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ABSTRACT
Di�erent subsystems of organisms adapt over many time scales,
such as rapid changes in the nervous system (learning), slower
morphological and neurological change over the lifetime of the or-
ganism (postnatal development), and change over many generations
(evolution). Much work has focused on instantiating learning or
evolution in robots, but relatively li�le on development. Although
many theories have been forwarded as to how development can aid
evolution, it is di�cult to isolate each such proposed mechanism.
�us, here we introduce a minimal yet embodied model of develop-
ment: the body of the robot changes over its lifetime, yet growth
is not in�uenced by the environment. We show that even this
simple developmental model confers evolvability because it allows
evolution to sweep over a larger range of body plans than an equiv-
alent non-developmental system, and subsequent heterochronic
mutations ‘lock in’ this body plan in more morphologically-static
descendants. Future work will involve gradually complexifying
the developmental model to determine when and how such added
complexity increases evolvability.
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1 INTRODUCTION
Many theories have been proposed as to how development can
confer evolvability. Sel�sh gene theory [8] suggests that prenatal
development from a single-celled egg is not a super�uous byproduct
of evolution, but is instead a critical process that ensures unifor-
mity among genes contained within a single organism and in turn
their cooperation towards mutual reproduction. Developmental
plasticity, the ability of an organism to modify its form in response
to environmental conditions, is believed to play a crucial role in the
origin and diversi�cation of novel traits [17]. Others have shown
that development can in e�ect ‘encode’, and thus avoid on a much
shorter time scale, constraints that would otherwise be encountered
and su�ered by non-developmental systems [15].

Several models that speci�cally address development of embod-
ied agents have been reported in the literature. For example Eggen-
berger [11] demonstrated how shape could emerge during growth
in response to physical forces acting on the growing entity. Bongard
[3] adopted models of genetic regulatory networks to demonstrate
how evolution could shape the developmental trajectories of em-
bodied agents. Later, it was shown how such development could
lead to a form of self-sca�olding that smoothed the �tness land-
scape and thus increased evolvability [2]. Miller [16] introduced a
developmental model that enabled growing organisms to regrow
structure removed by damage or other environmental stress.

In the spirit of Beer’s minimal cognition experiments [1], we
introduce here a minimal model of morphological development in
embodied agents (�gure 2). �is model strips away some aspects
of other developmental models, such as those that reorganize the
genotype to phenotype mapping [3, 11, 15] or allow the agent’s
environment to in�uence its development [14, 16]. We use so�
robots as our model agents since they provide many more degrees
of developmental freedom compared to rigid bodies, and can in
principle reduce human designer bias. Here, development is mono-
tonic and irreversible, predetermined by genetic code without any
sensory feedback from the environment, and is thus ballistic in
nature rather than adaptive.

While biological development occurs along a time axis, it has
been implied in some developmental models that time provides only
an avenue for regularities to form across space, and that only the
resulting �xed form — its spatial pa�erns, repetition and symmetry
— are necessary for increasing evolvability. Compositional pa�ern
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Figure 1: �e evolutionaryhistory of anEvo-Devo robot. One of the�ve phylogenies is brokendown into�ve ontogenieswhich
is in turn shown at �ve points in its actuation cycle. Voxel color indicates the remaining development. Blue for shrinkage, red
for growing, and green for no further change. �is robot is featured in video at https://youtu.be/gXf2Chu4L9A.

producing networks (CPPNs, [19]) explicitly make this assumption
in their abstraction of development which collapses the time line
to a single point. While CPPNs have proven to be an invaluable
resource in evolutionary robotics [6], we argue here that discarding
time may in some cases reduce evolvability and that there exist
fundamental bene�ts of time itself in evolving systems.

In this paper, we examine two distinct ways by which ballistic
development can increase evolvability. First, we show how an on-
togenetic time scale provides evolution with a simple mechanism
for inducing mutations with a range of magnitude of phenotypic
impact: mutations that occur early in the life time of an agent have
relatively large e�ects while those that occur later have smaller
e�ects. �is is important since, according to Fisher’s geometric
model [12], the likelihood a mutation is bene�cial is inversely pro-
portional to its magnitude: Small mutations are less likely to break
an existing solution. Larger exploratory mutations, although less
likely to be bene�cial on average, are more likely to provide an
occasional path out of local optima. Second, we posit that changing
ontogenies diversify targets for natural selection to act upon, and

that advantageous traits ‘discovered’ by the phenotype during this
change can become subject to heritable modi�cation through the
‘Baldwin E�ect’ [10].

Hinton and Nowlan [14] relied on this second e�ect when they
demonstrated how learning could guide evolution towards a so-
lution to which no evolutionary path led. We consider a similar
hypothesis with embodied robots and ballistic development, rather
than a disembodied bitstring and random search. We demonstrate
how open-loop morphological development, without feedback from
the environment and without direct communication to the geno-
type, can similarly alter the search space in which evolution op-
erates making search much easier. Hinton & Nowlan’s model of
learning was a type of environment-mediated development, in the
sense that developmental change stops when the ‘correct speci�ca-
tion’ is found, and this information is then used to bias selection
towards individuals that �nd the solution more quickly. Our work
demonstrates that this explicit suppression of development is not
necessary; and that completely undirected morphological change
is enough to confer evolvability.
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2 METHODS
All experiments1 were performed in the open-source so�-body
physics simulator Voxelyze, which is described in detail in Hiller
and Lipson [13].

We consider a locomotion task for so� robots composed of a
4× 4× 3 grid of voxels (see �gure 1 for example). Each voxel within
and across robots is identical with one exception: its volume. At
any given time, a robot is completely speci�ed by an array of resting
volumes, one for each of its 48 constituent voxels. If the resting vol-
umes are static across time then a robot’s genotype is this array of
48 voxel volumes; however, because we enforce bilateral symmetry,
a genome of half that size is su�cient. On top of the deformation
imposed by the genome, each voxel is volumetrically actuated ac-
cording to a global signal that varies sinusoidally in volume over
time (�gure 2). �e actuation is a linear contraction/expansion from
their baseline resting volume.

Under this type of rhythmic actuation, many asymmetrical mass
distributions will elicit locomotion to some extent. For instance, a
simple design, with larger voxels in its front half relative to those in
its back half, may be mobile when its voxels are actuated uniformly.
Although this design would be rather ine�cient since it most likely
drags much of its body across the �oor as it moves. More productive
designs are not so intuitive, even with this �xed controller.

An individual is evaluated for 8 seconds, or 32 actuation cycles.
�e �tness was taken to be the distance, in the positive y direction,
the robot’s center of mass moved in 8 seconds, normalized by the
robot’s total volume. �us, a robot with volume 48 that moves a
distance of 48 will have the same �tness — a �tness of one — as a
similarly shaped but smaller robot with volume 12 that moves a
distance of 12. Distance here is measured in units that correspond
to the length of a voxel with volume one. If, however, a robot rolls
over onto its top layer of voxels it is assigned a �tness of zero and
evaluation is terminated. �is constraint prevents a rolling ball
morphology from dominating more interesting gaits.

We have now built up all of necessary machinery of our �rst type
of robot which we shall call the Evo robot. Populations of these
robots can evolve: body plans change from generation to generation
(phylogeny); but they can not develop: body plans maintain a �xed
form, apart from actuation, while they behave within their lifetime
(ontogeny).

We consider a second type of robot, the Evo-Devo robot, which
inherits all of the properties of the Evo robot but has a special
ability: Evo-Devo robots can develop as well as evolve. �ese robots
are endowed with a minimally complex model of development in
which resting volumes change linearly in ontogeny. We call this
ballistic development to distinguish it from environment-mediated
development. Ballistic development is monotonic with a �xed rate
predetermined by a genetic program; its onset and termination
are constrained at birth and death, respectively; it is strictly linear,
without mid-course correction. �e volume of the kth voxel in
an Evo-Devo robot changes linearly from a starting volume, vk0,
to a �nal volume, vk1, within the lifetime of a robot (�gure 2).
Accordingly, the genotype of a robot that can develop is twice as
large as that of robots that cannot develop, since there are two

1https://github.com/skriegman/gecco-2017 contains the source code necessary for
reproducing our results.
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Figure 2: �e voxel picture. �e kth voxel in an Evo robot
maintains a �xed resting volume, vk0, throughout the ro-
bot’s lifetime. Sinusoidal actuation is applied on top of the
resting volume. In contrast, the kth voxel in an Evo-Devo ro-
bot changes linearly from a starting volume, vk0, to a �nal
volume, vk1, over the robot’s entire lifetime. Growth, the
case when vk1 > vk0, is pictured here, but shrinkage is also
possible and occurs when vk1 < vk0. When vk1 = vk0, Evo-
Devo voxels are behaviorally equivalent to Evo voxels. Vox-
els actuate at 4 Hz in our experiments (for 8 sec or 32 cycles)
however actuation is drawn here at a lower frequency to bet-
ter convey the sinusoidal volumetric structure in time.

parameters (vk0 and vk1) that determine the volume of the kth

voxel at any particular time. Although it is important to note that
the space of possible morphologies (collection of resting volumes)
is equivalent both with and without development.

2.1 From gene to volume.
Like most animals, our robots are bilaterally symmetrical. We build
this constraint into our robots by constraining the 24 voxels on the
positive x side of the robot to be equal to their counterparts on the
other side of the y axis. Instead of 48 Evo genes, therefore, we end
up with 24.

A single Evo gene stores the resting length, sk , of the kth voxel,
which is cubed to obtain the resting volume, rk (t), at any time, t ,
during the robot’s lifetime.

rk (t) = s3
k k = 1, 2, . . . , 24 (1)

�e resting lengths may be any real value in the range (0.25, 1.75),
inclusive. Note that the resting volume of an Evo robot does not
depend on t , and is thus constant in ontogenetic time.

Volumetric actuation, a(t) with amplitude u, and period w , takes
the following general form in time.

a(t) = u ∗ sin(2πt/w) (2)

Actuation is limited to ±20% and cycles four times per second
(u = 0.20, w = 0.25 sec).

However, for smaller resting volumes, the actuation amplitude
is limited and approaches zero (no actuation) as the resting volume
goes to its lower bound, 0.253. �is restriction is enforced to prevent
opposite sides of a voxel from penetrating each other, e�ectively
incurring negative volumes, which can lead to simulation instability.
�is dampening is applied only where sk < 1 (shrinking voxels)
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and accomplished through the following function.

d(sk ) =
{

1 sk ≥ 1
(4sk − 1)/3 sk < 1

(3)

�us d(sk ) is zero when sk = 0.25, and is linearly increasing in
sk ≤ 1. �e true actuation, ã(t , sk ), is calculated by multiplying the
unrestricted actuation, a(t), by the limiting factor, d(sk ).

ã(t , sk ) = a(t) ∗ d(sk ) (4)
Actuation is then added to the resting volume to realize the

current volume, Vk (t), of the kth voxel of an Evo robot at time t .

Vk (t) = [sk + ã(t , sk )]3 (5)
For Evo-Devo robots, a gene is a pair of voxel lengths (sk0, sk1)

corresponding to the kth voxel’s starting and �nal resting lengths,
respectively. �us, for a voxel in an Evo-Devo robot, the resting
volume at time t ∈ (0,τ ) is calculated as follows.

rk (t) =
[
sk0 +

t

τ
(sk1 − sk0)

]3
(6)

Where the di�erence in starting and �nal scale (sk1−sk0) determines
the slope of linear development which may be positive (growth)
or negative (shrinkage). �e current volume of the kth voxel of an
Evo-Devo robot is then determined by the following.

Vk (t) =
[
sk0 +

t

τ
(sk1 − sk0) + ã(t , sk )

]3
(7)

Hence the starting resting volume, vk0, and �nal resting volume,
vk1, are the current volumes at t = 0 and t = τ , respectively.

vk0 = Vk (0) = s3
k0

vk1 = Vk (τ ) = s3
k1

(8)

Note that an Evo gene is a special case of an Evo-Devo gene where
sk0 = sk1, or, equivalently, where vk0 = vk1.

For convenience, let’s de�ne the current total volume of the
robot across all 48 voxels as Q(t).

Q(t) = 2
24∑
k=1

Vk (t) (9)

We track the y position of the center of mass, y(t), as well as the
current total volume,Q(t), at n discrete intervals within the lifetime
of a robot. Fitness, F , is the sum of the distance traveled in time
interval, divided by the average volume in the interval.

F = 2
n∑
t=1

y(t) − y(t − 1)
Q(t) +Q(t − 1) (10)

We track y(t) and Q(t) 100 times per second. Since robots are
evaluated for eight seconds, n = 800.

2.2 A direct encoding.
�is paper di�ers from previous evolutionary robotics work that
used Voxelyze [4–7] in that we evolve the volumes of a �xed col-
lection of voxels, rather than the presence/absence of voxels in
a bounding region. Another di�erence is that we do not employ
the CPPN-NEAT evolutionary algorithm [19], but instead use a
direct encoding with bilateral symmetry about the y axis. A com-
parison of encodings in our scenario is beyond the scope of this

paper. However we noticed that the range of evolved morphologies
here, under our particular se�ings, was much smaller than that of
previous work which used voxels as building blocks, and that it is
easier to reach extreme volumes for individual voxels using a direct
encoding.

Apart from the di�erence in encoding, this work is by in large
consistent with this previous work. We use the same physical envi-
ronment as Cheney et al. [6]: a wide-open �at plain. �e material
properties of our voxels are also consistent with the ‘muscle’ voxel
type from the pale�e in this work; although these voxels had a
�xed resting volume of one (sk = 1 for all k). Our developmental
mechanism is strongly based on Corucci et al. [7], which used
volumetric deformation in a closed-loop pointing task.

2.3 Evolutionary search.
We employ a standard evolutionary algorithm, Age-Fitness-Pareto
Optimization (AFPO, [18]), which uses the concept of Pareto domi-
nance and an objective of age (in addition to �tness) intended to
promote diversity among candidate designs. For 30 runs, a popula-
tion of 30 robots is evolved for 2000 generations. Every generation,
the population is �rst doubled by creating modi�ed copies of each
individual in the population. Next, an additional random individ-
ual is injected into the population. Finally, selection reduces the
population down to its original size according to the two objectives
of �tness (maximized) and age (minimized).

�e same number of parent voxels are mutated, on average,
in both Evo and Evo-Devo children. Mutations follow a normal
distribution (σ = 0.75) and are applied by �rst choosing what
parameter types to mutate, and then choosing which voxels to
mutate. For Evo robots, we simply visit each voxel (on the positive
x side) of the parent and, with probability 0.5, mutate its single
parameter value. For Evo-Devo parents, we �ip a coin for each
parameter to be mutated (if neither will be mutated, �ip a �nal coin
to choose one or the other). �is results in a 25% chance of mutating
both, and a 37.5% chance of mutating each of the two individual
parameters alone. �en we apply the same mutation process as
before in Evo robots: loop through each voxel of the parent and,
with probability 0.5, mutate the selected parameter(s).

2.4 An arti�cially rugged landscape.
We did not �ne-tune the mutation hyperparameters (scale and
probability), but intentionally chose a relatively high probability of
mutation in order to elicit a large mutational impact in an a�empt
to render evolutionary search more di�cult. �is removes easy to
follow gradients in the search space — ‘compressing’ gentle slopes
into abrupt cli�s — which make ‘good designs’ more di�cult to �nd.
Any one of these good solutions then, to a certain extent, become
like Hinton & Nowlan’s ‘needle in a haystack’ [14].

Note that there are other ways to enforce rugged �tness land-
scapes, and such landscapes are naturally occurring in many sys-
tems, though our particular task/environment is not one of them.
Future work should investigate these tasks and environments with
a �ne-tuned mutation rate.
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Figure 3: One thousand randomly generated robots for each
group. �e horizontal axes measure �tness: volume normal-
ized distance in the positive y direction. �e best overall de-
signs are the best Evo robots since they maintain their good
form as they behave. However, most designs are immobile
(mode at zero) and Evo-Devo robots are more likely to move
(less mass around zero) since they explore a continuum of
body plans rather than a single static guess.

3 RESULTS
In this section we present the results of our experiments2 and
indicate statistical signi�cance under the Mann-Whitney U test
where applicable.

3.1 Random search.
To get a sense of the evolutionary search space, prior to optimiza-
tion, we randomly generated one thousand robots from each group
(�gure 3). �e horizontal axes of �gure 3 measure the �tness (equa-
tion 10) of our randomly generated designs. �e top portion of this
�gure plots the histogram of relative frequencies, using equal bin
sizes between groups. �e mode is zero for both groups, meaning
that the majority of designs are immobile.

�e best possibility here is to randomly guess a good Evo robot
since this good morphology is utilized for the full 32 actuation cycles.
�is is why the best random designs are Evo robots. However, the
Evo-Devo distribution contains much less mass around zero than
the Evo distribution. It follows that it is more likely that an Evo-
Devo robot moves at all, if only temporarily, since this only requires
some interval of the many morphologies it sweeps over to be mobile.
Also note that while the total displacement may be lower in the
Evo-Devo case, since these robots ‘travel’ through a number of
di�erent morphologies, they may pass through those which run
at a higher instantaneous speed (but spend less of their lifetime in
this morphology).

2https://youtu.be/gXf2Chu4L9A directs to a video overview of our experiments.

3.2 Evolution.
�e results of the evolutionary algorithm are displayed in �gure
4a. In the earliest generations, evolution is consistent with random
search and the best Evo robots start o� slightly be�er than the
best Evo-Devo robots. However, the best Evo-Devo robots quickly
overtake the best Evo robots. At the end of optimization there is a
signi�cant di�erence between Evo and Evo-Devo run champions
(U = 122, p < 0.001).

We also chose to reevaluate Evo-Devo robots with their develop-
ment frozen at their median ontogenetic morphologies (�gure 4b).
For each robot, we measure the robot’s �tness (equation 10) at this
midlife morphology with development frozen, for two seconds. Se-
lection is completely blind to this frozen evaluation. It exists solely
for the purpose of post-evolution analysis, and serves primarily
as a sanity check to make sure Evo-Devo robots are not explicitly
utilizing their ability to grow/shrink to move faster.

Development appears to inhibit locomotion to some degree as
the best morphologies run slightly faster with development turned
o�, particularly in earlier generations. A signi�cant di�erence,
at the 0.001 level, between Evo robots and Evo-Devo robots with
development frozen at midlife, occurs a�er only 108 generations
compared to 255 generations with development enabled. Note
that the midlife morphology is not necessarily the top speed of
an Evo-Devo robot. In fact it is almost certainly not the optimal
ontogenetic form since the best body plan may occur at any point
in its continuous ontogeny, including the start and endpoints.

3.3 Closing the window.
Once an Evo-Devo robot identi�es a good body plan in its ontoge-
netic sweep, its descendants can gain �tness by ‘suppressing’ de-
velopment around the good plan through heterochronic mutations.
�is can be accomplished by incrementally closing the developmen-
tal window, the interval (sk0, sk1), for each voxel, around the good
morphology. In the limit, under a �xed environment, this process
ends with a decedent born with the good design from the start and
devoid of any developmental at all (sk0 = sk1 for all voxels). �is
phenomenon, best known as the Baldwin E�ect, is instrumental in
evolution because natural selection is a hill-climbing process and
therefore blind to needles in a haystack, good designs (local optima)
to which no gradient of increased �tness leads. �e developmental
sweep, however, alters the search space in which evolution operates,
surrounding the good design by a slope which natural selection
can climb [14].

To investigate the relationship between development and �tness,
we add up all of the voxel-level development windows to form a
individual-level summary statistic,W . We de�ne the total develop-
ment window,W , as the sum of the absolute di�erence of starting
and �nal resting lengths across the robot’s 48 voxels.

W =
48∑
k=1

abs(sk1 − sk0) (11)

Overall there is a strong negative correlation between �tness,
F , and the total development window, W , in Evo-Devo robots
(�gure 5). To achieve the highest �tness values a robot needs to
have narrow developmental windows at the voxel level. However,
this statistic doesn’t discriminate between open/closed windows

135

https://youtu.be/gXf2Chu4L9A


GECCO ’17, July 15-19, 2017, Berlin, Germany Kriegman et al.

0 500 1000 1500 2000
Generation

0

5

10

15

20

25

V
o
l-

n
o
rm

e
d

 d
is

ta
n

ce

a.
Fitness

Evo

Evo-Devo

0

5

10

15

20

25
b.

Frozen midlife

Figure 4: For thirty runs, a population of thirty robots is
evolved for two thousand generations. (a) Best of generation
�tness for Evo and Evo-Devo robots. (b)�e same robots are
reevaluated with development frozen at their midlife mor-
phology. Means are plotted with 95% bootstrapped con�-
dence intervals.

early/late in evolution. To show what sorts of development win-
dow/evolutionary time relationships eventually lead to highly �t
individuals, we grab the lineages of only the most �t individuals
at the end of evolutionary time (�gure 6). In the most �t indi-
viduals, development windows tend to �rst increase slightly in
phylogeny before decreasing to their minimum, or close nearby.
�e age objective in AFPO lowers the selection pressure on younger
individuals which allows them to explore, through larger develop-
mental windows, a larger portion of design space until someone in
the population discovers a locally optimal solution which creates a
new selection pressure for descendants with older genetic material
to ‘lock in’ or canalize this form with smaller developmental win-
dows. �ese results further suggests that development itself is not
optimal, it is only helpful in that it can lead to be�er optima down
the road once the window is closed.

3.4 �e e�ect of mutations.
In addition to the parameter-sweeping nature of its search, devel-
opmental time provides evolution with a simple mechanism for
inducing mutations with a range of magnitude of phenotypic im-
pact. �e overall mutation impact in our experiments is conveyed
in �gure 7 through 2D histograms of child and parent �tness. Re-
call that a child is created through mutation by each individual
(parent) in the current population. �ese plots include the entire
evolutionary history of all robots in every run. �ere are relatively
so few robots with negative �tness that the histograms need not
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Figure 5: �e relationship between the amount of develop-
ment at the individual level (W ) and �tness (F ). �e fastest
individuals have small developmental windows surround-
ing a fast body plan.

extend into this region since they contain practically zero density
and would appear completely white.

�e diagonal represents equal parent and child �tness, a behav-
iorally neutral mutation. Hexagons below the diagonal represent
detrimental mutations: lower child �tness relative to that of its par-
ent. Hexagons above the diagonal represent bene�cial mutations:
higher child �tness relative to that of its parent. Mutations are gen-
erally detrimental for both groups, particularly in later generations
once evolution has found a working solution. For Evo robots (�g-
ure 7a), most if not all of the mass in the marginal density of child
speed is concentrated around zero. �is means that mutations to an
Evo robot are almost certain to break the existing parent solution,
rendering a previously mobile design immobile.

�e majority of Evo-Devo children, however, are generally con-
centrated on, or just below the diagonal in �gure 7b. �is general
pa�ern holds even in later generations when evolution has found
working solutions with high �tness. It follows that mutations to
an Evo-Devo robot may be phenotypically smaller than mutations
to an Evo robot, even though they use the same mutation operator.
Furthermore, �gure 7b displays a high frequency of mutations with
a wide range of magnitude of phenotypic impact including smaller,
low-risk mutations which are useful for re�ning mobile designs; as
well as a range of larger, higher-risk mutations which occasionally
provide the high-reward of jumping into the neighborhood of a
more �t local optima at a range of distances in the �tness landscape.

Now let’s de�ne the impact of developmental mutations, M , as
the relative di�erence in child (FC ) and parent �tnesses (FP ), for
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Figure 6: Closing the window. Total development window
trajectories (in phylogeny) of the lineages of the most �t
individuals in each run. Phylogenetic time goes from le�
to right: from the oldest ancestor (randomly created) to its
most recent decedent, the current run champion.

positive �tnesses only.

M =
FC
FP
− 1; FC , FP > 0 (12)

�en the average mutational impact for early-in-the-life mutations
(any mutations that, at least in part, modify initial volumes) is
M0 = −0.29. While the average mutational impact for late-in-the-
life mutations (that modify �nal volumes) is M1 = −0.10. Although
both types of mutations are detrimental on average, later-in-life
mutations are more bene�cial (less detrimental) on average (p <
0.001). �is makes sense in a task with dependent time steps since
a child created through a late-in-life mutation will at least start
out with the same behavior as its parent and then slowly diverge
over its life. Whereas an early-in-life mutation creates a behavioral
change at t = 0.

3.5 �e necessity of development.
In a�empting to induce a needle-in-the-haystack �tness landscape,
as a proof of concept, we intentionally set the mutation rate and
scale fairly high. A low-resolution hyperparameter sweep (�gure
8) indicates that the e�cacy of ballistic development is indeed
dependent on the mutation rate: there is no signi�cant di�erence
between Evo and Evo-Devo at either very low or very high rates.
Higher �tness values are obtained through smaller mutation rates,
which raises the question: Is development useful only in its ability
to decrease the phenotypic impact of mutations? If so we might

prefer Evo robots (with a low mutation rate) since they reside in
a smaller search space. But how low should the mutation rate
be? It may in fact be di�cult to know a priori which mutation
rate is optimal. It is also important to recognize that while we use
mutation rate here to arti�cially tune the ruggedness of the �tness
landscape, in a naturally rugged landscape we presumably would
not have direct access to such an easily tunable parameter to ‘undo’,
or smooth-out the ruggedness.

Moreover, we know that there exist contexts in which devel-
opmental �exibility can permit the local speeding up of the basic,
slow process of natural selection, thanks to the Baldwin E�ect [9].
Our new data suggests that even open-loop morphological change
increases the probability of randomly �nding (and subsequently
‘locking in’) a mobile design (�gure 3), and that this probability is
increasing in the amount of change (�gure 6) even though ballistic
development and �tness are inversely correlated (�gure 5). �e
staticity of Evo robots prevents this local speed-up which can place
them at a signi�cant disadvantage in rugged �tness landscapes.

4 CONCLUSION
In this paper we introduced a minimal yet embodied model of
development in order to isolate the intrinsic e�ect of morpho-
logical change in ontogenetic time, without the confounding ef-
fects of environmental mediation. Even our simple developmental
model naturally provides a continuum in terms of the magnitude
of mutational phenotypic impact, from the very large (caused by
early-in-life developmental mutations) to the very small (caused
by late-in-life mutations). We predict that, because of this, such a
developmental system will be more evolvable than an equivalent
non-developmental system because the la�er lacks this inherent
spectrum in the magnitude of mutational impacts.

We showed that even without any sensory feedback, open-loop
development can confer evolvability because it allows evolution to
sweep over a much larger range of body plans. Our results suggest
that widening the span of the developmental sweep increases the
likelihood of stumbling across locally optimal designs otherwise
invisible to natural selection, which automatically creates a new
selection pressure to canalize development around this good form.
�is implies that species with completely blind developmental plas-
ticity tend to evolve faster and more ‘clearsightedly’ than those
without it.

Future work will involve closing the developmental feedback
loop with as li�le additional machinery as possible to determine
when and how such added complexity increases evolvability.
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