, pages 462–465, 2006. pdf

[2] A. Clauset, M. Kogan, and S. Redner. Safe leads and lead changes in competitive team sports. Phys. Rev. E, 91:062815, 2015. pdf

[3] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865–4877, 1999. pdf

[4] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.

Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
pdf

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References II

[7]

[5] W. Feller.

An Introduction to Probability Theory and Its

Applications, volume I.

John Wiley & Sons, New York, third edition, 1968.

[6] T. M. Fink and Y. Mao. Designing tie knots by random walks. Nature, 398:31–32, 1999. pdf

Danforth.
Happiness and the patterns of life: A study of geolocated Tweets.
Nature Scientific Reports, 3:2625, 2013. pdf

M. R. Frank, L. Mitchell, P. S. Dodds, and C. M.

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References III

[8] A. Gabel and S. Redner. Random walk picture of basketball scoring. Journal of Quantitative Analysis in Sports, 8:1–20, 2012.

[9] M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns.

Nature, 453:779-782, 2008. pdf

[10] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf ☑

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References IV

[11] D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth, and P. S. Dodds.

The game story space of professional sports: Australian Rules Football.

Physical Review E, 93, 2016.

Available online at

http://arxiv.org/abs/1507.03886. pdf

[12] P. Lévy and M. Loeve.

Processus stochastiques et mouvement brownien.

Gauthier-Villars Paris, 1965.

[13] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape scale.

Science, 255:826-30, 1992. pdf

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References V

[14] E. W. Montroll and M. F. Shlesinger.

On the wonderful world of random walks,
volume XI of Studies in statistical mechanics,
chapter 1, pages 1–121.

New-Holland, New York, 1984.

[15] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long tails.

Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf

[16] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983. PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References VI

[17] A. E. Scheidegger.

The algebra of stream-order numbers.

United States Geological Survey Professional
Paper, 525-B:B187−B189, 1967. pdf

✓

[18] J. S. Weitz and H. B. Fraser.
Explaining mortality rate plateaus.

Proc. Natl. Acad. Sci., 98:15383–15386, 2001.
pdf

PoCS, Vol. 1 @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

