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ASSESSING LINKAGES IN STREAM HABITAT, GEOMORPHIC CONDITION, AND
BIOLOGICAL INTEGRITY USING A GENERALIZED REGRESSION NEURAL NETWORK!
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Lori Stevens®

ABSTRACT: Watershed managers often use physical geomorphic and habitat assessments in making decisions
about the biological integrity of a stream, and to reduce the cost and time for identifying stream stressors and
developing mitigation strategies. Such analysis is difficult since the complex linkages between reach-scale geo-
morphic and habitat conditions, and biological integrity are not fully understood. We evaluate the effectiveness
of a generalized regression neural network (GRNN) to predict biological integrity using physical (i.e., geomor-
phic and habitat) stream-reach assessment data. The method is first tested using geomorphic assessments to
predict habitat condition for 1,292 stream reaches from the Vermont Agency of Natural Resources. The GRNN
methodology outperforms linear regression (69% vs. 40% classified correctly) and improves slightly (70% correct)
with additional data on channel evolution. Analysis of a subset of the reaches where physical assessments are
used to predict biological integrity shows no significant linear correlation, however the GRNN predicted 48% of
the fish health data and 23% of macroinvertebrate health. Although the GRNN is superior to linear regression,
these results show linking physical and biological health remains challenging. Reasons for lack of agreement,
including spatial and temporal scale differences, are discussed. We show the GRNN to be a data-driven tool that
can assist watershed managers with large quantities of complex, nonlinear data.

(KEY TERMS: geomorphology; watershed management; artificial neural networks; generalized regression; com-
putational methods; stream habitat.)

Mathon, Bree R., Donna M. Rizzo, Michael Kline, Gretchen Alexander, Steve Fiske, Richard Langdon, and Lori
Stevens, 2013. Assessing Linkages in Stream Habitat, Geomorphic Condition, and Biological Integrity
Using a Generalized Regression Neural Network. Journal of the American Water Resources Association
(JAWRA) 49(2):415-430. DOI: 10.1111/jawr.12030

INTRODUCTION Reach-scale geomorphic and physical habitat assess-
ment data are increasingly used to identify streams
with a high environmental risk and fluvial hazard

According to a U.S. Environmental Protection (Kline and Cahoon, 2010). These reach-scale metrics,
Agency (USEPA) (2006) study, nearly half (42%) of the in combination with fish and macroinvertebrate biodi-
nation’s stream lengths are in poor biological condition. versity and abundance indices, are essential for a
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proactive adaptive watershed management approach
and for prioritizing mitigation strategies to help
reverse the impacts of human activities. Such efforts
require environmental managers to assess various
forms of information — quantitative, qualitative, and
subjective, collected at a variety of spatial (e.g., reach
and sub-reach) and temporal scales. Since physical
stream processes form the habitat, habitat assess-
ments address the physical parameters needed to
understand the relationship between fluvial processes
and aquatic communities (Schiff et al., 2008). How-
ever, while physical geomorphic characteristics and
conditions suggest strong linkages to ecosystem integ-
rity (Lammert and Allan, 1999; Roy et al., 2003;
Brierley and Fryirs, 2005; Chessman et al., 2006), the
nonlinear relationships between physical geomorphic
condition, aquatic habitat, and biological integrity are
complex and poorly understood (Sweeney et al., 2004;
Lepori et al., 2005; Chessman et al., 2006). From a
management viewpoint, these geomorphic and habitat
assessments, taken together, may be used to identify
potential physical habitat problem areas and the steps
necessary for mitigation (Kline, 2007) to improve or
maintain the biological integrity of the reach.

Habitat is linked to geomorphology and fluvial pro-
cesses (channel hydraulics, sediment transport) of a
stream reach, which are ultimately controlled by
watershed hydrology and erosional processes (Buff-
ington and Goode, 2010). Matching these physical
conditions to the biology present in the stream has
proven to be challenging. Some of these challenges
result from the fact that biological assessments have
been developed with different monitoring objectives
(e.g., evaluating the impact of polluting discharges)
than fluvial geomorphic and habitat assessments (i.e.,
looking at departures in physical processes). Another
challenge is that the temporal and spatial scale at
which the physical habitat and geomorphic conditions
are measured may not match the scale of the
water quality data and/or detailed biological indices
(i.e., indices of fish and macroinvertebrate community
integrity).

Our overall goal is to introduce a methodology that
helps mine large nonlinear datasets to improve
integrated assessments. The USEPA’s Healthy
Watershed concept views watersheds as integrated
systems that can be understood through the dynam-
ics of a variety of spatially and temporally collected
data (EPA, 2012). The USEPA as well as the State of
Vermont advocate for developing GIS-based “frame-
works for assessing and reporting on ecological
condition.” In this work, we use a least-squares gen-
eralized regression neural network (GRNN) (Specht,
1991) to examine nonlinear linkages between the
physical habitat, geomorphic condition, and the biolog-
ical integrity to assist watershed managers in making
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informed decisions about where to focus their limited
resources. We believe data-driven approaches (such as
the GRNN) are ideal for integrated assessments of
dynamic systems.

The GRNN, in particular, is powerful because it
is a least-squares regression methodology familiar
to scientists and engineers for approximating com-
plex, nonlinear relationships. However, unlike tradi-
tional regression, the best-fit polynomial (e.g.,
linear, quadratic, cubic) does not need to be known
prior to data analysis. In addition, the data-driven
nature of the algorithm enables continual updates
and large quantities of data to be reanalyzed as
understanding/condition of fluvial geomorphology
evolves. The GRNN algorithm can learn directly
from the data without human intervention (i.e., it
is a statistical model driven by data, not a physics-
based model), enabling a more adaptive management
approach.

BACKGROUND

Over the past two centuries, human impact (e.g.,
deforestation, channel straightening, urbanization)
has greatly altered Vermont streams from their origi-
nal physical condition (Vermont River Management
Program, 2009). The Vermont Agency of Natural
Resources (VTANR) River Management Program has
developed and adopted protocols for physical stream
geomorphic (Kline et al., 2007) and habitat assess-
ments (Schiff et al., 2008) throughout the state to
document and better understand how these impacts
affect stream conditions over time. There has been
much controversy in adopting any one particular
stream classification system. See, for example, dis-
cussions on the applicability of the Rosgen (1994;
1996) classification system for restoration projects
(Juracek and Fitzpatrick, 2003; Smith and Presteg-
aard, 2005; Simon et al., 2007; Roper et al., 2008).
The VTANR developed protocols to classify stream
stability (Rapid Geomorphic Assessment — RGA)
using a combination of stream classification systems
by Rosgen (1994), Montgomery and Buffington
(1997), Schumm (1977), Schumm et al. (1984), and
Simon and Hupp (1986). These protocols were nation-
ally recognized by the USEPA-COE sponsored study
of the physical stream assessment methodologies for
use in the Clean Water Act section 404 Program. The
study found that the VTANR approach deserved the
highest overall score of the 44 protocols examined
nationwide. An important contribution of the VTANR
stream classification system is the inclusion of stream
sensitivity, defined as the likelihood of a stream
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responding, through lateral and/or vertical adjust-
ment, to a watershed or local disturbance, caused by
natural events or human activity. The sensitivity is a
function of: (1) geomorphic condition and (2) the
stream’s inherent vulnerability to adjustment. Inher-
ent vulnerability is the susceptibility of a reach to
lateral and vertical adjustment as determined by the
reach’s inherent characteristics and boundary condi-
tions including its geologic, vegetation, and valley
dimension parameters. Therefore, a channel could be
in dynamic equilibrium, however it may still be
highly sensitive to adjustment due to its high inher-
ent vulnerability (Besaw et al., 2009b).

Stream physical habitat health (i.e., the ability of
the stream’s physical features to support aquatic life)
protocols (Rapid Habitat Assessment — RHA),
originally a modified version of the USEPA’s Rapid
Bioassessment Protocols, have been used in Vermont
since 2002. Kline and Cahoon (2010) note that data
from geomorphic and habitat assessments spanning a
six-year period indicate that due to widespread inci-
sion, most streams lack access to floodplains during
floods with 1- to 10-year recurrence. This has
resulted in a tremendous increase in stream power
and channel adjustment and erosion. These induced
changes likely have altered the abundance and diver-
sity of the natural biota (Allan, 2004).

Separate from the River Management Program’s
habitat assessments, the VTANR Biomonitoring and
Aquatic Studies Section (BASS) assesses the health
of biological communities in streams. The biological
assessments are based on the Biological Condition
Gradient (BCG) concept (Davies and Jackson, 2006)
that describes how biological community structure
and function respond to increased levels of stress. In
Vermont, BASS developed a biological assessment
methodology and biocriteria using empirical data
involving multiple metrics that measure the fish and
macroinvertebrate community level of departure
from “reference” or least disturbed watersheds,
resulting in an assessment rating along the BCG.
These assessments then relate measured biological
integrity to narrative language in the Vermont
Water Quality Standards, to inform VTANR water

quality planning and management activities
(VTDEC, 2004).
Several studies demonstrate a relationship

between stream geomorphic condition, physical habi-
tat, and biological integrity (Sullivan et al., 2004,
2006; Chessman et al., 2006; Sullivan and Watzin,
2008). However, the complex linkages are not well
understood, easily studied, or particularly strong, and
include many factors such as variation in fish, macro-
invertebrate, and bird species present, metrics used,
and/or spatial and temporal measurement scales
(Chessman et al., 2006; Clark et al., 2008).
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Generalized Regression Neural Network

Artificial neural network (ANN) algorithms, in
general, are used in pattern classification, pattern
completion, function approximation, prediction, opti-
mization, and system control applications among oth-
ers (Wasserman, 1993). Although the most commonly
used ANNs are either the feed-forward back-propaga-
tion network or the radial basis function neural net-
work (Govindaraju and Ramachandra, 2000; Abdalla,
2010), we use the GRNN to explore linkages between
geomorphic conditions, physical habitat, and biologi-
cal integrity for reasons stated in the Introduction.

The GRNN has extensive applications in the water
resources and hydrological fields. Several studies
found the GRNN outperformed the feed-forward back-
propagation network when forecasting intermittent
(Cigizoglu, 2005a), monthly (Cigizoglu, 2005b; Kisi,
2008), or daily (Firat, 2008) streamflow and outper-
formed radial basis function and multiple linear
regression when predicting rainfall runoff (Cigizoglu
and Alp, 2004). Turan and Yurdusev (2009) predicted
streamflow from measured upstream flow records,
while Besaw et al. (2009a) used a recurrent GRNN to
predict flow in ungauged streams. The GRNN has also
been used to estimate daily mean sea level heights
(Sertel et al., 2008); to predict water quality as a func-
tion of rainfall, surface discharge, and nutrient con-
centration (Kim and Kim, 2007); and to model river
sediment transport (Cigizoglu and Alp, 2006; Kisi
et al., 2008; Cobaner et al., 2009; Wang et al., 2009).
To the best of our knowledge, this is the first applica-
tion of the GRNN to explore the nonlinear relation-
ships between the physical (geomorphic and habitat)
conditions of a stream and its biological integrity.

STREAM ASSESSMENT DATA

The VTANR developed a three-phase system to per-
form stream geomorphic assessments. Each successive
phase is more detailed and improves knowledge about
the condition of the reach. The first phase, a remote
sensing phase, uses data obtained from topographic
maps, aerial photos, previous studies, and from very
limited field studies. Phase 1 assessment is considered
provisional, enabling large watersheds (100-150
square miles) to be assessed in a few months. Using
Phase 1 assessments, ~35% or 8,279 of Vermont’s
~23,000 stream miles have been assessed as of Sep-
tember 2009 (Kline and Cahoon, 2010).

Phase 2, or the rapid field assessment phase,
includes the RGA and habitat assessment (RHA),
where field data are collected by experts at the stream
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reach or sub-reach scale. A one-mile reach requires one
to two days to assess; and to date, 6% or 1,371 stream
miles (~2,500 stream reaches) have been assessed at
the Phase 2 level (Kline and Cahoon, 2010). The geo-
morphic condition, physical habitat condition, adjust-
ment processes, reach sensitivity, and channel
evolution stage are determined from quantitative and
qualitative field evaluation of erosion and depositional
processes, changes in geometry, and riparian land use/
land cover. Phase 2 assessments identify “at risk”
reaches and allow reaches to be flagged for protection,
restoration, or further Phase 3 assessment.

Phase 3, the survey-level field assessment phase,
requires detailed field measurements at the sub-reach
scale that allow for stream types; and adjustment
processes to be further documented and confirmed.
Quantitative measurements of channel dimension,
pattern, profile, and sediments are measured during
this level of assessment. Phase 3 assessments require
three to four days on average to survey a sub-reach
of two meander wavelengths; and approximately 60
Phase 3 studies have been conducted.

Data used in this study were obtained from
Vermont Department of Environmental Conservation
(DEC) and are available at https:/anrnode.anr.
state.vt.us/SGA/default.aspx. All Phase 2 assess-
ments, quality assured by the River Management
Program as of August 2009, that had RGA, RHA, and
channel evolution stage data were selected resulting
in 1,292 reaches (Figure 1).

Vermont Rapid Geomorphic Assessments

The assessed stream reach condition is based on
its perceived departure from reference condition. Ref-
erence condition for each reach is inferred based on
watershed zone, confinement, and valley slope from
Phase 1, as well as entrenchment, width/depth ratio,
sinuosity, channel slope, substrate d50, and bed form
collected during the Phase 2 assessment (Kline et al.,
2007). Quantification of the adjustment processes
involves an expert assigning a score between 0 (poor)
and 20 (reference) for each of the four adjustment pro-
cesses (degradation, aggradation, widening, and plan-
form change) resulting in a summed total RGA score
ranging from 0 to 80 (i.e., overall geomorphic condi-
tion of a particular stream reach); the latter is then
classified by experts into one of four categories —
poor, fair, good, or reference (Table 1).

Vermont Physical Habitat Assessments

Stream habitat assessments record physical fea-
tures believed to be key in determining aquatic
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habitat and hence the biota that inhabit it. These
data complement existing biological data and may
indicate biotic health stressors in the reach where
the biological data alone cannot explain the cause
(Schiff et al., 2008).

Vermont’s RHAs are slightly modified versions of
the USEPA’s Rapid Bioassessment Protocols (Barbour
et al., 1999). The RHAs comprise 10 parameters that
explore physical properties of the channel bed, bank,
and riparian vegetation (Table 1). Each parameter is
scored between 0 (poor) and 20 (excellent) by an
expert and then summed to obtain a total score (no
greater than 200) categorizing the reach as poor, fair,
good, or reference. The histogram of RHA scores (Fig-
ure 1) for the 1,292 reaches used is normally distrib-
uted (Shapiro-Wilkes test, W = 0.9976, p < 0.0579),
with the majority of the reach scores falling into fair
or good habitat condition.

Biological Community Integrity

The biological integrity of Vermont streams and
rivers is determined by VTANR protocols (VTDEC,
2004). Metric assessments of fish and macroinverte-
brate assemblages are used to classify streams based
on their departure from the reference condition,
which varies with stream type. To define reference
biological condition or integrity in the current bio-
monitoring protocol, VTANR biologists selected sites
with macroinvertebrate and fish data from water-
sheds that appeared minimally impacted by human
activity. These data were then used to determine bio-
logical stream type and associated numeric biological
criteria for characterizing community integrity. The
numeric criteria define the narrative criteria in the
Vermont Water Quality Standards.

Both fish and macroinvertebrate community crite-
ria quantify the five water management classes of
the Vermont Water Quality Standards, Class Al:
(Excellent) minimal impacts from human activity,
Class B1: (Very Good) minor changes from reference,
and Classes B2, B3, and A2: (Good) moderate change
from reference condition. Classes A and B denote
classifications from the Vermont Water Quality Stan-
dards and the numbers represent management types
within those classes. Biological assessments of Fair
and Poor do not meet any class standards. Metric
values falling on the threshold are hyphenated (e.g.,
Excellent-Very Good, Very Good-Good, Good-Fair,
and Fair-Poor).

VTDEC (2004) identified four categories of macroin-
vertebrate communities: Small High Gradient
Streams, Medium High Gradient Streams, Warm
Water Moderate Gradient Streams and Rivers, and
Low Gradient Slow Winders (Table 2). Few sites fall
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FIGURE 1. Map of the State of Vermont Showing the Phase 2 Locations Used in This Study. Also indicated are the 46 and
133 locations of the fish and macroinvertebrate datasets, respectively. Note: Only 1,006 of the 1,292 Phase 2 reaches used in this study are
included; the others were not part of the GIS database at the time this map was created. Histograms of Rapid Geomorphic and Rapid
Habitat Assessment (RGA and RHA) scores for the 1,292 reaches used in this study are also included.

into the latter category; as a result, biocriteria have
not yet been developed for Low Gradient Slow Wind-
ers. Currently, eight metrics are used to assess reaches
for macroinvertebrate health. These eight metrics
were selected (from over 30 metrics) because in combi-
nation they: (1) describe the structural and functional
integrity of a macroinverterbrate community; (2) dem-
onstrate the least natural variability within the refer-
ence data set; and (3) respond in a relatively
predictable manner to a variety of physical and chemi-
cal environmental stressors. Fish community health
(Table 3) uses two Vermont-calibrated Indices of Biotic
Integrity (IBI) (VIDEC, 2004). The mixed-water IBI is
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applied to streams containing five or more native fish
species and is comprised of nine metric scores that sum
to values ranging from 9 to 45 corresponding to catego-
ries ranging from Poor to Excellent (Table 3). The sec-
ond index, the coldwater IBI, applies to smaller
coldwater streams that contain two to four native spe-
cies and has six metrics with a range of 9 to 45
(Table 3). Biological and geomorphic data were not col-
lected at the same physical coordinates and not neces-
sarily in the same year. Variation in physical location
was accommodated by including all biological survey
data located within 200 m of the 1,292 Phase 2 assess-
ment locations resulting in 46 reaches for fish data and
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TABLE 1. Parameters That Comprise the Vermont Rapid Geomorphic Assessments (RGAs) and Rapid Habitat Assessments (RHAs).

Condition (Based on Total Assessment Score)

Parameters (20 Points Each) Poor Fair Good Reference
RGA 1. Degradation 28-51 52-67 68-80
2. Aggradation
3. Widening
4. Planform change
RHA 1. Epifaunal substrate/ 69-128 129-168 169-200

available cover
2. Embeddedness or
pool substrate
3. Velocity/depth patterns
or pool variability
. Sediment deposition
. Channel flow status
. Channel alteration
. Frequency of riffles/steps
or channel sinuosity
8. Bank stability
(score each bank)
9. Bank vegetative protection
(score each bank)
10. Riparian vegetative zone width
(score each side of channel)

< O U

133 for macroinvertebrate data. To retain sufficient
sample sizes, no data were excluded due to differences
in the time of the biological and geomorphic assess-
ments. If biological assessments were performed over
multiple years at the same reach location, the assess-
ment that best matched (i.e., closest to in time) the
seven-year time frame of the RGA and RHA was
selected.

METHODOLOGY

Generalized Regression Neural Network

The GRNN introduced by Donald Specht (1991) is
a parallel, one-pass network that performs least-
squares regression. To perform traditional nonlinear
regression, one assumes a particular form of the best-
fit polynomial. This is often done poorly (e.g., one
assumes a linear form for a nonlinear problem)
resulting in a poor fit between the observed data and
the assumed model and the resulting predictions.
Donald Specht took this as a challenge when design-
ing the GRNN and as a result, developed an algo-
rithm that does not require a priori knowledge for
the regression function. Instead, it bases predictions
on the probability density function (pdf) of the
response variable associated with the training data
described below (e.g., in this study the response vari-
able is the continuous RHA score or biological integ-
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rity values depending on the desired algorithm
output). The algorithm keeps track of the pdf and
assigns weights to generate an appropriate regression
curve. The data-driven nature of the algorithm is an
important feature; the GRNN algorithm can learn
directly from the data without human intervention,
enabling a more adaptive management approach.
With traditional statistics, one (presumably an
expert) selects input variables along with some model
(e.g., linear regression) believed to be a good predictor
of some predefined dependent variables. The selection
of “appropriate” input variables is often challenging.
Once “appropriate” variables have been identified, an
expert analyzes the output to determine the best
model. If the dataset changes (or is added to over
time), the analysis (expert’s selection of variables to
produce a “good” model and “best” model selection)
would begin all over.

Figure 2 shows the structure of the GRNN algo-
rithm as applied, for example, to the prediction of the
RHA scores. Many of the most popular ANN algo-
rithms in commercial software (e.g., the feed-forward
back-propagation network) require training to opti-
mize the number of hidden nodes and weight updates
before application. These algorithms can take a large
number of iterations to converge to the desired solu-
tion. As a result, these networks can be difficult to
use by people unfamiliar with its theory (or worse,
may easily over-fit data unbeknownst to the user).
One advantage of the GRNN is that it is a one-pass
algorithm; that is, it does not require training. The
weights are pre-set to values of the observed data (in
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Note: Adapted from VIDEC (2004).

"Metric details can be found at http:/www.vtwaterquality.org/bass/docs/bs_wadeablestreamla.pdf.
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our case the collected reach scale RGA parameters
and the corresponding reach-scale RHA score). In
addition, the algorithm is nonparametric (i.e., some of
the underlying assumptions necessary for traditional,
parametric statistics (e.g., continuous real-valued
data, normally distributed, etc.) may be relaxed.

The network consists of four nodal layers. The
Input Layer simply passes the n user-defined input
variables, X? = {af_ Al ,,...af '} (equivalent to the
independent variables associated with traditional
regression techniques) to the weights of the second
network layer, where p is the current input pattern.
The weights, w;;, connect the Input Layer to the
Pattern Unit Layer (e.g., w;2 connects input node x;_{
with pattern unit node I;_,, Figure 2). The weights,
w;j, are set to measured values (i.e., expert-assessed
scores for degradation, aggradation, widening, plan-
form change, or channel evolution stage) for which
there are corresponding stream-reach output (expert-
assessed RHA score). These weights do not update as
in other artificial neural network algorithms. Simi-
larly, the training output (the corresponding expert-
assessed RHA scores) are assigned to the pattern
weights, wja = y,, associated with node A of the
Summation Unit Layer. The Pattern Unit Layer has
one node, I;, for each of the k& training patterns and
calculates a distance metric (e.g., for this study the
Euclidean distance) between all sets of training
weights and the current input pattern p (Equation 1):

n

L=\ (wy—a) (1)

i=1

where j =1,2,--- k.

Here x” refers to the i*® input variable associated
with the input pattern p and w;; are the training weight
associated with the i input variable of the j*" training
pattern. The resulting, Euclidean distance, I; is passed
through an exponential activation function (Equation 2):

) = esp(54). @

where ¢ is a smoothing parameter used to optimize
the GRNN output and is the only parameter that
needs tuning in the GRNN algorithm. As o
approaches 0, the predicted network output, y, tend
to over-fit the training data. When ¢ is too large, ¥ is
smoothed and assumes the value of the sample mean.
Trial and error is required to prevent over-fitting. An
optimal value of ¢ can be found easily when the den-
sity estimate is being used in Equation (3). A general
rule for optimizing ¢ for a given number of observa-
tions is to start with ¢ close to 1.0, calculate a mean
squared error between the GRNN predictions and the
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FIGURE 2. GRNN Structure Showing the Components of the RGA and Channel Evolution Stage as Inputs Used to Predict the Total RHA Score.

data held back for validation and testing, and gradu-
ally lower ¢ until the mean squared error is suffi-
ciently low. Typically, the values range between 1.0
and 0.5. In the worst-case scenario, the algorithm
would need to iterate over six sigma values (¢ = 1.0,
0.9, 0.8, 0.7, 0.6, and 0.5), compare the associated
RMSE values, and chose the lowest. On average, a ¢
value of 0.5 was used in this work.

The third layer, Summation Unit Layer, calculates
the dot product of the output from the Pattern Units
(Equation 2) and, for node A, the corresponding y,
pattern weights. The pattern weights associated with
node B are set equal to 1 (i.e., node B calculates the
dot product between the output from the Pattern
Units and a vector of ones). The final output is the
result of dividing nodes A and B (Equation 3):

> yief(I))

J
S Tef()
J

ol

y(X) (3)

This term is derived from the conditional mean
and a nonparametric estimate for the probability den-
sity from Parzen (1962). See Specht (1991) for details.
The GRNN algorithm described in this paper was
coded in MATLAB Version 7.10.0 Release 2010a.

RESULTS

The scatter plot (Figure 3) provides a means of
looking at the raw RGA and RHA data (total summa-
rized scores for the n 1,292 individual stream
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reaches) to illustrate where RGA is high and RHA is
low and visa versa. The plot should be viewed as a
matrix to highlight areas where RGA and RHA lack
a 1:1 correlation. The linear correlation between the
1,292 expert-assigned RGA and RHA scores (Figure
3) was statistically significant and accounted for less
than half the variability (2 0.414, p < 0.05).
Figure 4 is an attempt to visualize the subset of sites
with RGA, RHA, and detailed biological data (fish or
macroinvertebrates). This is a very simple visualiza-

50 0 2 16 )
i
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= 3 200 063 24
O
o, 140
=
o
g 120
A 100 41 574 109 1
=
> 80
=
< 60
an
= 1 0
40 1 O 1 6 L ] Po-or RHA Category
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RGA Total Score (Expert)
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FIGURE 3. Correlation Between RGA and RHA Scores. The vertical
lines mark divisions between categories of Poor (0-27), Fair (28-51),
Good (52-67), and Reference (68-80) for RGA scores. The dashed
horizontal lines show the category boundaries for RHA scores, Poor
(0-68), Fair (69-128), Good (129-168), and Reference (169-200).
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FIGURE 4. Plot Showing Biological Health vs. RHA and RGA.
Results for fish at 46 Vermont stream reaches are shown in (a) and
(b). Results for macroinvertebrates at 133 Vermont stream reaches
are shown in (¢) and (d). The boxplots extend from the 25th to the
75th percentile (or first to third quartile) and the line in the middle
represents the median. The curves in (a) and (b) represent the best
fit through the median.

tion (i.e., one where data may be plotted on a 2-D
page). We show fish health as a function of RHA (Fig-
ure 4a) or RGA (Figure 4b) and macroinvertebrate
health against RHA and RGA (Figures 4c and 4d,
respectively). We have added cubic lines to Figure 4
to emphasize the high degree of nonlinear correlation
between RGA and RHA for fish health. No significant
linear correlation exists between the RHA and
either fish or macroinvertebrate community assess-
ments (¥ = 0.053, p > 0.05 and 2 = 0.0004, p > 0.05,
respectively, Figures 4a and 4c). Further, no linear
correlation was observed between RGA scores and
fish and macroinvertebrate community assessments
(r? = 0.0002, p > 0.05 and r* = 0.0026, p > 0.05,
respectively, Figures 4b and 4d).

JAWRA

Our ultimate goal, from a science and management
point of view, is to estimate biological integrity using
rapid geomorphic and habitat assessment data. How-
ever, we began this study by building on work by
Besaw et al. (2009b) and predict RHA using the RGA
data, both with and without channel evolution, sim-
ply because we have sufficient, multiple data (i.e., n =
1,292 stream reaches) to show proof-of-concept. Next,
we assess the utility of the reach-scale GRNN for pre-
dicting fish and macroinvertebrate community integ-
rity using a smaller sample of reaches (n = 46 and
n = 133, respectively). The GRNN results are summa-
rized in Table 4. The number of data, the dependent
variable (GRNN output), and the corresponding inde-
pendent variables (GRNN inputs) for each test trial
are provided. Trials are identified by the dependent
variable. For each trial, 50% of reaches from each
RHA category were selected randomly to construct
the training set, except as noted below. The remain-
ing 50% are used for validation/prediction. To assess
“error,” we report % match between the GRNN pre-
dictions (last column of Table 4). The GRNN predic-
tions may also be represented by what is known as a
confusion matrix (e.g., Figure 5b); explanation to fol-
low in statistical classification.

Linkages Between Rapid Geomorphic Assessment and
Rapid Habitat Assessment

The initial GRNN trials (Table 4) use RGA (RHA2)
and channel evolution (RHA1) as the independent
data to predict habitat assessment (RHA) scores. The
GRNN percent match was almost twice as accurate
(68.6%, Trial RHA2) as traditional linear regression.
The results improved slightly when channel evolution
data were included (69.9%, Trial RHA1). The latter is
not unexpected given the attention to channel evolu-
tion stage by experts in constructing the overall
reach-scale RGA metrics.

Figure 5a compares the predicted RHA against the
expert-assigned RHA scores. Figure 5b displays the
number of sites predicted to be in a particular RHA
category (rows of matrix) against the site’s expert-
assigned category (matrix columns). The confusion
matrix is a more comprehensive assessment of the
GRNN predictions than reporting % match of Table 4
(i.e., the matrix diagonals). The GRNN correctly pre-
dicts 69.9% of the RHA categories (195 misclassified
out of 647) compared to a 66.8% match (215 misclassi-
fied out of 647) using traditional multiple linear regres-
sion. Thirteen stream reaches categorized as poor by
VTANR experts were categorized as fair by the GRNN
and 1 reach was estimated as good. In addition, only
15 of the reference stream reaches were correctly classi-
fied; while 14 were predicted as good and 1 as fair.
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TABLE 4. Summary of GRNN Trials Highlighting Data Inputs, Output, and Their Percent Match.

Stream Reach Data Trial ID GRNN Inputs’ GRNN Output Correctly Classified/Total % Match
Original n = 1,292 reaches RHA1 Deg., Agg., Wid., PC, Total RHA 452/647 69.9
channel evolution
RHA2 Deg., Agg., Wid., PC Total RHA 445/647 68.6
Fish subset of RHA RHA3 Deg., Agg., Wid., PC, Total RHA 22/23 95.7
data n = 46 reaches channel evolution
FISH1 Deg., Agg., Wid., PC,  Fish community health 12/25 48.0
channel evolution,
total RHA
FISH2 Deg., Agg., Wid., PC,  Fish community health 10/25 40.0
channel evolution
(NO RHA)
Macroinvertebrate subset RHA4 Deg., Agg., Wid., PC, Total RHA 56/67 83.6
of RHA data n = 133 reaches channel evolution
MAC1 Deg., Agg., Wid., PC, Macroinvertebrate 16/69 23.2
channel evolution, community health
total RHA
MAC2 Deg., Agg., Wid., PC, = Macroinvertebrate 15/69 21.7
channel evolution community health
(NO RHA)
Deg., degradation; Agg., aggradation; Wid., widening; PC, planform change.
Biological Integrity Correlations ciated with detailed fish data (a 95.7% match,

For comparison purposes, the same GRNN used to
predict RHA on the 1,292 reaches (Trial RHA1) was
re-run on the subset of 46 and 133 reaches associated
with fish and macroinvertebrate assessment data
(i.e., raw data presented in Figure 4). The GRNN
correctly classified RHA for 22 of the 23 reaches asso-
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RHA Category good 1 58 134 14
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FIGURE 5. (a) Results of GRNN Predicted RHA Using Degrada-
tion, Aggradation, Widening, Planform Change, and Channel
Evolution Stage as Inputs to the Algorithm (Trial RHA1, Table 4)
Plotted Against the Expert Assigned Total RHA Score. (b) Fre-
quency of predictions after output is categorized.
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Table 4, Trial RHAS3), and 56 out of 67 (or 83.6%
match) on the subset of reaches with detailed macro-
invertebrate assessments (Table 4, Trial RHA4).

The more interesting trials, from an integrated
management perspective, are those that predict fish
and macroinvertebrate health directly. The accuracy
of the GRNN predictions for biological health (using
RGA and channel evolution stage as input data) is
much lower (40% accuracy for fish and 21.7% for
macroinvertebrates (Table 4: Trials FISH2 and
MAC2)) than the GRNN predictions of RHA (95.7
and 83.6% match for Trials RHA3 and RHA4, respec-
tively). The addition of the RHA score as an input
variable showed only slight improvement (8% for fish
and only 1.5% for macroinvertebrates) in predictions
of biological health; with the accuracy higher for fish
(48%, Trial FISH1) than that for macroinvertebrates
(23.2%, Trial MAC1).

DISCUSSION

In our attempt to demonstrate the practicality of
using a GRNN with large, complex data sets we see
that the GRNN had difficulty predicting stream
reaches in the extreme classes. For example, reaches
categorized as poor (results of Trial RHA1, Figure 5b)
by the expert were mostly predicted as fair. One pos-
sible explanation is that of the 14 poor RHA reaches,
only 3 are associated with a poor RGA score; the
remaining 9 reaches are associated with fair RGA
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scores. This limited number of poor reaches (three in
total) creates challenges when using the GRNN to
classify a reach as having “poor” habitat because
some number of data need to be used for “training”
the network; others should be used for testing/valida-
tion. We would expect the network’s prediction per-
formance for reaches with poor RHA to increase as
the number of data points with poor RHA character-
istics are entered into the VTANR database. Another
possibility is that since the RHA is more subjective
than the RGA, there is information (in the experts’
neural networks) that is currently not being used in
the GRNN. Also, the cutoffs for the habitat categori-
zation were selected prior to data collection. Now that
VTANR has a significantly large data set, the cate-
gory boundaries could be optimized (i.e., natural
breakpoints in the distribution of RHA data). Besaw
et al. (2009b) showed that the current VTANR stream
sensitivity classification may need to be adjusted
based on analysis of RGA and stream inherent vul-
nerability.

Our ultimate research goal was to explore the
GRNN'’s predictive capability in estimating biological
integrity (rather than RHA from RGA). As a result,
the GRNN trials that predict fish and macroinverte-
brate health given RGA, channel evolution stage
(Table 4, Trials FISH2 and MAC2), and RHA
(Table 4, Trials FISH1 and MAC1) are more interest-
ing from a management perspective. Using rapid
assessments to predict biological integrity might be
considered a first step in a process to focus limited
resources because the geomorphic and habitat rapid
assessment tools would have the potential to identify
or flag reaches in more immediate need of detailed
fish or macroinvertebrate field assessments to confirm
or validate reaches suspected of having impaired hab-
itat. It is interesting to note in the 2-D plots of raw
data for fish health (Figures 4a and 4b) the strong
nonlinear (cubic) correlation between RHA and RGA.
The decline in fish health for RGA and RHA classi-
fied as “Very Good” or “Excellent” is not intuitive. We
believe this to be a scaling issue. In addition, we
hypothesize that the complete lack of RGA/RHA cor-
relation with macroinvertebrate health (beyond RGA/
RHA classifications “Fair”), although due in part to
scaling issues, may be more telling of sample bias. An
analyst might be able to select (a priori) a cubic
model as the best choice for predicting fish health in
this simplified test case. However, this becomes more
challenging when an analyst must visualize/select the
shape of the plane (for the case of two dependent
variables), the volume (for three variables), or hyper-
spheres (for the four, five, and six variables of test
trials in Table 4). We view the network’s ability to
best fit a polynomial (given a data set) as a key advan-
tage over traditional generalized regression methods.

JAWRA

Another intriguing observation about the plots is
there appears to be an increasing linear relationship
between categories Poor through Good for fish and
Poor through Fair for macroinvertebrates. There
appears to be some threshold (beyond the classifica-
tion Good or Fair) at which correlation to RGA and
RHA break down (for both fish and macroinverte-
brates, respectively). The lack of linear correlation is
not entirely unexpected as the complexities between
the physical geomorphic and habitat conditions, and
biological integrity are not completely understood and
are compounded by scale incompatibilities (we believe
this is evidenced in the case for fish when we see
lower RGA and RHA scores associated with Very
Good and Excellent biological health categories), spe-
cies present, and metrics used (Chessman et al.,
2006; Clark et al., 2008). Also, in the case of macroin-
vertebrates, sampling bias can play a role in the lack
of correlation, as experts tend to seek out locations
where riffles occur (perhaps up or downstream from a
bridge where the physical assessment may not sup-
port what is found biologically).

In an attempt to improve the prediction results of
macroinvertebrate community health (trial MAC1),
we tested a suggestion from VTANR personnel and
weighed embeddedness more heavily (1-6 times) than
the other variables. The only improvement in predic-
tion occurred with a weighting of 4, when the GRNN
predicted only one more reach correctly. We suspect
that water quality information at the same locations
could improve prediction rates since it obviously has
an impact on habitat. A study is currently underway
to include water quality data and 376 reaches that
have both RGA and RHA data have been identified to
also have water quality data within a 200 m buffer.

In addition, identifying relationships between
physical and biological conditions is complicated by
the fact that experts hired to perform the stream
(RGA/RHA) assessments each come to the table with
different backgrounds and a prior knowledge. The
study presented by Besaw et al. (2009b) examined
bias and variation across expert opinion using 19 and
20 reaches in two Vermont watersheds. This was a
one-time study designed to explore the expected vari-
ance across expert opinions performing the same
assessment on the same reaches at the same time.
Limited resources prevent the same stream reaches
from being assessed by multiple experts over the
same time frame. Five experts independently exam-
ined the same stream reaches. Fifteen of the 19
reaches had classifications that were in agreement by
+ or — one category (out of 8 categories). One reach,
in particular, varied significantly from the ANN pre-
diction primarily because assessors with different
geographic backgrounds viewed culverts differently
(e.g., one weighted it as a potential problem, while
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others viewed it as a beneficial grade control). The
VTANR now has a State QA officer to review all field
assessment data for consistent interpretations; this is
a process that has improved over time. Other infor-
mation currently not available in assessments is the
assessor’s uncertainty associated with assigning a
single real-valued score to the RGA or RHA parame-
ters. Mathon (2011) created a fuzzy GRNN algorithm
that enables expert uncertainty to be incorporated
into site assessments. Ideally, an assessor might pro-
vide their “uncertainty” (a fuzzy number, hence the
fuzzy GRNN) along with their current numerical
RGA or RHA score. This would enable prediction of a
range in reach condition value that could lead to a
stream having a condition rating in more than one
category (i.e., fair/good). In addition, the biological
health assessments used in this study were collected
at different times from the physical assessments (in
some cases, several years). While it is important for
these assessments to be conducted independently to
prevent biased results, temporal gaps of several years
can result in a change in physical or biological condi-
tion and consequently a reduced correlation between
the two. Landscape history, as well as, Vermont’s
increasing population and growing infrastructure also
adds to the complexity of extracting correlations
between reach-scale physical and biological data that
only exist at one snap shot in time. However, as more
multi-date data are gathered over the years, these
relationships and change in assessments will be eas-
ier to understand.

Interestingly, King and Baker (2010) show that
community metrics may be insensitive to changes in
individual taxa or groups of taxa as to why relation-
ships between the physical environment and the bio-
logical integrity are difficult to define. Knowing
which taxa respond to stressors in the environment
will help in understanding the mechanisms driving
habitat changes. While BASS (VTANR Biomonitoring
and Aquatic Studies Section) use an IBI for assessing
fish, they are, for the most part, generalists and rela-
tively tolerant as a group; and the IBIs may be
reflecting just that for fish in Vermont. The macroin-
vertebrate assessments do include EPT, but also
include seven additional metrics believed to capture
what is important/relevant to Vermont Water Quality
Standards. The ability to more accurately predict fish
communities may be because fish are more mobile
and as habitats change, fish communities rapidly
respond, whereas macroinvertebrates take longer to
recolonize.

Clark et al. (2008) examined the lack of correlation
between geomorphic assessments and biological
assessments of six fish species showing sampling
scale incompatibility may hinder the discovery of
linkages between the physical and biological assess-
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ments. Geomorphic reach assessments are conducted
with the intent of capturing the best representation
of dominant physical processes within the reach as a
whole. Biological assessments tend to be more specific
to certain locations within a reach, especially when
water quality is not a limiting factor. The fact that
the GRNN was able to predict fish health better than
macroinvertebrate health may reflect that the fish
assessments are conducted on a scale more similar to
that of habitat assessments (RHA) than are the macr-
oinvertebrate assessments. However, macroinverte-
brate populations may be distributed more on the
basis of microhabitat than the reach-scale geomorphic
conditions. A reach-scale geomorphic framework may
include clusters of reaches with uncharacteristically
poor habitat and vice versa (Thompson et al., 2001).

The RHA data used in this study were collected
through 2007. In 2008, the VTANR implemented new
reach habitat assessment protocols. These new proto-
cols were developed to allow for more specific assess-
ment of the various stream types found in Vermont
and more precise evaluation of the key ecological
attributes and requirements for aquatic life. For
example, while the legacy RHA categorized a stream
as either low or high gradient, the new RHA allows
the assessor to select from five stream habitat types:
cascade, step-pool, plane bed, riffle-pool, or dune-rip-
ple. The new RHA uses only eight parameters; how-
ever, like the legacy RHA, each component is scored
between 0 and 20 and the total score is used to cate-
gorize the stream reach into four categories (i.e.,
poor, fair, good, or reference). We use the previous
protocol (legacy) data in this work, because the data
were readily available and provided a statistically
large data set. The new RHA protocol data may help
improve the understanding of linkages between the
physical and biological conditions.

CONCLUSIONS

The idea that physical habitat condition influences
the biological integrity of a stream seems obvious;
however, quantifying this relationship with preexist-
ing data is challenging. Although many studies have
used physical stream characteristics as a surrogate
for habitat (see Maddock, 1999 for a review), our
results show that clear linkages are difficult to con-
struct using the Vermont legacy habitat data (RHA).
Despite these challenges, the GRNN methodology is
significantly better at finding relationships between
physical assessments and biological integrity than
traditional linear regression. Recall that the GRNN
was able to correctly predict fish health in 48% of
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streams and macroinvertebrate health in 23.2% of
streams and essentially no relationship can be
explained by linear regression. The algorithm is a
generalized regression algorithm and as such will
provide comparable predictions to traditional general-
ized regression; however, a key advantage of the
GRNN is that one does not need to know the order of
the best-fit polynomial a priori. This is particularly
useful when the model predictions are multi-dimen-
sional (i.e., one wishes to predict RHA, fish, and
macroinvertebrate health simultaneously, or predict
value(s) over some larger spatial extent) making it
difficult to select or validate the best-fit model when
output cannot be visualized/plotted in two or three
dimensions. In addition, the GRNN is data-driven
(i.e., derived directly from the measurement data).
From a management point of view, this means that
the model does not need to be altered/updated as new
data are collected; and predictions will improve as
more multi-date VTANR data become available.

Although filtering the n = 1,292 Vermont stream
reaches with both RGA and RHA data for reaches
with detailed fish and macroinvertebrate data
reduced our sample sizes to n = 46 and 133, respec-
tively, we believe the results to be interesting. We
see an increasing linear trend when comparing fish
health (categories Poor through Good) to RHA and
RGA and a similar trend for macroinvertebrates (cat-
egories Poor through Fair). However, there appears
to be some threshold (beyond the classification Good
for fish) at which correlation to RGA and RHA breaks
down. We believe this to be a scaling issue as RGA
and RHA are predominantly reach-scale measure-
ments. Reach-specific water quality data (perhaps
more indicative of the watershed scale) have not yet
been added to this analysis. The lack of correlation
between macroinvertbrates and RGA or RHA (beyond
the classification Fair) is most likely due to a combi-
nation of scaling and sampling bias since experts typ-
ically seek out microhabitats within a stream. For
example, a riffle supporting a healthy macroinverte-
brate community may be classified at the reach-scale
with low RGA or RHA scores (e.g., upstream or down-
stream of bridges or culvert).

This study reaffirms that physical and geomorpho-
logical characteristics affecting biotic communities
are complex. Habitat includes many physical, chemi-
cal, and biological components. In addition, the sim-
ple indices of physical habitat at the reach scale,
such as geomorphic and habitat assessment scores,
do not capture the scales of response of fish and
macroinvertebrates; the spatial distribution of usable
habitats, size, and their connectedness are also
important. While habitat studies have been done at
various scales (Statzner and Higler, 1986; Pringle
et al., 1988; Statzner et al., 1988; Poff and Ward,
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1990; Harper et al., 1992; Palmer and Poff, 1997,
Newson et al., 1998; Padmore, 1998; Kemp et al.,
2000; Crowder and Diplas, 2000a,b; Clark et al.,
2008), few discuss the scale dependence of the mea-
surements used and how they would extrapolate to
an overall assessment of the reach or even watershed
being studied. An important question to address may
be what site-scale physical processes formed the habi-
tat features (e.g., pools and riffles) sampled for fish
and macroinvertebrates, and how are these related to
the larger scale physical processes that characterize
the fluvial geomorphic condition at the reach scale.
Until such questions are explored, spatial scale differ-
ences will continue to cloud the linkages between the
physical and biological integrity of streams. This body
of work focuses primarily on building a data-driven
tool to assist watershed managers with large quanti-
ties of complex, nonlinear data. We do not believe the
real advantages of such an algorithm will be known
until large sets of multi-scale, multi-date data become
available.
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