Biological Contagion

Last updated: 2020/10/05, 16:24:40 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models

Background

Toy metapopulation

These slides are brought to you by:

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background More models

Toy metapopulation Model output

Next

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett the _cat

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background
Prediction
More models
Toy metapopulation

Model output
Nutshell
Other kinds of pred

Next

References

90 € 3 of 97

Outline

Introduction

Simple disease spreading models

Background Prediction More models Toy metapopulation models Model output Nutshell Other kinds of prediction

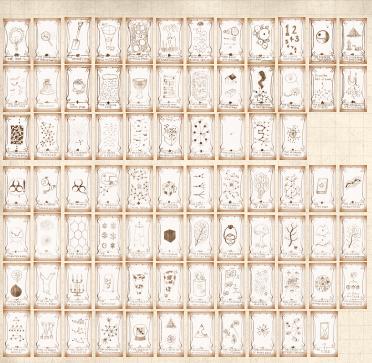
References

Next

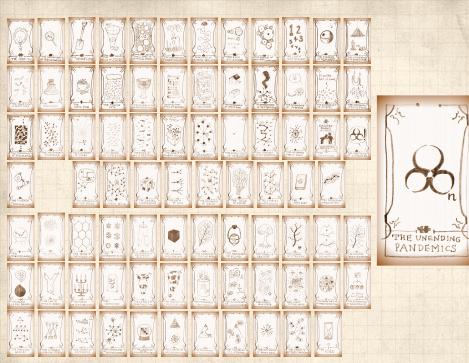
PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction

Simple disease spreading models


Background

Toy metapopulation



An awful recording: Wikipedia's list of epidemics ☑ from 430 BC on.

							gged in Talk Contributions Log
0 W 3	Article Talk				Read Edit Viewhis		ggio in liaix Communicins Lag
WIKIPEDIA The Free Encyclopedia		epidemics					
Main page Contents Featured content Current events Random article	From Wileydea, the five encyclopeda. This article is a list of epidemics of infectious disease. Widespread and chronic complaints such as heart disease and allergy are not included if they are not thought to be infectious. This list is incomplete; you can help by expanding it.						
Donate to Wikipedia Wikipedia store	Death toll (estimate)	Location 0	Date +	Comment +	Disease +	Reference +	00
Interaction Help About Wikipedia Community portal	ca. 75,000 - 100,000	Greece	429-426 BC	Known as Plague of Athens, because it was primarily in Athens.	unknown, similar to typhoid		9
Recent changes Contact page Tools What links here Related changes Upload file Special pages Permanent link Page information Willodas item	ca. 30% of population	Europe, Western Asia, Northern Africa	165-180	Known as Antonine Plague, due to the name of the Roman emperor in power at the time.	unknown, symptoms similar to smallpox		Plague panel with the 51 triumph of death: 1907–95, Deutsches Historisches Museum Berlin
		Europe	250-266 AD	Know as the Plague of Cyprian named after St. Cyprian Bishop of Carthage.	unknown, possibly smallpox		
Oile this page Print/lexport Create a book Download as PDF Printable version	ca. 40% of population	Europe	541-542	Known as Plague of Justinian, due to the name of the Byzantine emperor in power at the time.	Bubonic plague	01	An artistic portrayal of cholers which was episteric in the 19th century
Languages Q S _{ep} ul Doutsch Simple English PEdit Irins	30% to 70% of population	Europe	1346- 1350	Known as "Black Death" or Second plague pandemic, first return of the plague to Europe after the Justinianic plague of the 6th century.	plague	(2)	
	5-15 million (80% of population)	Mexico	1545-1548	Cocoliztii	viral hemorrhagic fever	आनाम	
	2 - 2.5 million (50% of population)	Mexico	1576	Cocoliztli	viral hemorrhagic fever	(6)(7)(4)	
			1592-			ron	

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background More models Toy metapopulation

Model output Nutshell

Next

Contagion

A confusion of contagions:

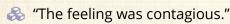
- Is Harry Potter some kind of virus?
- What about the Da Vinci Code?
- Did Sudoku spread like a disease?
- & Language? The alphabet? [10]
- Religion?
- Democracy...?

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction

Simple disease spreading models Background

Toy metapopulation



Contagion

Naturomorphisms

"The news spread like wildfire."

"Freedom is the most contagious virus known to man."

—Hubert H. Humphrey, Johnson's vice president

"Nothing is so contagious as enthusiasm."

—Samuel Taylor Coleridge

Optimism according to Ambrose Bierce:

The doctrine that everything is beautiful, including what is ugly, everything good, especially the bad, and everything right that is wrong. ... It is hereditary, but fortunately not contagious.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction Simple disease

Background
Prediction
More models
Toy metapopulation
models
Model output

spreading models

Social contagion

Eric Hoffer, 1902-1983

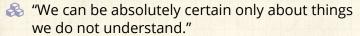
There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation, there is the overpowering feeling that in this country we have come nearer the brotherhood of man than ever before.

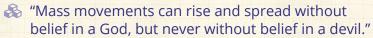
Hoffer was an interesting fellow...

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction

Simple disease spreading models Background





The spread of fanaticism

Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951) [12]

Aphorisms-aplenty:

Where freedom is real, equality is the passion of the masses. Where equality is real, freedom is the passion of a small minority." PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

Prediction
More models
Toy metapopulation
models
Model output

spreading models

Imitation

"When people are free to do as they please, they usually imitate each other."

—Eric Hoffer
"The Passionate State of Mind" [13]

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models
Background

Prediction

More models

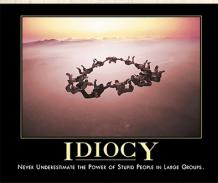
Toy metapopulation models

Model output

Nutshell Other kinds of predic

Next

References


despair.com

The collective...

despair.com

www.despair.com

"Never Underestimate the Power of Stupid People in Large Groups."

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation Model output

Examples of non-disease spreading:

Interesting infections:

Spreading of certain buildings in the US:

http://www.youtube.com/watch?v=EGzHBtoVvpc?rel=0

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

Toy metapopulation

Marbleization of the US:

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

More models Toy metapopulation Model output

Nutshell Next

The most terrifying contagious outbreak?

0.0000200% 0.0000150% 0.0000100% 0.0000050% 0.0000000% 1800

1820

1840

1860

1880

1900

(click on line/label for focus)

1920

1940

1960

1980

2000

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Toy metapopulation

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell

Other kinds of prediction Next

References

99 € 18 of 97

Contagion

PoCS, Vol. 1 @pocsvox Biological Contagion

Definitions

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'together with' + tangere 'to touch."
- Contagion has unpleasant overtones...
- Just Spreading might be a more neutral word
- But contagion is kind of exciting...

Introduction Simple disease

Background More models Toy metapopulation

spreading models

Contagions

Two main classes of contagion

- 1. Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, zombification, ...
- 2. Social contagion: fashion, word usage, rumors, uprisings, religion, stories about zombies, ...

PoCS, Vol. 1 @pocsvox Biological

Contagion

Introduction

Simple disease spreading models Background

Toy metapopulation

Community—S2E6: Epidemiology

PoCS, Vol. 1 @pocsvox

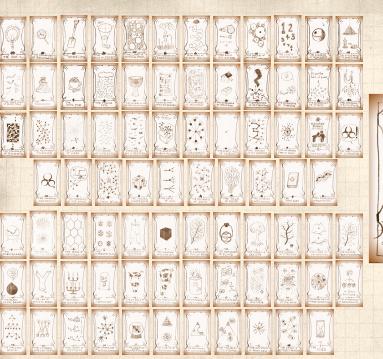
Biological Contagion

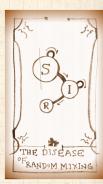
Introduction

Simple disease spreading models

Background

More models Toy metapopulation


Model output Nutshell


Next

Mathematical Epidemiology

The standard SIR model [18]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$$\Re S(t) + I(t) + R(t) = 1$$

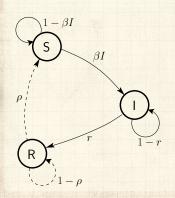
- Presumes random interactions (mass-action) principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

PoCS, Vol. 1 @pocsvox Biological

Contagion

Simple disease spreading models

Background



Mathematical Epidemiology

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

Toy metapopulation

Mathematical Epidemiology

Original models attributed to

4 1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick [14, 16, 15]

Coupled differential equations with a mass-action principle

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models

Background

Toy metapopulation

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta \underline{IS} + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta \underline{IS} - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , r, and ρ are now rates.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation

Model output

Reproduction Number R_0

Reproduction Number R_0

- R_0 = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.
- Exponential take off: R_0^n where n is the number of generations.
- \clubsuit Fantastically awful notation convention: R_0 and the R in SIR.

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models

Background

Reproduction Number R_0

PoCS, Vol. 1 @pocsvox Biological Contagion

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- \clubsuit At time t=0, single infective random bumps into a Susceptible
- \clubsuit Probability of transmission = β
- At time t = 1, single Infective remains infected with probability 1-r
- At time t = k, single Infective remains infected with probability $(1-r)^k$

Simple disease spreading models

Background

Reproduction Number R_0

Discrete version:

Expected number infected by original infective:

$$\begin{split} R_0 &= \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots \\ &= \beta \left(1 + (1-r) + (1-r)^2 + (1-r)^3 + \dots \right) \end{split}$$

$$=\beta \frac{1}{1-(1-r)} = \beta/r$$

For $S(0) \simeq 1$ initial susceptibles (1 - S(0) = R(0)) = fraction initially immune):

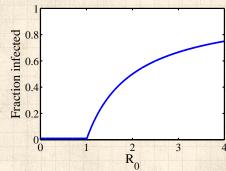
$$R_0 = S(0)\beta/r$$

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models

Background


Toy metapopulation

Example of epidemic threshold:

Continuous phase transition.

Fine idea from a simple model.

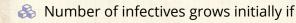
PoCS, Vol. 1 @pocsvox

Biological Contagion

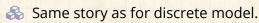
Introduction

Simple disease spreading models

Background


For the continuous version

Second equation:


$$\frac{\mathsf{d}}{\mathsf{d}t}I = \beta SI - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = (\beta S - r)I$$

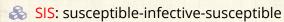
$$\beta S(0) - r > 0 \Rightarrow \beta S(0) > r \Rightarrow \frac{\beta S(0)}{r} > 1$$

where $S(0) \simeq 1$.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models


Background

Many variants of the SIR model:

SIRS: susceptible-infective-recovered-susceptible

compartment models (age or gender partitions)

more categories such as 'exposed' (SEIRS)

recruitment (migration, birth)

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models

Background

Watch someone else pretend to save the world:

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction

More models

Toy metapopulation

Model output Nutshell

Other kinds of predictio Next

Save the world yourself:

PoCS, Vol. 1 @pocsvox

Biological Contagion

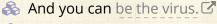
Introduction

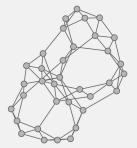
Simple disease

spreading models Background

More models Toy metapopulation

Model output


References



Also contagious?: Cooperative games ...

Neural reboot—Save another pretend world with

Lesson 4: Quarantine

Vaccines take time to 'kick in' so they're ineffective if an infection has already begun to spread.

Start >

VAX!

Material

Fortill and the

...

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction More models Toy metapopulation models

Model output
Nutshell
Other kinds of predictio

Other kinds of predictio Next

Pandemic severity index (PSI)

Classification during/post pandemic:

Category based.

1-5 scale.

Modeled on the Saffir-Simpson hurricane scale .

PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease spreading models Background

Prediction

Toy metapopulation

For novel diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number R_0 ?

R_0 approximately same for all of the following:

- ♣ 1918-19 "Spanish Flu" ~ 75,000,000 world-wide, 500,000 deaths in US.
- 1957-58 "Asian Flu" ~ 2,000,000 world-wide, 70,000 deaths in US.
- & 1968-69 "Hong Kong Flu" \sim 1,000,000 world-wide, 34,000 deaths in US.
- 2003 "SARS Epidemic" \sim 800 deaths world-wide.

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models Background

Prediction

Toy metapopulation

Size distributions

Size distributions are important elsewhere:

- 🙈 earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- 🙈 wealth distributions
- 🚓 'popularity' (books, music, websites, ideas)
- Epidemics?

Power law distributions are common but not obligatory...

Really, what about epidemics?

- Simply hasn't attracted much attention.
- Data not as clean as for other phenomena.

PoCS, Vol. 1 @pocsvox Biological

Contagion

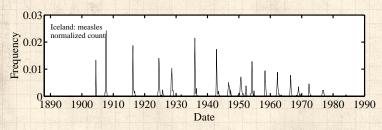
Introduction

Simple disease spreading models Background

Prediction More models

models
Model output

Other kinds of prediction



Feeling III in Iceland

Caseload recorded monthly for range of diseases in Iceland, 1888-1990

Treat outbreaks separated in time as 'novel' diseases.

PoCS, Vol. 1 @pocsvox

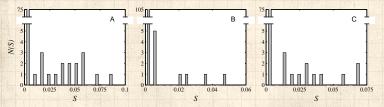
Biological Contagion

Introduction

Simple disease spreading models

Background Prediction

Toy metapopulation



Really not so good at all in Iceland

Epidemic size distributions N(S) for Measles, Rubella, and Whooping Cough.

Spike near S=0, relatively flat otherwise.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

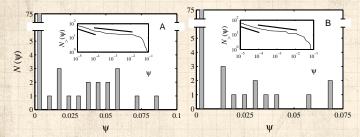
Background Prediction

More model

Toy metapopulation models

Model output

Other kinds of pred


Next

Measles & Pertussis

Insert plots:

Complementary cumulative frequency distributions:

$$\mathsf{N}(\Psi'>\Psi)\propto \Psi^{-\gamma+1}$$

Limited scaling with a possible break.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease

spreading models

Prediction

More mode

Toy metapopulation models

Model output

Other kinds of prediction

Power law distributions

Measured values of γ :

 \clubsuit measles: 1.40 (low Ψ) and 1.13 (high Ψ)

 \clubsuit pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)

 \Longrightarrow Expect $2 \le \gamma < 3$ (finite mean, infinite variance)

 \clubsuit When $\gamma < 1$, can't normalize

Distribution is quite flat.

PoCS, Vol. 1 @pocsvox Biological Contagion

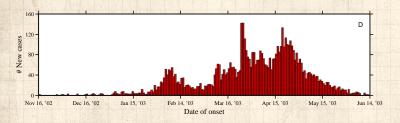
Introduction

Simple disease spreading models Background

Prediction

Toy metapopulation models

Model output Nutshell


Other kinds of prediction

Resurgence—example of SARS

Epidemic slows... then an infective moves to a new context.

Epidemic discovers new 'pools' of susceptibles: Resurgence.

Importance of rare, stochastic events.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models

lutshell other kinds of pred

Other kinds of prediction Next

Community—S2E6: Epidemiology

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation Model output Nutshell

Next

The challenge

So... can a simple model produce

- 1. broad epidemic distributions and
- 2. resurgence?

PoCS, Vol. 1 @pocsvox

Biological Contagion

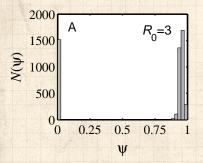
Introduction

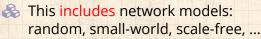
Simple disease spreading models

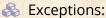
Background

More models Toy metapopulation

Model output


Next





Size distributions

Simple models typically produce bimodal or unimodal size distributions.

- 1. Forest fire models
- 2. Sophisticated metapopulation models

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models

More models

Burning through the population

Forest fire models: [19]

- Rhodes & Anderson, 1996
- The physicist's approach:

 "if it works for magnets, it'll work for people..."

A bit of a stretch:

- Epidemics

 = forest fires
 spreading on 3-d and 5-d lattices.
- 2. Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.
- 3. Original forest fire model not completely understood.

PoCS, Vol. 1 @pocsvox Biological Contagion

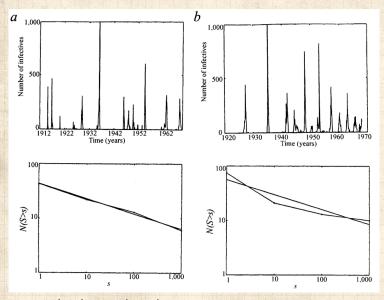
Introduction

Simple disease spreading models Background Prediction

More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction


References

LIBERAL-ARTS PAUDES HAV SE FAN BUT THERE'S NOTHWAY PORE! A PHIS CIST FIRST ENCOUNTRIN

Size distributions

From Rhodes and Anderson, 1996.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

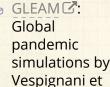
Simple disease spreading models

Background Prediction

More models

Toy metapopulation

Model output Nutshell Other kinds of predictio



Sophisticated metapopulation models:

- Multiscale models suggested earlier by others but not formalized (Bailey [1], Cliff and Haggett [6], Ferguson et al.)
- Community based mixing (two scales)—Longini. [17]
- Eubank et al.'s EpiSims/TRANSIMS city simulations. [9]
- Spreading through countries—Airlines: Germann et al., Colizza et al.
 [7]

al.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction Simple disease

spreading models
Background
Prediction
More models

Toy metapopulat models

Model output
Nutshell
Other kinds of prediction

References

9 9 0 53 of 97

"The hidden geometry of complex, network-driven contagion phenomena" Brockmann and Helbing, Science, 342, 1337-1342, 2013. [5]

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

More models Toy metapopulation

Model output

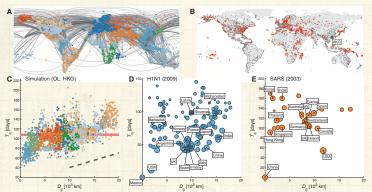


Fig. 1. Complexity in global, network-driven contagion phenomena. (A) The global mobility newhox (GMM), Gryl lines represent passenger flows along direct connections between 4069 airports worldwide. Geographic regions are distinguished by color (classified according to network modularly maximization (39)). (B) Temporal snapshot of a simulated global pandemic with initial outbreak location (OU in Hong Kong MKG). The simulation is based on the metapopulation model defined by Eq. 3 with parameters $R_0=1.5$ p. -0.285 day. $^{2}_{1}$ ~ 2.85 at 10^{2} day? $^{2}_{1}$ $\approx 10^{2}$ He Gay mbols depict locations with epidemic arrival times in the time windows 105 days $c_{1}^{2}<12$ 10 days. Because of the multiscale structure of the underlying network, the spatial distribution of disease prevalence (i.e., the fraction of intected individuals) lacks geometric coherence. No clear wave-front is visible, and based on this dynamic state, the OL cannot be easily deduced. (OF or the same simulation as in (B)) for each give the control of geographic distance D_{θ} from the OL floodes are colored according to exequablic regions in (A)) for each of the 4069 nodes in the network. On a

global scale, T_a weakly correlates with geographic distance D_{ij} ($R^2 = 0.34$). A linear fit yields an average global spreading speed of $V_{ij} = 325$ km/day (see a ko fig. 5.7) Using D_a and V_a to estimate arrival times for specific locations, however, does not work well owing to the strong variability of the arrival times for a given geographic distance. The red horizontal bar corresponds to the arrival time window shown in (3). 0D Arrival times versus geographic distance from the source (Mexico) for the 2009 H1M1 pandemic. Symbols represent 140 affected countries, and symbol size quantifies total traffic per country. Arrival times are defined as the date of the first confirmed case in a given country after the initial outbreak on 1.7 March 2009. As in the simulated scenario, arrival time and geographic distance are only weakly correlated $R^2 = 0.0394$ 4. (E) in analogy to (D), the panel depicts the arrival times versus geographic distance from the source (China) of the 2003 SARS epidemic for 29 affected countries worldwide. Arrival times are taken from WHO published data (2). As in (C) and (D), arrival time correlates weakly with geographic distance.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

More models

Model output
Nutshell
Other kinds of prediction

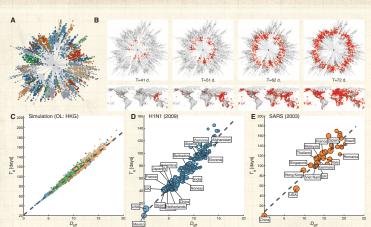


Fig. 2. Understanding global contagion phenomena using effective distance. (A) The structure of the shortest path tree (in gray) from Hong Kong (central node). Radial distance represents effective distance $D_{\rm eff}$ as defined by Eqs. 4 and 5. Modes are colored according to the same scheme as in Fig. 1A. (B) the sequence (from left to right) of panels depicts the time course of a simulation of the same parameter set as used in Fig. 1A. (B) Prevalence is reflected by the redness of the symbols. Each panel compares the state of the system in the conventional geographic representation (bottom) with the effective distance representation (top). The complex spatial pattern in the conventional eyes is equivalent to a homogeneous parameters and the statement of the symbols.

neous wave that propagates outwards at constant effective speed in the effective distance representation, (C) Epidemic airval time T_2 , versus effective distance $D_{\rm unf}$ for the same simulated epidemic as in (B). In contrast to geographic distance $D_{\rm unf}$ for the same simulated epidemic as in (B). In contrast to geographic distance, (B) and (B) in the contrast time (B) and (B) in (B) in (B) and (B) in (B) in

PoCS, Vol. 1 @pocsvox

Biological Contagion

ntroduction

Simple disease spreading models Background

More models Toy metapopulation

models
Model output
Nutshell
Other kinds of prediction

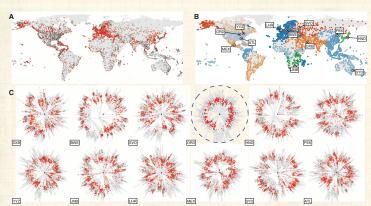


Fig. 3. Qualitative outbreak reconstruction based on effective distance. All Spatial distribution of prevalence f_0 at at time f_2 at days for 0.1 Chicago (parameters $\beta = 0.28$ day; $R_0 = 1.9$, $\gamma = 2.8 \times 10^{-3}$ day; 2 and $c = 10^{-3}$. After this time, its difficult, if not impossible, to determine the correct OL from snapshots of the dynamics. (B) Candidate OLs chosen from different geographic regions. (C) Panise depict the state of the system shown in (A) From the regions. (C) Panise depict the state of the system shown in (A) From the regions.

perspective of each candidate OL, using each OL's shortest path tree representation. Only the actual OL (ORD, circled in blue) produces a circular waveless a circular waveless a circular waveless a circular waveless. Even for comparable North American airports [Atlanta ARIL], foronto (YYZ), and Mexico City (WEQ), the wavefronts are not nearly as concentric. Effective distances thus permit the extraction of the correct OL, based on information on the mobility network and a single snapshot of the dynamics.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background Prediction More models

Toy metapopulation

models

Model output

Nutshell

Other kinds of prediction

Community—S2E6: Epidemiology

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

More models Toy metapopulation

Model output Nutshell Next

Size distributions

PoCS, Vol. 1 @pocsvox Biological Contagion

Vital work but perhaps hard to generalize from...

♣ ⇒ Create a simple model involving multiscale travel

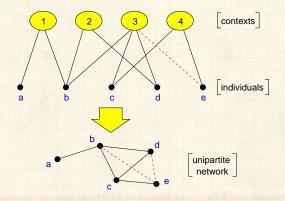
Very big question: What is N?

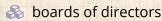
Should we model SARS in Hong Kong as spreading in a neighborhood, in Hong Kong, Asia, or the world?

For simple models, we need to know the final size beforehand...

Simple disease spreading models Background

More models





Improving simple models

Contexts and Identities—Bipartite networks

movies

🗞 transportation modes (subway)

PoCS, Vol. 1 @pocsvox

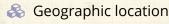
Biological Contagion

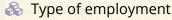
Introduction

Simple disease spreading models Background Prediction

Toy metapopulation models

Nutshell
Other kinds of predictio
Next





Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:

备 Age

Recreational activities

Groups are crucial...

formed by people with at least one similar attribute

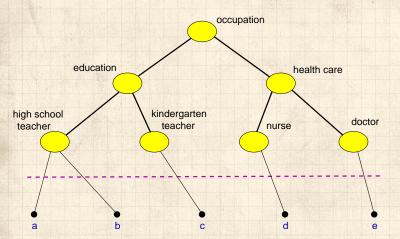
PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Prediction

Toy metapopulation models


Nutshell
Other kinds of prediction
Next

Infer interactions/network from identities

Distance makes sense in identity/context space.

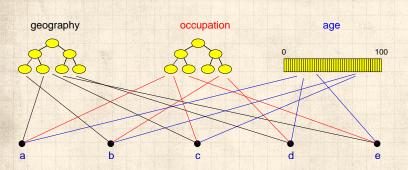
PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background


Toy metapopulation models

Generalized context space

(Blau & Schwartz [3], Simmel [20], Breiger [4])

PoCS, Vol. 1 @pocsvox

Biological Contagion

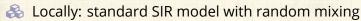
Introduction

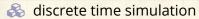
Simple disease spreading models Background

rediction lore models

Toy metapopulation models

Nutshell
Other kinds of prediction


A toy agent-based model:


2005. [24]

"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162,

Geography: allow people to move between contexts

 β = infection probability

P = probability of travel

Movement distance: $Pr(d) \propto exp(-d/\xi)$

& ξ = typical travel distance

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Prediction

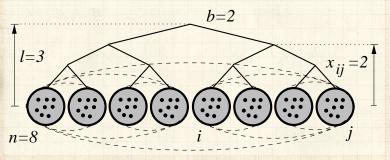
Toy metapopulation models

Model output

Nutshell

Other kinds of prediction

References



少 Q № 65 of 97

A toy agent-based model

Schematic:

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Prediction More models

Toy metapopulation models

Model output Nutshell Other kinds of prediction

Model output

- \clubsuit Define P_0 = Expected number of infected individuals leaving initially infected context.
- Need $P_0 > 1$ for disease to spread (independent of R_0).
- Limit epidemic size by restricting frequency of travel and/or range

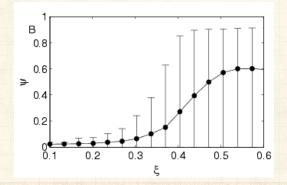
PoCS, Vol. 1 @pocsvox

Biological Contagion

Simple disease

spreading models

Model output



Model output

Varying ξ :

Transition in expected final size based on typical movement distance (sensible)

PoCS, Vol. 1 @pocsvox

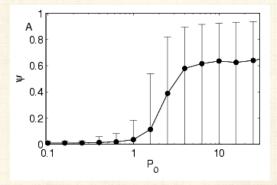
Biological Contagion

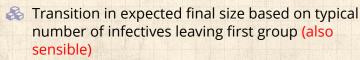
Introduction

Simple disease spreading models

Background More models Toy metapopulation

Model output





Model output

Varying P_0 :

& Travel advisories: ξ has larger effect than P_0 .

PoCS, Vol. 1 @pocsvox

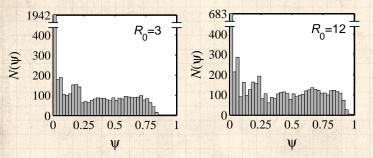
Biological Contagion

Introduction

Simple disease spreading models

Background
Prediction
More models
Toy metapopulation

Model output Nutshell


Other kinds of prediction

Example model output: size distributions

8

Flat distributions are possible for certain ξ and P.

Different R_0 's may produce similar distributions

Same epidemic sizes may arise from different R_0 's

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

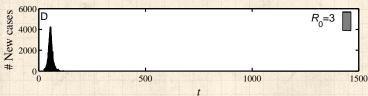
Background Prediction

ore models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



Model output—resurgence

Standard model:

PoCS, Vol. 1 @pocsvox

Biological Contagion

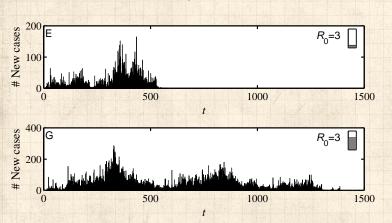
Introduction

Simple disease spreading models

Background More models

Toy metapopulation Model output

Nutshell



Model output—resurgence

Standard model with transport:

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation

Model output

The upshot

Simple multiscale population structure +

stochasticity

leads to

resurgence

+

broad epidemic size distributions

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation

Model output

Nutshelling

For the hierarchical movement model, epidemic size is highly unpredictable

Model is more complicated than SIR but still simple.

We haven't even included normal social responses such as travel bans and self-quarantine.

 $\Re R_0$, however measured, is not informative about

1. how likely the observed epidemic size was,

2. and how likely future epidemics will be.

 $\ref{eq:constraint}$ Problem: R_0 summarises one epidemic after the fact and enfolds movement, the price of bananas, everything.

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction

Simple disease spreading models Background Prediction

models
Model output
Nutshell

Other kinds of prediction

References

S 31

Conclusions

- Disease's spread is highly sensitive to population structure.
- Rare events may matter enormously: e.g., an infected individual taking an international flight.
- More support for controlling population movement:

e.g., travel advisories, quarantine

PoCS, Vol. 1 @pocsvox

Biological Contagion

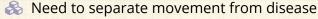
Introduction

Simple disease spreading models Background

ediction ore models

models Model output

Nutshell
Other kinds of prediction



Nutshelling

What to do:

 $\Re R_0$ needs a friend or two.

 $lap{Need} R_0 > 1 ext{ and } P_0 > 1 ext{ and } \xi ext{ sufficiently large for disease to have a chance of spreading}$

And in general: keep building up the kitchen sink models.

More wondering:

Exactly how important are rare events in disease spreading?

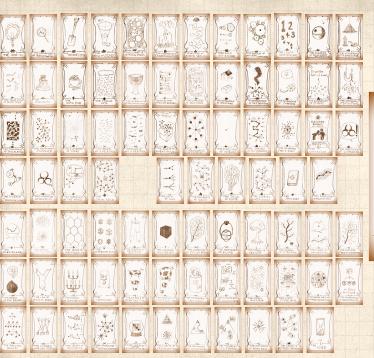
 \clubsuit Again, what is N?

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Prediction More models


Toy metapopulation models Model output Nutshell

Other kinds of prediction

Krugman, 1998: "Why most economists' predictions are wrong."

"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participants—becomes apparent: most people have nothing to say to each other! By 2005 or so, it will become clear that the Internet's impact on the economy has been no greater than the fax machine's."1

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output

Other kinds of prediction

Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,

I don't need any of this other stuff.

I could forecast the economy better than any way I know."

http://wikipedia.org

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output

Other kinds of prediction

Economics, Schmeconomics

Greenspan continues:

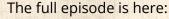
"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

Ion Stewart:

"You just bummed the @*!# out of me."

wildbluffmedia.com

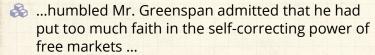
PoCS, Vol. 1 @pocsvox Biological Contagion


Simple disease spreading models

Other kinds of prediction

References

From the Daily Show (September 18, 2007)



http://www.cc.com/video-clips/cenrt5/the-daily-show-whth-92993st

Predicting social catastrophe isn't easy...

"Greenspan Concedes Error on Regulation"

"Those of us who have looked to the self-interest of lending institutions to protect shareholders' equity, myself included, are in a state of shocked disbelief"

🙈 Rep. Henry A. Waxman: "Do you feel that your ideology pushed you to make decisions that you wish you had not made?"

Am. Greenspan conceded: "Yes, I've found a flaw. I don't know how significant or permanent it is. But I've been very distressed by that fact."

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

spreading models

Other kinds of prediction

Economics, Schmeconomics

James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach. And most of them teach a theoretical framework that has been shown to be fundamentally useless.

From the New York Times, 11/02/2008

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction

Simple disease spreading models Background Prediction

More models

Toy metapopulation models

Model output

Nutshell
Other kinds of prediction

Other attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)[11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- Diffusion of innovations (Bass, 1969)^[2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

Social contagion:

- SIR may apply sometimes ...
- But we need new fundamental models.
- Next up: Thresholds.

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models

We really should know social contagion is different but ...

2015. [22]

"It's contagious: Rethinking a metaphor dialogically" Warren and Power, Culture & Psychology, 21, 359-379,

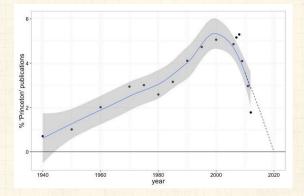
A "Facebook will lose 80% of users by 2017, say Princeton researchers" (Guardian, 2014)

"Epidemiological modeling of online social network dynamics" Spechler and Cannarella, Availabe online at http://arxiv.org/abs/1401.4208, 2014. [21]

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease

spreading models Toy metapopulation



2 Q Q 88 of 97

The Facebook Data Science team's response ::

Mike Develin, Lada Adamic, and Sean Taylor.

PoCS, Vol. 1 @pocsvox

Biological Contagion

Introduction

Simple disease spreading models Background

Toy metapopulation Model output

Next

References I

[1] N. T. J. Bailey.

The Mathematical Theory of Infectious Diseases and Its Applications.

Griffin, London, Second edition, 1975.

[2] F. Bass.
A new product growth model for consumer durables.

Manage. Sci., 15:215–227, 1969. pdf

[3] P. M. Blau and J. E. Schwartz.

Crosscutting Social Circles.

Academic Press, Orlando, FL, 1984.

[4] R. L. Breiger.
The duality of persons and groups.
Social Forces, 53(2):181–190, 1974. pdf

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction

References II

[5] D. Brockmann and D. Helbing. The hidden geometry of complex, network-driven contagion phenomena.

Science, 342:1337-1342, 2013. pdf

- [6] A. D. Cliff, P. Haggett, J. K. Ord, and G. R. Versey. Spatial diffusion: an historical geography of epidemics in an island community. Cambridge University Press, Cambridge, UK, 1981.
- [7] V. Colizza, A. Barrat, M. Barthelmey, A.-J. Valleron, and A. Vespignani.
 Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions.

PLoS Med., 4:e13, 2007. pdf

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction
Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output

References III

- [8] D. J. Daley and D. G. Kendall. Stochastic rumours. J. Inst. Math. Appl., 1:42–55, 1965.
- [9] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling disease outbreaks in realistic urban social networks. Nature, 429:180–184, 2004. pdf
- [10] J. Gleick.

 The Information: A History, A Theory, A Flood.

 Pantheon, 2011.
- [11] W. Goffman and V. A. Newill.

 Generalization of epidemic theory: An application to the transmission of ideas.

 Nature, 204:225–228, 1964. pdf

 ✓

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction

References IV

[12] E. Hoffer.

The True Believer: On The Nature Of Mass Movements.

Harper and Row, New York, 1951.

[13] E. Hoffer.

The Passionate State of Mind: And Other Aphorisms.

Buccaneer Books, 1954.

[14] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models Background

References V

endemicity.

[15] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf 2

[16] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf

[17] I. M. Longini.

A mathematical model for predicting the geographic spread of new infectious agents. Math. Biosci., 90:367–383, 1988.

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

Background
Prediction
More models
Toy metapopulation
models
Model output

spreading models

References

2 94 of 97

References VI

[18] J. D. Murray. Mathematical Biology. Springer, New York, Third edition, 2002.

[19] C. J. Rhodes and R. M. Anderson. Power laws governing epidemics in isolated populations. Nature, 381:600-602, 1996. pdf

[20] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1-46, 1902.

PoCS, Vol. 1 @pocsvox Biological Contagion

Simple disease spreading models Background

Toy metapopulation

References VII

[21] J. A. Spechler and J. Cannarella.

Epidemiological modeling of online social network dynamics.

Availabe online at http://arxiv.org/abs/1401.4208, 2014. pdf♂

[22] Z. J. Warren and S. A. Power. It's contagious: Rethinking a metaphor dialogically. Culture & Psychology, 21:359–379, 2015. pdf

[23] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf ☑

PoCS, Vol. 1 @pocsvox Biological Contagion

Introduction Simple disease

Background
Prediction
More models
Toy metapopulation
models
Model output

spreading models

References VIII

[24] D. J. Watts, R. Muhamad, D. Medina, and P. S. Dodds.

Multiscale, resurgent epidemics in a hierarchcial metapopulation model.

Proc. Natl. Acad. Sci., 102(32):11157-11162, 2005. pdf

PoCS, Vol. 1 @pocsvox Biological

Contagion

Introduction

Simple disease spreading models

Background

Toy metapopulation

