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Diseases spread through host populations over the networks of contacts between individuals and a
number of results about this process have been derived in recent years by exploiting connections between
epidemic processes and bond percolation on networks. Here we investigate the case of two pathogens in a
single population, which has been the subject of recent interest among epidemiologists. We demonstrate
that two pathogens competing for the same hosts can both spread through a population only for
intermediate values of the bond occupation probability that lie above the classic epidemic threshold
and below a second higher value, which we call the coexistence threshold, corresponding to a distinct
topological phase transition in networked systems.
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Social, technological, and biological networks of vari-
ous kinds have been the subject of a large number of recent
studies published in the physics literature [1–3]. One of the
principle practical applications of this body of work has
been in modeling the spread of epidemic disease. Diseases
spread over the networks of physical contacts between
individuals [4–7] and an understanding of the structure
of these networks and the dynamics of disease upon them is
crucial to the development of strategies for disease control.
As it turns out, a large class of epidemic processes can be
mapped onto bond percolation models [4,7–9], allowing
familiar techniques from statistical physics to be applied
directly to their solution.

An issue of some interest in current epidemiological
research is the behavior of competing pathogens [10–12].
Two diseases may compete for the same population of
hosts because one disease kills hosts before the other can
infect them. Or there may be cross immunity between the
diseases such that exposure to one disease leaves the host
alive but immune to further infection by either disease.
Competing strains of influenza can show this type of
behavior, for instance [12]. The dynamics of competition
between pathogens is in general complex, depending in
particular on whether one pathogen gets a head start on the
other in the population. In this Letter we study the case in
which two pathogens pass through the population at well
separated intervals: one infects the population and causes
an epidemic, leaving some fraction of the population im-
mune or dead, and at some later time the second pathogen
passes through the remaining population. (Our arguments
could also be applied to two successive outbreaks of the
same disease.) The question we address is if and when the
second disease is able to spread. If a sufficient number of
hosts are removed from the population by the first disease,
then spread of the second becomes impossible. As we will
see, there is a threshold value of the bond occupation
probability or ‘‘transmissibility’’ for the first disease (a
measure of contagiousness) at which this happens. This
‘‘coexistence threshold’’ coincides with a continuous

phase transition similar to the well-known epidemic tran-
sition, but the two transitions are quite distinct: the coex-
istence threshold is an additional property of the network
topology.

Spread of both pathogens can occur only in the inter-
mediate regime between the epidemic and coexistence
thresholds. Among other things, we determine by exact
analytic calculation for a broad class of networks the
position of the two thresholds. For the much-studied case
of a ‘‘scale-free’’ network, we find that while the epidemic
threshold for the first disease is always zero, the coexis-
tence threshold is not. A corollary of this result is that
while a single disease on a scale-free network cannot be
eradicated solely by lowering the transmissibility, a similar
intervention in the case of two competing diseases can
eradicate one of the diseases, but not both.

Consider then an epidemic taking place on a network of
contacts between individuals. The network is represented
by a graph in which vertices are individuals and (undir-
ected) edges are contacts. The epidemic begins with a
single individual and spreads along the contacts. Not every
contact necessarily results in disease transmission how-
ever. We assume a generalized susceptible-infective-
removed dynamics for the disease of the kind described
in [7] in which the disease spreads over edges with a
probability T called the transmissibility of the disease.
This dynamics can be mapped onto a bond percolation
process on the same graph with bond occupation probabil-
ity equal to the transmissibility [4,7–9]. The connected
clusters of vertices in the percolation process then corre-
spond to the groups of individuals who would be infected
by a disease outbreak starting with any individual within
that cluster. Typically, for small values of T there are only
small clusters and hence only small disease outbreaks. But
above some critical transmissibility Tc, an extensive span-
ning cluster or ‘‘giant component’’ appears, corresponding
to an epidemic of the disease: once such a giant component
is present, the pathogen reaching any of its members will
infect them all and thereby reach an extensive fraction of
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the population. The value of T at which the giant compo-
nent first forms is called the epidemic threshold and it
corresponds precisely to the percolation threshold for per-
colation on the contact network.

To be concrete, we examine in this Letter the class of
graphs that have specified degree distribution but which are
otherwise random, in the limit of large graph size. Such
graphs have been studied in the past by many authors [13–
15] and have become a standard arena for the exploration
of epidemiological processes [6,7]. Epidemiological pro-
cesses have also been studied on other types of networks,
such as networks with degree correlations [16,17], and it
seems likely that the results presented in this Letter could
be generalized to such cases, although we do not do that
here.

Let pk be the fraction of vertices in our network that
have degree k. We can also consider pk to be the proba-
bility that a randomly chosen vertex has degree k. The
vertex at either end of a randomly chosen edge, on the other
hand, has degree k with probability proportional not to pk
but to kpk; the reason being that there are k times as many
edges connected to a vertex of degree k than to a vertex of
degree 1, and hence the probability that our edge will be
one of them is also multiplied by k. We will primarily be
interested in the distribution of the number of edges emerg-
ing from such a vertex other than the one we followed to
get there. This excess degree is one less than the total
degree of the vertex and therefore has a (correctly normal-
ized) distribution

qk !
"k# 1$pk#1P

k
kpk

! "k# 1$pk#1

z
; (1)

where z ! hki ! P
kkpk is the mean degree of the vertices

in the network.
Our first pathogen can spread across the network if its

basic reproductive number R0 is greater than unity, i.e., if
for every person infected the mean number of additional
people they infect is greater than 1.

When the disease arrives at a vertex, it has the chance to
spread to any of the k other neighbors of that vertex, each
of which chances is realized with probability T for an
expected Tk additional vertices infected. Averaging over
the distribution qk of k, we find that the basic reproductive
number is

R0 ! T
X1

k!0

kqk !
T
hki

X1

k!0

k"k# 1$pk#1 ! T
hk2i% hki

hki :

(2)

Thus, the disease spreads if and only if T is greater than the
critical value

Tc !
hki

hk2i% hki : (3)

To calculate the size of the epidemic when it does occur,
it is convenient, following our previous approach [7,14,18],
to define two probability generating functions for the dis-
tributions pk and qk:

F0"x$ !
X1

k!0

pkxk; F1"x$ !
X1

k!0

qkxk !
F0
0"x$
z

; (4)

where F0
0 denotes the first derivative of F0 with respect to

its argument. In terms of these functions, for example,
Eq. (3) can be written

Tc !
1

F0
1"1$

: (5)

Now let u be the mean probability that a vertex is not
infected by a specified neighboring vertex in the network
during an epidemic outbreak of our disease. This quantity
is equal to the probability that no transmission occurred
between the two vertices, which is 1% T, plus the proba-
bility that there was contact sufficient for transmission but
that the neighboring vertex itself wasn’t infected. The
probability that the neighboring vertex wasn’t infected is
equal to the probability that it, in turn, failed to contract the
infection from any of its k other neighbors, which is just uk

with k distributed according to qk. Thus the mean proba-
bility of the neighbor being uninfected is

P1
k!0 qku

k !
F1"u$. Hence, u must satisfy the equation

u ! 1% T # TF1"u$: (6)

Then the probability that a randomly chosen vertex is not
infected is

P1
k!0 pkuk ! F0"u$, and the fraction S of ver-

tices that do get infected is one minus this

S ! 1% F0"u$: (7)

Thus we can calculate the size of the epidemic by solving
(6) for u and substituting the result into (7). S is also the
probability of an epidemic occurring if the disease starts
with a randomly chosen individual; with probability 1% S
an outbreak fails to become an epidemic even when we are
above the transition. If S is regarded as an order parameter
for the model, then the epidemic transition is a continuous
phase transition in the mean-field universality class for
percolation.

Now consider the case in which our first disease causes
an epidemic in the network, leaving a fraction S of vertices
either dead or immune to infection by our second disease
(or by a second wave of the first disease). To represent this
mathematically, we remove these vertices from the net-
work, leaving a smaller network of uninfected vertices
which we call the residual graph. Only if this residual
graph has a giant component will it be possible for the
second pathogen, provided it has a suitably high trans-
missibility, to spread.

Clearly when T ! 0 for the first pathogen no individuals
are infected and the entire graph remains for the second
pathogen to exploit. Conversely, when T ! 1 an epidemic
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of the first pathogen will infect the entire giant component
of the graph, and once this component is removed the
second pathogen definitely cannot spread (since, in the
limit of large size, random networks have only one giant
component). In between these two extremes, we can expect
a transition, which we now investigate. We begin by cal-
culating the degree distribution of the residual graph. Once
we have this distribution then, because the graph is un-
correlated, it is a straightforward exercise to determine
whether it has a giant component or not.

Consider a vertex with degree k. Let P"uninf:; mjk$ be
the probability that it remains uninfected at the end of the
first epidemic and has m edges that are attached to other
uninfected vertices. In other words, P"uninf:; mjk$ is the
probability that this vertex belongs to the residual graph
and has degree m within that graph, given that it has degree
k in the graph as a whole.

This probability is equal to the probability that the vertex
has k%m unoccupied edges that attach to infected vertices
and m edges (occupied or not) that attach to uninfected
vertices. The probability of an edge attaching to an unin-
fected vertex is just F1"u$ and the probability of being
unoccupied and attaching to an infected vertex is "1%
T$&1% F1"u$' ! u% F1"u$, where we have used Eq. (6).

Then P"uninf:; mjk$ ! k
m

! "
&F1"u$'m&u% F1"u$'k%m.

Multiplying by the probability pk of having degree k and
summing over k then gives the probability of being unin-
fected and having degree m within the graph of uninfected

vertices: P"uninf:; m$ ! P1
k!m pk

k
m

! "
&F1"u$'m (

&u% F1"u$'k%m. Dividing by the prior probability
P"uninf:$ ! 1% S ! F0"u$ of being uninfected, the
probability distribution of the degrees of vertices within
the residual graph is

P"mjuninf:$! 1
F0"u$

X1

k!m

pk
k
m

! "
&F1"u$'m&u%F1"u$'k%m:

(8)

The generating function for this distribution is

G0"x$ !
1

F0"u$
X1

m!0

xm
X1

k!m

pk
k

m

 !
&F1"u$'m&u%F1"u$'k%m

! 1
F0"u$

X1

k!0

pk

Xk

m!0

k

m

 !
&xF1"u$'m&u%F1"u$'k%m

! 1
F0"u$

X1

k!0

pk&u#"x% 1$F1"u$'k

! F0!u#"x% 1$F1"u$"
F0"u$

: (9)

Given this generating function, we can determine
whether the residual network has a giant component using
the method of Ref. [14]. We define

G1"x$ !
G0

0"x$
G0

0"1$
! F1!u# "x% 1$F1"u$"

F1"u$
; (10)

which is the generating function for the excess degree of a
vertex reached by following an edge in the residual graph,
precisely analogous to Eq. (4). Then there is a giant com-
ponent if and only if G0

1"1$> 1. Thus, the point G0
1"1$ ! 1

constitutes an additional phase transition in the system,
other than the standard epidemic transition, at which a
sufficiently contagious second pathogen can cause an epi-
demic after the passage of the first through the network. We
call this the coexistence transition and the point at which it
occurs the coexistence threshold. Making use of Eq. (10),
we find that the transmissibility Tx at this point is the
solution of the equation

F0
1"u$ ! 1; (11)

where u is a function of T via Eq. (6).
For instance, in the case of a Poisson degree distribution

for the original network pk ! e%zzk=k! (the standard
Bernoulli random graph), we have F0"x$ ! F1"x$ !
ez"x%1$, which means that the normal epidemic threshold
falls at Tc ! 1=z while the coexistence threshold falls at
the point satisfying

1 ! zF1"u$ ! z"1% S$: (12)

If we can find S from Eq. (7), it is then a straightforward
matter to find Tx.

The size C of the giant component in the residual graph,
which sets an upper bound on the size of a possible second
epidemic, is given by

C ! 1%G0"v$; v ! G1"v$; (13)
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FIG. 1. The size of the epidemic of the first pathogen and the
size of the residual giant component that it leaves behind, as a
function of transmissibility on a graph with a Poisson degree
distribution with mean degree z ! 3. Inset: the position of the
two thresholds as a function of mean degree for the Poisson case.
The shaded areas in the plots denote the region in which both
pathogens can spread.
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as a fraction of the size of the residual graph [14]. To get
the result as a fraction of the size of the original network,
we then need to multiply by 1% S. In Fig. 1 we show the
sizes S and "1% S$C of the epidemic and the giant com-
ponent on the residual graph as a function of transmissi-
bility for the Poisson case. As the transmissibility increases
from zero, the size of the residual giant component is
initially equal to the size of the giant component of the
entire graph, which is very nearly 1. As T passes the
epidemic threshold for the first pathogen, however, the
pathogen starts to spread and kills or renders immune to
the second pathogen some fraction of the population,
thereby reducing the size of the epidemic of the second
pathogen. At some point—our coexistence threshold—so
many are killed or made immune that too few are left to
spread the second pathogen and C reaches zero. Thus the
epidemic spread of both pathogens is possible only in the
intermediate regime of transmissibility Tc < T < Tx indi-
cated by the shaded area in the figure; if the transmissibility
is either too low or too high, coexistence is impossible. In
the inset of the figure we show how the two threshold
values of the transmissibility, Tc and Tx, vary as a function
of mean degree for the Poisson case.

Of course, the mere existence of a giant component in
the residual graph does not mean that the second pathogen
will cause an epidemic. That depends on whether the
transmissibility of the second pathogen is high enough.
Repeating the analysis leading to Eq. (5), we find that the
second pathogen can spread if its transmissibility is above
the critical value T0

c ! 1=G0
1"1$ or, equivalently,

T0
c ! 1=F0

1"u$—yet a third threshold in our system [but
one whose position is not solely a function of the network
topology, since it depends also on the transmissibility of
the first pathogen via Eq. (6)]. Noting that F0

1"x$ is a
polynomial with non-negative coefficients and therefore
monotonic increasing on the positive real line (within its
radius of convergence), and that u ) 1 since it is a proba-
bility, we see that F0

1"u$ ) F0
1"1$, and hence that T0

c * Tc:
the minimum transmissibility necessary for the second
pathogen to spread is never less than that necessary for
the first.

Another example of interest is that of a network with a
power-law degree distribution pk ! k%!=""!$, for some
constant !, where ""x$ is the Riemann " function. Such
networks are often called scale-free. A variety of networks
appear to be scale-free and they have attracted consider-
able attention in the recent literature [2]. As is by now well
understood [6,19], (uncorrelated) scale-free networks with
!< 3 have a vanishing epidemic threshold Tc ! 0 be-
cause the second moment hk2i of the degree distribution
in Eq. (3) diverges. Noting [14] that a power-law degree
distribution gives a generating function F0"x$ !
Li!"x$=""!$, where Lin"x$ is the nth polylogarithm of x,
and applying Eq. (11), we find by contrast that the coex-
istence threshold in such a network is in general nonzero.

Furthermore, the critical transmissibility for the second
pathogen T0

c ! 1=F0
1"u$ is also nonzero.

The result Tc ! 0 implies that a single disease spreading
on a scale-free network of this kind can never be eradicated
by an intervention whose sole effect is to reduce the trans-
missibility. Our findings indicate, however, that for the case
of two competing pathogens on such a network, one of
them can be eradicated by an intervention that lowers the
transmissibility, but not both.

We have here studied only the simplest case of compet-
ing pathogens. A number of variants of the problem are of
interest. For instance, in some cases the first pathogen may
confer upon those it infects only partial cross immunity to
the second, so that the probability of infection with the
second pathogen is reduced but not entirely eliminated.
This process could be modeled using an extension of the
formalism described here in which the residual graph is
formed by removing a fixed fraction, randomly selected, of
the vertices affected by the first epidemic.
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