Lognormals and friends

Last updated: 2020/09/12, 14:01:53 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

(in 18

200 1 of 26

These slides are brought to you by:

Sealie & Lambie Productions

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

200 3 of 26

Outline

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

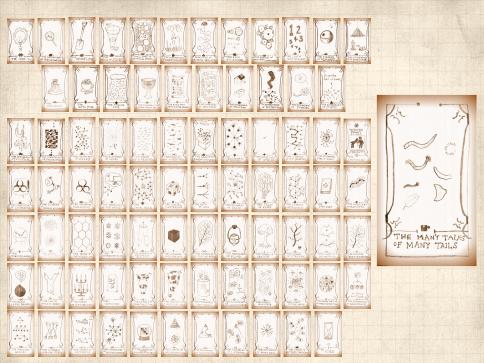
Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

200 4 of 26



Alternative distributions

There are other 'heavy-tailed' distributions:1. The Log-normal distribution 了

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

CCDF = stretched exponential C.
Also: Gamma distribution C, Erlang distribution C, and more.

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

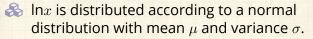
Random Growth with Variable Lifespan

References

lognormals

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$



Appears in economics and biology where growth increments are distributed normally.

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

lognormals

PoCS, Vol. 1 @pocsvox

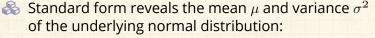
Lognormals and friends

Lognormals

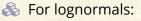
Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References



$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$



 $\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$

 $\sigma_{\rm lognormal} = (e^{\sigma^2}-1)e^{2\mu+\sigma^2}, \qquad {\rm mode}_{\rm lognormal} = e^{\mu-\sigma^2}.$

All moments of lognormals are finite.

Derivation from a normal distribution Take *Y* as distributed normally:

2

$$P(y)dy = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

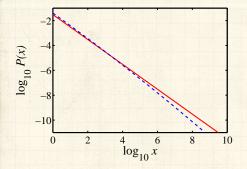
Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Set $Y = \ln X$: Transform according to P(x)dx = P(y)dy: $\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$ $\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$

Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude! PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

So For lognormal (blue), $\mu = 0$ and $\sigma = 10$. For power law (red), $\gamma = 1$ and c = 0.03.

200 11 of 26

Confusion

What's happening:

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi}\sigma - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi}\sigma - \frac{\mu^2}{2\sigma^2}.$$

If the first term is relatively small,

$$\boxed{\ln P(x) \sim -\left(1 - \frac{\mu}{\sigma^2}\right)\ln x + \text{const.}} \Rrightarrow \boxed{\gamma = 1 - \frac{\mu}{\sigma^2}}$$

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth wit Variable Lifespan

References

う < で 12 of 26

Confusion

If \$\mu < 0\$, \$\gamma > 1\$ which is totally cool.
If \$\mu > 0\$, \$\gamma < 1\$, not so much.
If \$\sigma^2 > 1\$ and \$\mu\$,

 $\ln P(x) \sim -\ln x + \text{const.}$

Solution Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$:

 $-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e \simeq 0.05(\sigma^2 - \mu)$$

♣ ⇒ If you find a -1 exponent, you may have a lognormal distribution... PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Generating lognormals:

3

Random multiplicative growth:

 $x_{n+1} = rx_n$

where r > 0 is a random growth variable (Shrinkage is allowed) (Shrinkage, growth is by addition:

 $\ln x_{n+1} = \ln r + \ln x_n$

 PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability

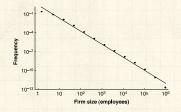
Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

الله الح الح الح الح الح الم

Lognormals or power laws?

- Gibrat ^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell^[1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).



 $\begin{array}{l} {\rm Freq} \propto ({\rm size})^{-\gamma} \\ \gamma \simeq 2 \end{array}$

One piece in Gibrat's model seems okay empirically: Growth rate *r* appears to be independent of firm size.^[1]. PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

UVN OO

An explanation

Axtel cites Malcai et al.'s (1999) argument ^[5] for why power laws appear with exponent $\gamma \simeq 2$ The set up: N entities with size $x_i(t)$ Generally:

 $x_i(t+1) = r x_i(t)$

where r is drawn from some happy distribution
Same as for lognormal but one extra piece.
Each x_i cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\left< x_i \right>)$$

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

Some math later...

3

R

2

Insert question from assignment 7 🖸

Find
$$P(x) \sim x^{-\gamma}$$

 \circledast where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
 and $\gamma > 2$ $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

 \clubsuit Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

200 18 of 26

The second tweak

Ages of firms/people/... may not be the same

- \clubsuit Allow the number of updates for each size \boldsymbol{x}_i to vary
 - S Example: $P(t)dt = ae^{-at}dt$ where t = age.
- Reack to no bottom limit: each x_i follows a lognormal

🚳 Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) \mathrm{d}t$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$) Now averaging different lognormal distributions. PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Averaging lognormals

2

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Insert fabulous calculation (team is spared).
Some enjoyable suffering leads to:

 $P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln \frac{x}{m})^2}}$

 $P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln\frac{x}{m})^2}{2t}\right) dt$

UVN S

nac 21 of 26

The second tweak

2

a.

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln \frac{x}{m})^2}}$$

Solution Depends on sign of $\ln \frac{x}{m}$, i.e., whether $\frac{x}{m} > 1$ or $\frac{x}{m} < 1$.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } \frac{x}{m} < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } \frac{x}{m} > 1 \end{cases}$$

Break' in scaling (not uncommon)
 Double-Pareto distribution
 First noticed by Montroll and Shlesinger ^[7, 8]
 Later: Huberman and Adamic ^[3, 4]: Number of pages per website

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

na @ 22 of 26

Summary of these exciting developments:

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

- lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- leads to a power law tail eads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- 🗞 Take-home message: Be careful out there...

References I

[1] R. Axtell. Zipf distribution of U.S. firm sizes. Science, 293(5536):1818–1820, 2001. pdf 7

[2] R. Gibrat. Les inégalités économiques. Librairie du Recueil Sirey, Paris, France, 1931.

[3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.

[4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. <u>Quarterly Journal of Economic Commerce</u>, 1:5–12, 2000. PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

na a 24 of 26

References II

[5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. Phys. Rev. E, 60(2):1299–1303, 1999. pdf

[6] M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1:226–251, 2003. pdf

[7] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

na @ 25 of 26

References III

PoCS, Vol. 1 @pocsvox

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.

