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Predicting Experienced Travel Time with Neural
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Abstract— The implementation of Intelligent Transportation
Systems (ITS) in recent years has resulted in the development
of systems capable of monitoring roadway conditions and
disseminating traffic information to travelers in a network.
However, the development of algorithms and methodologies
specialized in handling large amounts data for the purpose of
real-time control has lagged behind the sensing and
communication technological developments in ITS. In this
study data generated by a PARAMICS model of a real-world
freeway section is used to develop an artificial neural network
(ANN) capable of predicting experienced travel time between
two points on the transportation network. Computational
experiments demonstrate that the studied ANNs were able to
reasonably predict experienced travel time. Generally, the
study shows that the length of the time lag did not have a
statistically significant effect on ANN performance, that speed
appears to be the most influential input variable, and no
statistically significant difference in ANN performance was
observed when data from the left lane loop detector was
substituted for data from the right lane loop detector.

I. INTRODUCTION

HE implementation of Intelligent Transportation

Systems (ITS) in recent years has resulted in the
development of systems capable of monitoring roadway
conditions and disseminating traffic information to travelers
in a network. It is now possible to embed sensors in a
roadway to record traffic flow information in real-time and
to use numerous methods ranging from radio to variable
message signs (VMS) to relay traffic conditions to
motorists. However, the development of algorithms and
methodologies specialized in handling large amounts data
for the purpose of real-time control has lagged behind the
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sensing and communication technological developments in
ITS.

The goal of Dynamic Route Guidance (DRG), one of
many ITS strategies, is to recommend routes to motorists
especially when unexpected capacity reducing incidents
occur on a fransportation network. One of the many DRG
strategies, feedback control, will be the focus of this study.

Feedback control methods feed information from the
output of a system back into the system controller to
achieve a particular objective. In DRG applications, the
output signal is typically an observed travel time across a
section of the network. Numerous research efforts have
focused on the development of this type of feedback control
[11-[3]. These methods feedback information pertaining to
current travel times (for example by tracking a vehicle
through a network segment and reporting the vehicle’s
travel time) to a controller, which then strives to balance
travel times between multiple routes. However, the ability
of this methodology to balance travel times between
multiple routes degrades in the presence of congestion.
During congested flow conditions the time for a vehicle
exiting a network segment to traverse that segment is not
necessarily going to be equal to the time required for a
vehicle entering the network segment to traverse the same
distance.

The goal of this study is to design an artificial neural
network (ANN) that can predict the experienced trave] time
across a transportation network using real-time traffic
condition information (such as speed and flow) from
sensors embedded in the roadway. Experienced travel time
is the time it will take a vehicle entering a network segment
at time 7 to traverse that segment, as opposed to the
observed or current travel time which is the time it took
vehicles exiting the segment at time f to traverse the
segment.

II. ARTIFICIAL NEURAL NETWORKS AND TRAFFIC FLOW
PREDICTION

A. Introduction to ANNs

ANNs are an inductive-logic-based  adaptive
computational  technique.  Originating  from early
computational models of the human nervous system, ANNs



have become a proven tool in pattern recognition and non-
linear function mapping applications. When used to map
functions, the goal is to train an ANN to relate a set of input
vectors to a set of desired vectors, by providing the ANN
with a finite number of training input vectors with their
associated desired vectors [4].

The Multi-Layer Perceptron (MLP), one of many ANN
topologies, is constructed from multiple layers of non-linear
processing elements (PEs) that are either fully or partially
connected to the other PE layers in the network by a matrix
of weighted pathways. Initially the weights are set to
random values and then adjusted by a learning algorithm,
such as back propagation, as successive iterations of the
training data set are introduced to the network [4].

Additionally, MLP ANNSs are a stochastic modeling tool,
which suggests that unless the error surface is
excruciatingly simple, it is not probable that two similar
MLP ANN topologies initialized with different random
weights and trained on the same input data sets will result in
the same exact mapping function. It is uncertain that any
single trained network is the best solution and therefore
false conclusions could be reached by relying on the
performance of any individual network to be representative
of a topology or strategy. Therefore, rather than comparing
individual trained networks when evaluating the
effectiveness of different topologies or strategies, it would
be more accurate to compare groups of trained networks
sharing the same topology and parameters, but initialized
with different random weights [4].

Inductive logic based computational techniques can be
helpful in modeling complex systems in which the inputs
and outputs to a system are known, but the complexity of
the internal system processes prevent the creation of a
deductive model. ANNSs are also useful computational tools
when the amount of data to be analyzed would increase the
computational effort required by traditional statistical
techniques beyond practical computational limits. In this
study, a complex relationship exists between the data
collected by multiple sensors and experienced travel times.
Additionally, the thousands of data points collected in real
time from roadway sensors would require an enormous
amount’ of computational effort if traditional statistical
methods were implemenied.

B. Traffic Flow Prediction Using ANNs

Several recent investigations have studied the ability of
ANNs to predict short-term traffic conditions. Dougherty et
al.[5], Smith and Demetsky[6], and Dougherty and Cobbett
[7] used backpropagation ANNs to forecast short-term
traffic conditions, such as volumes, speed, and occupancy.
Chen and Muller{8] used dynamic ANNS to predict short-
term traffic flow under incident free and incident
conditions. Park and Rilett[9] developed ANNs for
fOrecasting multiple-period freeway link travel times, as
well as for one-step corridor travel time forecasting[10].
Additionally, Lint et al. [11] describe an approach for
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freeway travel time prediction using state-space neural
networks.

However, there are several distinguishing aspects of this
paper from previous studies. First, most of the previous
studies attempted to predict traffic conditions or travel
times in the absence of capacity incidents. In this study, the
authors explicitly attempt to predict experienced travel
times in the presence of incidents. Second, this paper
includes a comprehensive statistical analysis of the impact
of several design parameters on the quality of the ANN
predictions. Based upon the results from this statistical
analysis, conclusions are developed as to the type and
presentation format of data to an ANN to achieve reliable
predictions of experienced travel time.

In a previous study by Mark and Sadek [12], the ANNs
were trained with a data set that mimicked the continuous
output from the roadway sensors. This simulated data set
consisted of 5 minute averages of the input parameters from
5:30AM until 8PM for an 85 weekday period. While the
macroscopic computer model used in that study was
programmed to simulate capacity reducing incidents
occurring at much higher frequencies than reality, still an
overwhelming proportion of the data corresponded to non-
incident conditions, During these time periods, flow on the
network was steady state and the travel time was simple to
predict. Since the training data set consisted of relatively
few instances in which incident conditions were present, the
gradient decent algorithm used to train the ANN could still
achieve low error values for the data set as a whole even
though the spikes in travel time representing incident
conditions were not fit well. To accommodate for this
disproportion of data, specialized ANNs had to be trained
for incident and non-incident conditions. In doing so, the
specialized ANN trained to fit the peaks in travel time was
only able to predict with a percent error of 23.80%.

The percentage of data representing incident conditions in
the previous study by Mark and Sadek was about 7%. The
current study has increased this percentage to 20%, which
has allowed the training of one ANN, avoiding the need to
split the data and train specialized ANNs. The ANNs
trained in this study were, unlike the trained ANNs in the
previous study, able to reliably predict the peaks in
experienced travel time, as is discussed later. This study
also uses an improved data set generated by the microscopic
traffic simulation program PARAMICS, which resulted in a
more realistic data set than the data set created by the
macroscopic model in the previous study.

II1. EXPERIMENTAL DESIGN

A. Modeling the Test Transportation Network in
PARAMICS

PARAMICS (PARAllel MICroscopic Simulation) was
used to create a computer model of a test tranportation
network used to generate the data for ANN training, cross
validation, and testing. PARAMICS is a three-dimensional,



microscopic traffic simulation suite consisting of 5
modules: Modeler, Analyzer, Processor, Programmer, and
Estimator.

An approximately 10 mile section of 1-89 near
Burlington, VT was modeled in PARAMICS (Figure 1).
This freeway section was comprised of 2 lanes in each
direction, speed limits varying between 55 and 65 miles per
hour, and 5 exits (2 full interchanges, 2 half interchanges,
and 1 clover-leaf). Ten loop detectors, programmed to
record flow and speed data, were evenly position
approximately 1 mile apart in both the right and left lanes.

Exit 16

Exit 14 .
¥ = Approximate
Incident Location

Exit 12

Fig 1. The Modeled Transportation Network

Aerial photo overlays were used in PARAMICS modeler
to create a geometrically accurate representation of I-89. As
opposed to pervious generations of microscopic traffic
simulations that use generic road geometries, PARAMICS
is able to model the actual road geometry, resulting in a
more realistic simulation that is capable of capturing driver
behavior associated with the unique features of a specific
roadway. However, the added realism also complicates the
task of calibrating the model, since geometry parameters
must be adjusted to achieve realistic flow.

In our experience, the two primary parameters that had to
be adjusted to achieve realistic flow patterns were the stop
lines and the kerb points (PARAMICS was developed in
Scotland, hence the British spelling of curb). The stop lines,
which are specified at the beginning and end of each link,
dictate the position and angle at which vehicles enter and
leave a link. The kerb points define the physical boundary
of the road. When the simulation was run using the default
settings for these parameters, vehicles had difficulty in
making a smooth transition between links which was
indicated by severe reductions in speed at the junction
between freeway links. Both the kerb points and stop lines
were manually adjusted until vehicles could freely pass
between links without a sharp reduction in speed.

PARAMICS requires an Origin-Destination (O/D) matrix
to generate and assign trips on the network. A sub-matrix,
corresponding to the test network, was extracted using
VIPER and TP-Plus from the larger transportation planning
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model matrix developed for Chittenden County, VT. The
O/D matrix for the test transportation network consisted of
12 zones. The two most important zones are the zones that
define the external boundaries of the transportation network
at the northern and southern most extremities, zones 1 and 2
respectively. In this study, travel time is predicted for only
the south-bound traffic movement on 1-89 from zone 1 to
zone 2. The same methodology outlined in this paper could
be employed for predicting north-bound experienced travel
time, except the ANN would have to be trained using north-
bound traffic data.

To create a training data set that would result in an ANN
capable of generalization, the flow on the network was
varied. Five different levels of flow, corresponding to
roughly LOS A through LOS E, were simulated on the
southbound direction of 1-89. The level of flow was
controlled by adjusting the hourly demand in the O/D
matrix between zones 1 and 2. Additionally, merging and
diverging flow occurring at the on and off ramps were
included in the model to make the problem more realistic
and in doing so, added more complexity to the overall
traffic flow dynamics and therefore increased the difficulty
in predicting experienced travel time.

In this study all incidents occurred in the right lane. Four
categories of incidents were programmed in PARAMICS.
Type 1 incidents lasted for approximately 10 minutes and
the duration of incidents increased by 10 minute intervals
up to type 4 which lasted for 40 minutes. Five incident
locations were selected as depicted in Figure 1. Incident
locations were selected as not to be with-in close proximity
of off ramps. Evidently, through preliminary
experimentation, erratic behavior was observed when
incidents were placed within the influence area of an off
ramp. The authors attribute this erratic behavior to the lack
of an automatic diffusion feature in the PARAMICS model
[13].

B. Producing and Post-Processing of Data from
PARAMICS

After the PARAMICS model of I-89 was calibrated, the
Processor Module, which is used to execute batches of
simulations quickly, was used to run all combinations of
incident types, incident locations, and flow rates for a total
of 100 different scenarios. Fach scenario was run for 4
hours of simulation time. During the first 30 minutes the
simulation was allowed to reach steady state conditions, at
30 minutes the incident occurred, and the remainder of the 4
hours was used to recover from the incident and allow the
network to return to steady state.

Point values for speed and flow were recorded by each of
the loop detectors every time a vehicle passed.
Additionally, the travel time for each vehicle between zon¢
1 (the northern extremity of the network) and zone 2 (the
southern extremity of the network) was recorded. When an
incident occurred in the simulation, the time, location, and
type of incident was recorded.




After the 100 scenarios were simulated, the data was
post-processed in MATLAB. The speed and flow data from
the sensors, as well as the travel time data, were aggregated
and averaged over 5-minute intervals of simulation time.
Additionally a vector was created to capture incident
information. This vector used discrete symbols to describe
the incident situation on the network corresponding with the
5-minute intervals previously described. The absence of an
incident on the transportation network at a given time was
represented as a 0 value in the vector, while the presence of
an incident was represented by the incident’s categorical
type and location as described above.

C. ANN Development

The MATLAB ANN toolbox was used to develop the
multi-layer perceptron (MLP) topology used in this study.
The MLP was constructed using one hidden layer with 8
nodes and used the hyperbolic tangent as the transfer
function in both the hidden and output layers. The structure
of the MLP ANN was determined though preliminary
experimentation.

The nodes comprising the input layer enabled a time
structure to be incorporated in the ANN, by means of a
time-lag in the input data set. As illustrated in figure 2, node
1 would represent speed data from sensor 1 at time t, while
node 2 would represent speed data from sensor 1 at time t-
1. Input data pertaining to speed and flow collected by the
loop detectors was normalized between 1 and —1. Incident
data, being discrete symbolic data, was represented by a set
of binary input nodes. For example, incident type data was
represented by a set of 4 nodes. If no incident was present
at time t, the input values to the nodes was [0 0 0 0], but if,
incident type 3 was present at time t, the input values to the
nodes would be represented as [0 0 1 0]. A similar method
was used to represent incident location.

Input Data, Speed

Time Steps Input
t=5 t=4 t=3 Layer
55| [s4] [s3]—@-.
s4| [s3] [s2] @ iave
s3] [s2] [s1]— @

F‘& 2. Schematic illustrating how nodes comprising the input layer
Incorporate time-lagged variables.

The ANNs were trained using a gradient decent
backpropagation algorithm, which adapted the momentum
constant and the search step size as training progressed.
Cross validation was used to prevent over-training of the
ANN. The network trained for 1000 iterations or until the
error produced by the cross validation set exhibited a
significant increase. Both the cross validation and testing
data sets were created using the same method used to create
the training data sets, however perturbations in incident
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duration, incident location, and traffic volume were made to
ensure that the cross validation and testing data sets were
not replicas of the training data set.

IV. COMPUTATIONAL EXPERIMENTS

A. Effect of Varying the Time Lag

The objective of this experiment is to investigate the
effect of varying the time-lag incorporated into the input
data on ANN performance. In this experiment the input data
set used speed and incident information while the time lag
of the input data set was varied between 4 to 0 time steps
(which corresponds to 20 to 0 minutes of real time). The
last trial used O time steps which means that only current
data from the sensors is used as input to the ANN,

B. Influence of Input Variables

Three types of input variables were available to predict
travel time: speed, flow, and incident data. The incident
data was comprised of two discrete classification variables,
the first describing the type (i.e. duration) of the incident
and the second describing the approximate location of the
incident. The objective of this experiment is to determine
how the performance of the ANN is influenced by these
variables. Using a time lag of 4 time steps (20 minuets) the
following 6 scenarios of input variables were tested: 1)
Speed 2) Flow 3) Incident Data 4) Speed and Incident Data
5) Flow and Incident Data 6) Speed and Flow.

C. Impact of Using Data from the Left Lane Loop
Detector verses the Right Lane Loop Detector

In this study the incidents occur in the right lane. The
previous two experiments used data from the loop detector
embedding in the right lane of the freeway. The purpose of
this experiment is to investigate the ability of an ANN to
predict travel time, if data from the left sensor is used
instead of data from the right sensor. This experiment uses
the same input variables as the second experiment, expect
that data from the loop detector embedded in the left lane

are used.

D. Evaluating ANN Performance

Due to the stochastic nature of training MLP ANNSs, the
ability of a topology defined by a set of specific parameters
to map a data set is better represented by a group of similar
networks trained with different random initial weights than
by a single network. In accordance with this principle, for
all computational experiments, 20 networks differing by
only their initial random weights were trained.

The error measure used in this study was the absolute
percent error averaged over the testing data set, defined as:

< Px _Di‘
275

2 x100% (1)
N

PE ==

i



where,

P; = predicted output value from the ANN for time step i
D; = desired output value for time step i

N = number of exemplars in the test data set

V. RESULTS

Figure 3, a graph comparing actual and predicted values
for experienced travel time, clearly illustrates that the
ANNs implemented in this investigation were capable of
reasonably predicting experienced travel time. It is worth
noting, that while the predicted peak experienced travel
times do not exactly match the desired experienced travel
time values, many of the peaks are predicted with-in 1
minute of the desired experienced travel time, which is
sufficient considering the natural variation in travel time
between individual vehicles.
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Fig. 3. Graph of departure time verses experienced travel time illustrating

the ability of the ANNs studied to accurately predict experienced travel

time.

A. Effect of Varying the Time Lag

It was initially hypothesized that increasing the time lag
and therefore providing the ANN with more information
pertaining to the time structure of the data would improve
the ability of the ANN to predict experienced travel times.
However, as seen in table 1, varying the time lag had no
statistically significant impact on the ability of the ANN to
predict experienced travel times. A series of F-tests and t-
tests were used to determine statistical significant
differences and as a result, a performance category was
assigned to each trial. Performance categories with letters
that appear higher in the alphabet correspond to lower
levels of error. Trials that are assigned to the same
performance category do not exhibit statistically significant
differences in error.

This suggests that the ANNs used in this study required
little or no information about the time structure of the data,
which is surprising considering the inherent time structure
of the data. The loop detectors were distributed in space in
the computer model. Since, shock waves maove through
space over time, a temporal aspect is still incorporated in
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the input data set when no time lags are present for
individual points in space. It should be noted that by
reducing the amount of input data, the size of the ANN and
therefore the computational effort needed to train the
network are also reduced.

B. Influence of Input Variables

Table 2 clearly illustrates that the best ANN performance
is achieved when speed data are used to train the network.
The input data sets that used speed data alone and speed
data combined with incident data both produced the lowest
levels of error, 4.10% and 4.19% respectively. The input
data sets that used either flow data or flow data in
conjunction with incident data produced the highest levels
of error, 14.98% and 15.91% respectively. The input data
set using both speed and flow information produced an
error of 10.60%. Surprisingly, the data set that included
only the discrete binary information related to incident type
and location categories resulted in a trained ANN with a
percent error of 7.41%, outperforming all of the networks
that incorporated flow information.

TABLE1
EFFECT OF VARYING TIME LAG ON ANN PERFORMANCE
Time Lag, Average Performance
min. Percent Error Category

20 4.50% A
15 4.47% A
10 4.18% A
5 4.15% A

4.67% A

The reason that the ANNs trained using speed input data
and speed data in conjunction with incident data exhibited
the lowest percent error could be derived form the
relationship between travel time and speed. Travel time and
speed share a direct inverse relationship; as speed increases
travel time decreases and visa versa. Incident data did not
improve the ANN’s estimate of experienced travel time
since information about incident location and duration is
indirectly implied in the speed data. However, travel time
and flow are not as directly related; an increase in flow does
not necessarily cause an increase in travel time. During
uncongested flow conditions it is possible that an increase
in flow will not cause a decrease in speed and in turn travel
time will be unaffected. Traffic flow must exceed a
particular level before an increase in flow will decrease
speed and therefore increasing travel time. In a sense, flow
is one more order removed from travel time than speed,
therefore travel time is easier to predict from speed rather
than flow data.

C. Impact of Using Data from the Left Lane Loop
Detector verses the Right Lane Loop Detector




Table 3 compares the performance of ANNs trained
using data from the right lane loop detectors verses the
performance resulting from training ANNs using the left
lane loop detectors. With the exception of the trial that used
speed as the input to the ANN, there was no statistically
significant difference in ANN performance between the
ANNG trained using data from either the right or left lane
loop detectors.

TABLE 2
INFLUENCE OF INPUT VARIABLE ON ANN PERFORMANCE
Input Data Average Performance
Percent Error Category
Speed 4.10% A
Flow 14.98% D
Incident 7.41% B
Speed,
Incident 4.19% A
Flow, Incident 15.91% D
Speed and
Flow 10.60% c
TABLE 3

IMPACT OF USING DATA FROM THE LEFT LANE LOOP
DETECTOR VERSES THE RIGHT LANE LOOP DETECTOR ON

ANN PERFORMANCE
Average Average
Input Percent Percent Significant
Data Error Error DifTerence

Right Loop | Left Loop

Speed 4.10% 3.53% Yes
Flow 1498% 1656% No
Speed,
Tncident 4.19% 4.10% No
Flow, o o
Tncident 1591% 1538% No
Speed and
Flow 10.60% 11.67% No

VL. CONCLUSION

This study focused on furthering the development of
ANN models for predicting experienced travel times in the
presence of incidents using data describing traffic
conditions collected by a set of sensors distributed though-
out a transportation network. A MLP ANN with time-lags
incorporated into the input data set was used to relate speed,
flow, and incident information to experienced travel timed.
The following are the main conclusions from this study.

1) The absence of an automatic diffusion feature in the
PARAMICS modeler can result in erratic behavior,
especially in the proximity of off-ramps.

2) The MLP topology using time-lagged input data was capable
of predicting experienced travel times in the presence of
capacity reducing incidents.
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3)

4

5)

6)

7

8)

{1

(2]

Increasing the percentage of data corresponding to time
periods influenced by incidents greatly improved the ability
of a trained ANN to predicted experienced travel times when
compared to previous studies.

Using a discrete binary representation of the categorical
incident information improved the ability of a trained ANN
to predict experienced travel times when compared to
previous studies.

Varying the time lag incorporated into the input data set had
no statistically significant effect on the performance of the
trained ANNs.

The best ANN performance was achieved by using either
speed data or both speed and incident data as the input data
set.

The inclusion of flow data in the input data set resulted in the
highest Ievels of error in ANN performance.

In general, no statistically significant increase or decrease in
the ability of an ANN to predict experienced travel time was
observed when traffic condition information recorded by the
loop detector in the left lane was substituted for the same
information from the right lane loop detector.
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