Properties of Complex Networks

Last updated: 2020/09/12, 13:39:25 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios

Network distances

Interconnectedness

Nutshell

References

A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

← Typical hairball

 \mathbb{N} number of nodes N = 500

ightharpoonup number of edges m = 1000

average degree $\langle k \rangle = 4$

& And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] — Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

Some key aspects of real complex networks:

& degree distribution*

assortativity

A homophily

PoCS, Vol. 1

Properties of

Properties of

Nutshell

.... |S

少 Q (~ 1 of 39

PoCS, Vol. 1

Properties of

@pocsvox

Complex

Networks

Complex Networks

Branching ratios Network distance

Nutshell

UM | 8

•9 q (→ 2 of 39

PoCS, Vol. 1

Properties of

Properties o

Complex

Nutshell

References

Vetworks

@pocsvox

Complex

Networks

References

References

@pocsvox

Networks

clustering

motifs

modularity

concurrency

A hierarchical scaling

network distances

🚓 centrality

🙈 efficiency

interconnectedness

robustness

Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...

Properties

1. degree distribution P_{ι}

 $\Re P_k$ is the probability that a randomly selected node has degree k.

& ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 2

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

hubs may facilitate or impede contagion.

Properties

Note:

& Erdős-Rényi random networks are a mathematical

Scale-free' networks are growing networks that form according to a plausible mechanism.

Randomness is out there, just not to the degree of a completely random network.

& k = node degree = number of connections.

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

.... |S •9 of 39

PoCS, Vol. 1

Properties of

Properties of

Complex Networks

Nutshell

References

.... |S

少 < ℃ 6 of 39

PoCS, Vol. 1

Properties of

Complex

Networks

Complex

Degree distribution

Branching ratio

Nutshell

References

@pocsvox

Networks

PoCS, Vol. 1 @pocsvox Properties of Complex

Networks Properties of

Complex Networks Degree distributions Assortativity Clustering

Nutshell References

•9 q (~ 10 of 39

2. Assortativity/3. Homophily:

Properties

& e.g., degree is standard property for sorting: measure degree-degree correlations.

Assortative network: [5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.

Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

Properties of

PoCS, Vol. 1 Networks

Properties of Complex Networks Assortativity

Motifs Branching ratios Network distance

Nutshell References

UM O

PoCS, Vol. 1

Properties of

Complex

Networks

Complex

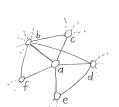
Clustering Motifs Concurrency

Degree distributio

•2 • 14 of 39

Local socialness:

4. Clustering:



Example network:

Calculation of C_1 :

Your friends tend to know each other.

Two measures (explained) on following slides):

1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

2. Newman [6]

connected.

Fraction of pairs of

connected is

neighbors who are

 $3 \times \text{\#triangles}$

 \mathcal{L}_1 is the average fraction of

pairs of neighbors who are

ჟqॡ 16 of 39

PoCS, Vol. 1 Properties of Complex Networks

Properties of Complex Degree distri

Clustering $\frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$

where k_i is node i's degree, and \mathcal{N}_i is the set of i's neighbors.

Averaging over all nodes, we

 $C_1 = \frac{1}{n} \sum_{i=1}^n \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} =$

References

少 a (~ 17 of 39

W | 8 •9 < 0 € 5 of 39

Triples and triangles

Example network:

Triangles:

Triples:

Clustering:

networks:

8

8

Properties

connected nodes.

 \mathfrak{S} In general, $C_1 \neq C_2$.

- \aleph Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- & Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

Sneaky counting for undirected, unweighted

 \mathbb{A} In general, a path of n edges between nodes i_1 and i_n travelling through nodes i_2 , i_3 , ... i_{n-1} exists

 $\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$

#triangles $=\frac{1}{6}$ Tr A^3

For sparse networks, C_1 tends to discount highly

 \mathcal{E}_2 is a useful and often preferred variant

 \mathcal{E}_1 is a global average of a local ratio.

& C_2 is a ratio of two global quantities.

 $\iff a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

 \Leftrightarrow If the path $i-j-\ell$ exists then $a_{i,j}a_{j\ell}=1$.

& We want $i \neq \ell$ for good triples.

Properties

PoCS, Vol. 1

Properties of

Properties of

Complex Networks

Clustering Motifs

Nutshell

UM O

•9 q (→ 18 of 39

PoCS, Vol. 1

Properties of

Complex

Networks

Complex Networks

Clustering Motifs

Nutshell

References

References

@pocsvox

Networks

5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [7]

7. concurrency:

Properties

- transmission of a contagious element only occurs during contact
- arather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

PoCS, Vol. 1

Properties of

Properties of

@pocsvox

Networks

Clustering

Concurrency Branching ratio Network distant

Nutshell

References

◆) < (~ 22 of 39

PoCS, Vol. 1 Properties of Complex

UM OS

PoCS, Vol. 1

Properties of

Properties of

Complex Networks

Nutshell

References

@pocsvox

Networks

Networks

Complex Degree distribution

Nutshell References

UM OS

◆) q (→ 23 of 39

PoCS, Vol. 1

Properties of

@pocsvox

Complex

Networks

Degree distribi

Nutshell

References

Properties

Properties

j.)

9. network distances:

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: $R_n = N_{\omega}/N_{\omega+1}$
 - ho Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$
 - $\widehat{\mathbf{r}}$ Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

Degree distribut

Branching ratios

PoCS, Vol. 1

Good algorithms exist for calculation.

(a) shortest path length d_{ij} :

Average shortest path length in whole network.

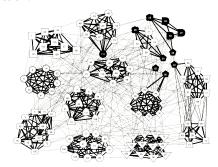
 \Re Fewest number of steps between nodes i and j.

 \triangle (Also called the chemical distance between i and

- Weighted links can be accommodated.

Properties

6. modularity and structure/community detection:



Clauset et al., 2006 [2]: NCAA football

UM | 8

•9 a (→ 19 of 39

PoCS, Vol. 1

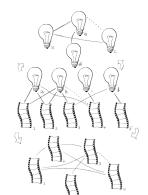
Properties of Complex Networks

Properties of Complex Networks A problem Degree distribu Clustering Motifs

Branching ratios Network distances

Nutshell References

Bipartite/multipartite affiliation structures:



Many real-world networks have an underlying multi-partite structure.

- Stories-tropes.
- Boards and directors.
- Films-actorsdirectors.
- Classes-teachersstudents.
- Upstairsdownstairs.
- Unipartite networks may be induced or co-exist.

WW |

•9 q (→ 20 of 39

III | 少 Q (№ 24 of 39 UNN O

•9 q (~ 30 of 39

PoCS, Vol. 1 Properties of Complex Networks

Complex

Motifs

Nutshell

References

W | |

•9 a (№ 28 of 39

@pocsvox Properties of

Complex Networks

Complex Degree distri

Motifs Concurrency

Network distances

Nutshell References

Properties

9. network distances:

 \clubsuit network diameter d_{max} : Maximum shortest path length between any two nodes.

 \Leftrightarrow closeness $d_{\mathsf{cl}} = \left[\sum_{i,j} d_{i,j}^{-1} / \binom{n}{2}\right]^{-1}$: Average 'distance' between any two nodes.

Closeness handles disconnected networks

 $d_{cl} = \infty$ only when all nodes are isolated.

& Closeness perhaps compresses too much into one number

Properties

10. centrality:

Many such measures of a node's 'importance.'

 \Leftrightarrow ex 1: Degree centrality: k_i .

& ex 2: Node i's betweenness

= fraction of shortest paths that pass through i.

 \Leftrightarrow ex 3: Edge ℓ 's betweenness

= fraction of shortest paths that travel along ℓ .

& ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [3])

Properties of Complex

Properties of Complex Networks

Motifs Concurrency Branching ratios Network distance

Nutshell

III |

•9 q (~ 34 of 39

Nutshell:

PoCS, Vol. 1

Properties of

Properties of

Complex Networks

Motifs Concurrency

Nutshell

.... |S

•೧ q (~ 31 of 39

PoCS, Vol. 1

Properties of

Network distances

References

Networks

References

Network distances

@pocsvox

Networks Overview Key Points:

The field of complex networks came into existence in the late 1990s.

& Explosion of papers and interest since 1998/99.

Hardened up much thinking about complex systems.

Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.

Three main (blurred) categories:

1. Physical (e.g., river networks),

2. Interactional (e.g., social networks),

3. Abstract (e.g., thesauri).

References II

References III

PoCS, Vol. 1

Properties of

Properties of

Degree distribution

Complex Networks

Nutshell

References

UM OS

◆) < (~ 35 of 39

PoCS, Vol. 1

Properties of

Complex

Networks

Complex

Clustering

Nutshell

References

Degree distributio

@pocsvox

Networks

[4] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165–95, 1996. pdf ✓

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167-256, 2003. pdf

[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf

少 q (№ 38 of 39

PoCS, Vol. 1

Properties of

Properties of

A problem Degree distributi

Complex Networks

Motifs

Nutshell

References

Networks

PoCS, Vol. 1 Properties of Complex Networks

Networks Degree distribut Branching ratios Network distance

Complex

Nutshell References

UM O •9 q (~ 39 of 39

◆) q (→ 37 of 39

Properties of Complex Networks

WW |

[8] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks.

Nature, 393:440-442, 1998. pdf

UM OS

PoCS, Vol. 1

Nutshell

References

•9 q (→ 37 of 39

Properties

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.

UM | 8

◆) q (→ 32 of 39

PoCS, Vol. 1

Networks

References

[2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf ☑

scale-free-networks

References I

networks.

[3] I. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley,

Nature, 464:1025–1028, 2010. pdf

Catastrophic cascade of failures in interdependent