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Abstract

This paper analyzes the relationship between current renewable energy technology costs and cumulative production, research,

development and demonstration expenditures, and other institutional influences. Combining the theoretical framework of ‘learning

by doing’ and developments in ‘learning by searching’ with the fields of organizational learning and institutional economics offers a

complete methodological framework to examine the underlying capital cost trajectory when developing electricity cost estimates

used in energy policy planning models. Sensitivities of the learning rates for global wind and solar photovoltaic technologies to

changes in the model parameters are tested. The implications of the results indicate that institutional policy instruments play an

important role for these technologies to achieve cost reductions and further market adoption.

Published by Elsevier Ltd.
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1. Introduction

Changes in the electricity sector, international con-
cern over climate change, and domestic concerns about
energy security provide opportunities for renewable
energy sources to increase their market share. Forecasts
of renewable energy market penetration rates range
from highly optimistic judgments to historical trend
extrapolation. One particular analytical shortcoming is
the linkage between research, development and demon-
stration (RD&D) investment and future renewable
energy production costs. Without institutional support,
e front matter Published by Elsevier Ltd.
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emerging energy technologies are limited by their
financial costs from penetrating the commercial market.
RD&D expenditures allocated today will shape the
development pathways for energy production methods
for decades to come (Nakićenović et al., 1998; Margolis
and Kammen, 1999a).

Contrary to growing energy security concerns, the
renewable energy sector in the US continues to suffer
from declining real public RD&D investments (Margolis
and Kammen, 1999a, b; McVeigh et al., 1999). Fig. 1
illustrates US government RD&D expenditures for solar
photovoltaic (PV) and wind compared with the 26
International Energy Agency (IEA) member countries.
Due in part to minimal RD&D investment and
continued subsidies of fossil fuel and nuclear technolo-
gies, the US installed capacity of renewable power has
remained far below levels analysts believed would be in
place by the early 21st century (McVeigh et al., 1999).
Wind power generating capacity, for example, was
projected by the Committee on Nuclear and Alternative
Energy Systems in 1979 to reach 45,000 megawatts

www.elsevier.com/locate/enpol
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Fig. 1. Government RD&D expenditures of IEA countries and the US

for wind and solar PV technology (IEA, 2002; EIA, 2001; BEA, 2004).
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Fig. 2. Select annual energy RD&D allocation in the US (IEA, 2002;

EIA, 2001; BEA, 2004).
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Fig. 3. Select cumulative energy RD&D allocation in the US (IEA,

2002; EIA, 2001; BEA, 2004).
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Fig. 4. Wind and PV energy RD&D in the US, Denmark, and Japan

(IEA, 2002; EIA, 2001).
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(MW) by 1995 and 140,000MW by 2000 (McVeigh
et al., 1999). Analysts in the private sector produced
similar scenarios of installed capacity for 2000 ranging
between 17,200 and 240,600MW (GE, 1977). The actual
wind power generating capacity in the US in 1995 and
2000, however, was only 1770 and 2554MW, respec-
tively (AWEA, 2001; IEA, 2001). Relative to the
capacity in 2000, the US saw strong growth in wind
capacity installations with total capacity reaching
6366MW by 2003 (BTM Consult ApS, 2004).

Fig. 2 illustrates the dramatic declines in US RD&D
investment for energy technologies, both renewable and
nonrenewable, during the 1980s. The renewed free-
market ideology of this era called into question the need
for continued federal support of energy technologies in
general. However, the market domination of nonrenew-
able energy technologies was reinforced by electricity
price subsidies and declines in world fuel prices, further
biasing RD&D investments toward tried and true
technologies. Analysts arguing for the merits of energy
RD&D for nonrenewable over renewable sources often
base their argument on energy price (e.g. $ per kilowatt-
hour (kWh)) reductions rather than production cost
(e.g. $ per kilowatt) improvements. This fails to consider
the significant role that price subsidies and falling fossil
fuel prices had on traditional energy prices—leading
many to denounce federal renewable energy technology
RD&D policies (McVeigh et al., 1999).

The nonrenewable and nuclear bias is most striking in
Fig. 3. Annual RD&D expenditures have decreased for
all energy technologies; however, the cumulative nature
of RD&D-derived knowledge has led in part to the
limited utility scale deployment of renewable energy
technologies over the last few decades.

The leadership position the US once enjoyed in
renewables in the wake of the 1970s oil crises
was lost in the face of low real oil and gas prices
and a subsequent lack of political priority. Japan is
largely dominant in the PV market, with the US PV
industry having moved toward exporting technology to
developing countries, low power niche applications,
and other remote power applications (Chapman and
Erickson, 1995). Following the ‘‘Great California
Wind Rush’’ of the 1980s (Asmus, 2001, p. 13),
the US also lost considerable market share in wind
power to northern Europe, particularly to Denmark.
Fig. 4 illustrates the relative levels of energy RD&D
these technologies received in the US, Denmark and
Japan.
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In both Japan and Denmark, the successful applica-
tion of PV and wind energy production is due, in part, to
sustained public investment (Watanabe, 1995a; Neij,
1999). Japan’s Ministry of International Trade and
Industry, for example, pursued a technology policy that
stimulated industry-level innovation for PV. By apply-
ing federal RD&D funds more directly to industry,
Japan created a classic example of a ‘‘virtuous cycle’’
between RD&D, market growth, and production price
reduction (Watanabe et al., 2000, p. 300). Denmark
followed a similar pathway by sustaining government
support in a myriad of forms for private industry
(Christiansson, 1995; Neij, 1997, 1999).

To explore this relationship between RD&D invest-
ment, energy cost reduction, and market penetration,
this paper estimates energy cost as a function of
cumulative installed capacity (a learning by doing
factor) and cumulative RD&D expenditures (a learning
by searching factor). The introduction of RD&D within
a two-factor experience curve is a relatively new
development in the traditional learning by doing
literature, experiencing a flurry of recent research (e.g.
Miketa and Schrattenholzer, 2004; Barreto, 2001; Cory
et al., 1999; Kobos, 2002a, b, c; Kouvaritakis et al.,
2000; Schrattenholzer, 2000; Schrattenholzer and Ko-
bos, 2000; Watanabe, 1995a, b, 2000; Watanabe et al.,
2000, 2001; Wene, 2000). This study builds, in parti-
cular, on the Kouvaritakis et al. (2000) model,
incorporating an extensive renewable energy technology
database developed with the wind and solar energy
departments at Sandia National Laboratories in Albu-
querque, New Mexico.

Results yield experience curve parameters for cumu-
lative capacity and RD&D expenditures, estimated with
both a time lag between initial RD&D investment and
the first occurrence of cost reductions, and an RD&D
knowledge depreciation factor. This second effect can
also be considered as a rate of forgetting (Miketa and
Schrattenholzer, 2004; Schrattenholzer and Kobos,
2000; Kouvaritakis et al., 2000; Argote, 1999; Li and
Rajagopalan, 1998). The experience curves form the
basis for scenario analysis of cost reductions and market
penetration for wind and PV technology, and a
comparison to the Renewable Energy Technology
Characterizations report (EPRI and DOE, 1997) and
other learning curve-based, policy-oriented projects.
2. Modeling learning in energy production systems

Institutions are broadly defined by economists and
innovation theorists as social, political, and economic
organizations that determine the working environment
for systems to develop within. Institutional economists
emphasize the role that institutions play on the out-
comes of economic operations more than their neoclas-
sical-school counterparts (Edquist and Johnson, 1997;
Hodgson, 1989; Horner, 1989, Myrdal, 1944, 1972).
Ayres (1957), as cited by Samuels (1995) described the
framework of institutional economists:

The crux of the institutionalist position, its ‘object of
dissent’, is ‘the conception of the market as the
guiding mechanism of the economy, or, more
broadly, the conception of the economy as organized
and guided by the market. It simply is not true that
scarce resources are allocated among alternative uses
by the market. The real determination of whatever
allocation occurs in any society is the organizational
structure of that society—in short, its institutions.’ (p.
571)

Indeed, Nelson (1995) reiterates how important an
industry’s working environment is when examining
technology development and cycles. For instance, the
direction of domestic technology innovation can be
influenced by knowledge spillovers due to international
trade, the flexibility and ease of information flow from
the university system, and the structure and patent-
making ability of the legal system. These institutional
dynamics can vary widely across countries, both within
and across different development levels. As such, global
rates of technology development do not always imply
similar rates of technology diffusion in particular
domestic markets.

The types of institutions influencing innovation, and
ultimately technology diffusion, have been categorized
as horizontal, nonmarket, and vertical (Reddy et al.,
1991). Horizontal institutions include those in which
large technical interdependencies exist between products
or organizations. Positive feedbacks can emerge between
horizontal institutions as, for instance, RD&D in one
industry can lead to innovation or increased market
potential in the other. In renewable energy technology,
horizontal manufacturing structures may be necessary
to successfully penetrate the market. For example,
energy efficient home construction would benefit from
well-designed solar thermal water heating systems.

Nonmarket institutions are designed for goals not
explicitly focused on short-run profits. These include
professional societies, governmental agencies, and uni-
versity-level research centers. These institutions often
provide the necessary basic research and generic market
promotion for incubating new technologies. They are
often designed as subsidies to industry development and
their effectiveness is often dependent on political goals
and agendas when ‘‘society has found it necessary to
supplement the usual market mechanism by additional
institutions’’ (Mokyr, 1990, p. 181). For example, the
political environment behind Japanese government
support for PV innovation was critical in developing
the inter-industry partnerships, basic public research,
and broad-based market promotion for this fledgling
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industry (Watanabe et al., 2000). In particular, uni-
versities provide the basic research that benefits all
industry participants, and serves as the training ground
for future scientists and industry leaders. The generation
of this ‘human capital’ has been an important compo-
nent of more recent theories of economic growth (Lucas,
1988; Mankiw et al., 1992).

Lastly, vertical institutions strive to solidify the
connection between research and innovation assets and
a tangible product. For instance, the development of the
defense sector, from the mine to the missile, is a
prominent display of a vertical institution at work.
G.N. von Tunzelmann (1995) describes how the defense
sector of the former Soviet Union successfully used a
linear, vertical segmentation (institution) model. The
success of this sector relied heavily on the mission-
oriented, political underpinning of the organization, and
the unique willingness of both the defense sector and
political powers to fill the gaps in civilian sectors
necessary to induce user–producer interaction.

Government and other organizing entities can often
work to administer a coordination system. Fig. 5
illustrates a conceptual framework for learning between
individuals (e.g. workers and groups of workers) and the
organization as a whole. The solid arrows represent
flows of knowledge spillovers; the dashed arrows
represent knowledge feedbacks. These feedbacks rein-
force the role of knowledge stock solidarity (standardi-
zation) and quality control. For example, a knowledge
spillover or ‘feed forward’ from the organizational level
to the individual level can include implicit on-the-job
training. While a feedback from this knowledge
transfer (generation) would include suggestions and
discussions, these individuals have with the management
directing the organizational training programs and work
environments.
Group / Individual OrganizationInstitution

Institutional 

Framework 

Organizational

Learning

Learning by 

Doing

Positive Feed Forward

Fig. 5. A dynamic process of organizational learning (adapted from

Crossan et al., 1999).
Along these same lines, organizations, firms, and
other actors learn how to produce goods and services
more efficiently over time as actors move through a
‘‘learning cycle’’ (Zangwill and Kantor, 1998, p. 910). A
learning cycle takes place over a period of time where
management takes action to improve the production
process, observe the results of the action, and learn from
these observations to further improve the process. For
energy technology this means the gradual adoption (or
acceptance) of a standard method of energy technology
production, and coordinating the mechanisms between
various institutions where each may be on a unique
learning trajectory (Cohendet and Llerena, 1997).

Governments and laws may be one institution that
can promote the formation and stability of these links,
but so may professional organizations, professional
societies, university to business linkages, and other
collaborative efforts to consolidate research efforts
(Reddy et al., 1991). Specifically, the long delay of
direct returns from RD&D and the public good nature
of knowledge spillovers can create a significant dis-
connect between their costs and benefits. This discon-
nect calls for more formal feedback structures between
RD&D producers and consumers (Sloth and Lundvall,
1997). The formal structures of government action and
the existence of contracts are two methods used to
establish and maintain links between the actors in a
network or general system. Without these formal
structures guarding the links, the necessary levels of
efficiency may not materialize through learning and
collaboration for a given technology. A technology and
the system that promotes it may then enter a vicious
cycle, or no cycle at all, whereby market diffusion may
prove impossible.

Market diffusion for emerging energy technologies—
the last step in the product chain from concept to
consumer—is also a dynamic process with feedback
effects. Sonis (1992) thoroughly describes the interre-
lated nature of market diffusion, competition, and
dynamic processes through several major types of
factors: the adopters, entrepreneurs, alternatives to the
commonplace, and the existence of an active environ-
ment. The adopters, in the context of renewable energy,
are both the consumers and producers of the energy.
The consumers must demand the energy for ‘green’
purposes, economic incentives, or other reasons. The
producers (often sharing the role of the entrepreneurs)
must convert the innovations in renewable energy
technology into viable choices for consumers to use. In
short, the entrepreneurs must produce a viable set of
alternatives to the mainstream methods of energy
production that can compete in the face of price-
conscious consumers for electricity generation. The
presence of a conducive, active environment for this
process to take place contributes to successful market
diffusion. Institutional feedbacks contribute to the
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technology’s diffusion throughout the market by mov-
ing to or keeping the technology in a virtuous cycle.

Lastly, market diffusion is not preordained simply by
the presence of a network; whether through RD&D,
governmental initiative, or inter-industry ties (Arthur,
1988, 1989). Robertson et al. (1996) argue that while
networks can, and often do, allow ample opportunity
for market diffusion of innovative technologies, the role
of strong information links between the industries are
crucial to allow for such opportunities to materialize.
Without durable links between the nodes of the
network, relatively weaker institutional constraints
may be sufficient to break the links between innovators
and erode the cyclic nature of the system. Specifically, if
RD&D funding and information flows are not strong
enough between, for example, national energy labora-
tories in the US, then nonrenewable energy interests and
politics may be sufficient to erode learning effects, and
consequentially the market potential of renewable
energy technologies for the US energy market.
2.1. Learning by doing and measuring technology cost

trajectories

Conceptually, the progression of cost innovations
through time move in steps due to technological
breakthroughs at the component level, while at the
same time progressing smoothly when analyzing the
technology as a whole. A common framework used to
conceptualize the production cost and market price of a
technology through time is a type of cost curve,
illustrated in Fig. 6. The declining cost trend represents
incremental cost improvements, or ‘incremental innova-
tion’. In contrast, the four general stages of a
technology’s pricing development include the develop-
ment, price umbrella, shakeout and stability stages.
P
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Fig. 6. Conceptual distinction between energy production cost and the

subsequent price (adapted from Boston Consulting Group, 1968).
These represent potential trends in the difference
between the technology’s cost and the market pricing
strategy for the developing industry. Because the
underlying cost trend is believed to be relatively stable,
as well as the price/cost ratio, cost curves are amenable
to deterministic modeling.1

An evolving technique to estimate these cost curves is
learning or experience curve analysis. An experience
curve describes the relationship between cumulative
output and per unit cost of a technology. As the
cumulative production capacity increases, the producer
learns how to streamline the manufacturing process
thereby lowering the cost per unit of output. This type of
relationship between quantity and costs was first
discussed by Wright (1936). Additionally, the notion
of ‘learning by doing’ was stated explicitly by Arrow
(1962) and also builds on the work of the Boston
Consulting Group (1968). Many economists have since
built on this type of framework. Specifically, Muth
(1986) and Venezia (1985) analyzed theories of the
experience curve based on the random search of
technological possibilities within a given population.
Recent contributions by Miketa and Schrattenholzer
(2004), McDonald and Schrattenholzer (2001), Schrat-
tenholzer (2000), Wene (2000), Watanabe (1995b),
Watanabe et al. (2000), Neij (1997, 1999), and others
have applied the learning curve framework to energy
technologies.

In this context, the following equations describe the
methods used to quantify the learning processes
observed in solar and wind energy. Eq. (1) quantifies a
standard experience curve relationship between cumu-
lative capacity of technology i (CCi) and per-unit cost
(Costt;i), where Y i captures capital costs at initial levels
of installed energy capacity.

Costt;iðCCiÞ ¼ Y i � CC�ai

t;i : (1)

Cumulative capacity as a single variable represents
several cost reducing variables, including materials
research, economies of scale, increasing skill in the
labor force, and implementing an overall RD&D
investment. The parameter ai captures a technology-
specific elasticity estimate. A progress ratio ð0oPRio1Þ
and corresponding learning rate ðLRiÞ can then be
calculated as:

PRi ¼ 2�ai ; (2)

LRi ¼ 1� PRi: (3)

A progress ratio of 80% implies that for every
doubling of capacity, costs per unit of output decrease
1The price may also be modeled as a proxy for technological

learning, however, known or assumed profit margins and the ‘breaks’

between the market stages including the development, price umbrella,

shakeout and stability stages are important to recognize.
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by 20%.2 This represents a learning rate, or ‘learning by
doing’. For example, Fig. 7 highlights the results of an
experience curve estimate for PV modules worldwide
from an analysis by Harmon (2000) where the learning
rate was estimated to be 20.2%. This learning rate
representation has become a standard in the literature to
represent experience curve phenomena, which generally
allows one to compare learning processes between
studies.

The independent variable of Costt;i can be measured
as production cost, installed cost, user cost, or in some
cases price. Each has its own assumptions that are
important to clarify for cross-technology and cross-
country comparisons. For this study, a capital cost
estimate measured as dollars per kW (kilowatt) is used.
Energy cost in dollars per kWh is also a popular metric
used to track the cost of energy generation between
technologies. This cost metric, however, is problematic
due to a large variance in the financial assumptions built
into the levelized energy cost figures. For instance, the
discount rate, system efficiency, system lifetime, and
daily power output can vary dramatically across studies.
A $/kW metric is not without inconsistency. Govern-
ment subsidies and other strategic market influences
clearly distort the role of technological progress in the
evolution of electricity costs. However, a $/kW metric
most closely captures the nature of learning by doing in
the production process as postulated by Arrow (1962).
2.2. Two factor experience curves: technological learning

and the introduction of RD&D

Until recently, the concept of learning in the
experience curve framework represented an informal
composite of variables that generally reduce production
costs (Neij, 1997). Clearly the reduction of costs can
occur through a number of separable parameters. The
effect of RD&D investment on cost reduction (and
2The relative cost for each doubling of cumulative installed capacity

is (modified formula adapted from Neij, 1997) ðCostðCCÞ1 �

CostðCCÞ2Þ=CostðCCÞ1 ¼ 12ððY �ð2CC1Þ
a
Þ=ðY �CCa

1ÞÞ ¼ 122a:
ultimate market diffusion) through a knowledge stock
effect has been of particular interest from a public policy
stance. McDonald and Schrattenholzer (2001), in
complementary fashion to Watanabe (1995a, b; 1999)
and Watanabe et al. (2000), call for the inclusion of an
RD&D proxy on cost estimates. Additionally, the
Union of Concerned Scientists (1999) note, ‘‘most
renewable technologies are likely to experience cost
reductions as a result of not only learning y but also of
research and development and of growth in the
international market’’ (p. 8).

In the past, policy makers have estimated an RD&D
effect as a constant percentage of total expenditures
allocated to RD&D with a limited focus on the learning
phenomenon. In contrast, Miketa and Schrattenholzer
(2004), Klaassen and Miketa (2002), Kobos
(2002a, b, c), Criqui et al. (2000), Kouvaritakis et al.
(2000), Cory et al. (1999) and others explicitly incorpo-
rate R&D or RD&D expenditures into a two-factor
experience curve in a similar manner to that of
cumulative capacity in the one-factor experience curve.

Eq. (4) illustrates the two-factor experience curve
relationship between cumulative capacity of technology
i (CCt;i) and cumulative knowledge stock of technology i

(KSt;i) on the per-unit cost (Costt;i).

Costt;i ¼ Y t;i � ðCC�ai

t;i � KS�bi

t;i Þ: (4)

Taking the logarithm of this functional form specifies
both a learning by doing elasticity (ai), and a learning by
searching elasticity (bi).

Including RD&D directly in the learning function
presents several analytical challenges. First, RD&D data
often prove difficult to accurately measure and obtain.
Industry-specific data, in particular, is scarce. State and
national-level data is available from the National
Science Foundation, the Energy Information Adminis-
tration (EIA), the International Energy Agency (IEA),
and the various national US energy laboratories
including Sandia National Laboratories and the Na-
tional Renewable Energy Laboratory. The EIA, for
example, maintains data on the annual additions of
generating capacity for both renewable and nonrenew-
able energy technologies. They also maintain data on
state, national, and worldwide energy prices, estimated
supply and demand of energy by type, and a large
amount of literature specific to RD&D and energy
technologies. Additionally, the IEA maintains a coun-
try-specific energy RD&D database available on their
website (IEA, 2002).

A second analytical challenge is that RD&D from
past years is likely to have much less influence on cost
reductions of present technology. Technological
turnover in the form of modifications or complete
restructuring must be addressed. For example, the
RD&D expenditures and applicable knowledge gained
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in developing optimal silicone cell fabrication techniques
for solar photovoltaics would not offer much additional,
new knowledge, or cost reductions to more recent
developments in solar PV systems (Ruby and Gee,
2001). Therefore, a knowledge depreciation factor or
‘‘rate of y technology obsolescence’’ should be
included in the learning effects on cost reductions
(Watanabe et al., 2000, p. 301; Argote, 1999). Li and
Rajagopalan (1998) also suggest using knowledge
depreciation in learning curve analysis. They hypothe-
size the wide range of learning rates between and even
within industries may be due to differing knowledge
depreciation rates. Additionally, the length of time lags
between RD&D and commercial deployment is of
significant interest to both industry and academia
(Miketa and Schrattenholzer, 2004; Li and Rajagopa-
lan, 1998; Watanabe et al., 2000). McDonald and
Schrattenholzer (2001) emphasize the importance of
the knowledge depreciation rate and location on the
experience curve for a firm when forecasting cost
reductions. For example, a technology such as wind
energy can have a doubling of capacity and subsequent
potential cost reductions within a shorter time frame
than could coal-fired power plants, even if the two
learning rates are the same.

To help account for the dynamic nature of RD&D
investment, a time lag between initial RD&D and
subsequent cost reductions is included in this analysis.
Necessary econometric tests are utilized to evaluate
potential serial correlation and multicollinearity issues
common to time series analyses. Eq. (5) illustrates the
annual calculation for the technology-specific knowl-
edge stock at time tþ 1 for technology i based on the
knowledge stock at time t; a rate of knowledge stock
depreciation ðrÞ; and RD&D investment lagged by the
time between innovation and commercialization ðgÞ:

KStþ1;i ¼ KSt;i � ð1� riÞ þ ðRDDt�g;iÞ: (5)

Parameters of Eq. (4) are estimated assuming a Cobb-
Douglas functional form in order to maintain a
consistency with the one-factor experience curve. The
choice of the Cobb–Douglas form, despite its ability to
easily analyze quantitative relationships, has sparked
some debate (Kouvaritakis et al., 2000; Schrattenholzer,
2000). Therefore, the choice of this functional form
should be considered a starting point for a more
complex, or modified interpretation of RD&D in the
learning process.3
3To its credit, a learning by doing framework using the Cobb-

Douglas functional form assesses the cost reductions for the average

change in installed capacity or knowledge stock, analogous to elasticity

analysis used in many forms of energy modeling. For a more detailed

discussion of the results using the translog functional form, see Kobos

(2002b).
3. Learning parameter estimates for wind and solar

photovoltaic technologies

The following sections outline the procedures and
data sources employed in the experience curve analysis
for each technology. Results are then compared to the
literature and form the basis for scenario analysis.
Estimation of the cost curves and resulting learning
elasticities was based on the ordinary least-squares
method of regression analysis. Data were examined for
serial correlation and multicollinearity.

3.1. Wind

Fig. 8 illustrates worldwide cumulative wind energy
installations through 2000 from a Sandia National
Laboratories wind database.4 In addition to this
installed capacity data, the wind analysis uses the IEA
(2002) energy technology RD&D database, EIA (2001)
statistics, as well as cost data from a cooperative data set
employed by members of the International Institute for
Applied Systems Analysis (Miketa and Schrattenholzer,
2004; Criqui, 2000).

The base case assumes a two-factor experience
curve with a 5-year time lag and 2.5% annual
depreciation factor. Results for the learning by doing
and learning by searching rates include a 14.2%
decrease in costs for every doubling of installed capacity
and an 18.0% decrease in costs for every doubling of
RD&D.5

Scenarios around the base case include ranging the
time lag from 3 to 6 years. A 3–5 year time lag represents
the time between the Department of Energy’s Advanced
Wind Turbine program’s initiation in 1990, and their,
‘‘goal of developing more competitive machines for the
1993�1995 time period’’ (Poore, 1997, p. 1). This range
is generally accepted among analysts, but may vary
widely according to the project-specific nature of the
RD&D (Cohen, 2002). For instance, a recent report by
the European Wind Energy Association EWEA and
Greenpeace International (1999) indicates that Eur-
opean wind research project goals may have a 6-year
time lag from RD&D expenditure to commercially
viable technology available in the marketplace. Simi-
larly, the depreciation factors can be varied in line with
other studies (e.g. Criqui et al., 2000). The annual
depreciation factors were varied as 0, 2.5, 5, and 10%,
illustrating degrees of ‘forgetting’ in the RD&D-based
knowledge stock variable.
4The Sandia National Laboratories (SNL) (2001) wind database is

derived from the IEA Wind Energy Annual Report (IEA, various

issues) and Windpower Monthly (various issues).
5The adjusted R2 value for the base case was 0.947. The Durbin

Watson statistic was 1.324, indicating no serial correlation. The t-

statistics for the learning by doing (ai) and learning by searching (bi)

elasticities presented in Eq. (4) were �5.627 and �1.444, respectively.
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Table 1 summarizes the base case (in bold) and
scenario results. Any scenarios that do not meet all the
statistical acceptance criteria are highlighted in italics,
including criteria for t-statistics on parameter estimates,
the Durbin Watson (DW) test statistic for serial
correlation, and the Variance Inflation Factor (VIF)
test for multicollinearity.6 For perspective, the 0–6-year
time lag scenarios’ results (including all deprecation rate
scenarios) for the learning by doing and learning by
searching parameters ranged from 12.3 to 16.8% and 4.9
to 25.7%, respectively. Increasing the depreciation rate
from 0 to 0.10 changed the learning by doing and
learning by searching percents by 1.4–3.7, and �0.7 to
�16.0 percentage points, respectively.

While the time lag and knowledge stock depreciation
inputs for the base case scenario were chosen to
represent the range of time lag and depreciation
inputs considered in Table 1, the resulting learning
elasticities are somewhat of an aggressive finding relative
to those presented in other studies. For example,
Klaassen and Miketa (2002) find that for select
European countries, wind energy technology two-factor
learning by doing and by searching rates are 5.4% and
12.6%, respectively. Miketa and Schrattenholzer (2004)
report wind energy technology two- factor learning by
doing and by searching rates of 9.7% and 10%,
respectively. Kouvaritakis et al. (2000) illustrate a
learning by doing rate of 16% and a learning by
searching rate of 7%, whereas Criqui et al. (2000)
illustrate similar rates of 16.4% and 4.4%.
6Acceptance criteria include scenarios with t-statistics for learning

by doing and learning by searching parameters greater than the 90%

level of significance, 1:255oDWo2:745 (indicating no serial correla-

tion), and VIF p10 (indicating no strong multicollinearity) (See

Kobos, 2002b).
3.2. Solar photovoltaics

Capacity data for solar PV technology are most often
based on cumulative shipments of cells and modules.7

For example, the learning rate for the Renewable
Energy Technology Characterizations report is based
on the capacity (MW) of modules shipped (EPRI and
DOE, 1997). Additionally, the data and information
compiled in Paul Maycock’s data books (2001a, b), his
PV News publication, and previous work (Maycock and
Wakefield, 1975) are used in many other solar PV cost,
learning, and experience curve studies including Chap-
man and Erickson (1995), Gee and Ciszek (1996),
Harmon (2000), Hammond and Turpin (1997), Flavin
and O’Meara (1998), Brown (2000), Ricaud (2000),
Handleman (2001) and Witt (2001).

The relative levels of PV cells and modules installed
and shipped in the world have increased dramatically
over the last few decades. Fig. 9 illustrates the shipment
trends in the US, Japan, Europe, and the world
cumulative total over the last few decades. Detailed
data at the country-level was not available until 1988, as
represented by the divergence in Fig. 9.

In regards to cost, the manufacturer’s price is often
used. The cost proxy data comes from two central
reports by Paul Maycock (2001a, b) that assume a
constant profit margin in the price data—thereby
stabilizing market price swings. To estimate learning
by searching, the analysis uses the IEA (2002) energy
technology RD&D database and the EIA (2001)
statistics at the worldwide level.

Similar to the wind analysis, the data was used to
estimate a two-factor experience curve. The base case
assumes a 3-year time lag and 10% depreciation factor,
assumptions consistent with other analyses (Watanabe
et al., 2000; Criqui et al., 2000). Base case results for the
learning by doing and learning by searching rates are
18.4% and 14.3%, respectively, summarized in Table 2.
The solar PV data exhibited serial correlation, and
therefore was adjusted using an autoregressive proce-
dure of the first order and retested with the Lagrange
Multiplier (LM) test.

Sensitivity analysis on the time lag assumption ranges
from 3 to 5 years based on the 3 year time lag analysis of
Watanabe et al. (2000). Depreciation factors were also
varied as 0%, 2.5%, 5%, and 10% per year for the full
analysis building on the obsolescence rate concept of
Watanabe et al. (2000). The results of the sensitivity
analysis indicate that only the 3 year, 10% depreciation
rate scenario meets all the statistical cutoff criteria.8 For
7Data reporting the cumulative MW shipped may not distinguish

between modules and cells. For the analysis, total MW data is required

and so MW represents cells and modules shipped.
8The remaining 3-year and all of the 4-year lag scenario results

yielded VIF values 410, above the general VIFp10 cutoff criteria for

multicollinearity, an indication of strong relationships between
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Table 1

Wind energy two-factor experience curve results, 1981�1997a

Scenario (time lag,

depreciation factor)

Cumulative capacity ðCCÞ Knowledge stock ðKSÞ

Learning by doing

elasticity

LRD (%) Learning by searching

elasticity

LRS (%) Adj. R2 DW VIF

(0, 0) �0.189 [�3.497] 12.3 �0.429 [�1.619] 25.7 0.949 1.374 11.629

(3, 0) �0.202 [�4.251] 13.1 �0.339 [�1.572] 20.9 0.948 1.397 8.929

(3, 0.025) �0.202 [�3.856] 13.1 �0.396 [�1.411] 24.0 0.947 1.365 10.537

(3, 0.05) �0.211 [�3.709] 13.6 �0.409 [�1.127] 24.7 0.944 1.297 11.865

(3, 0.10) �0.265 [�5.381] 16.8 �0.073 [�0.165] 4.9 0.939 1.144 8.155

(4, 0) �0.211 [�4.945] 13.6 �0.294 [�1.553] 18.4 0.948 1.377 7.169

(4, 0.025) �0.214 [�4.768] 13.8 �0.326 [�1.403] 20.2 0.947 1.344 7.702

(4, 0.05) �0.222 [�4.803] 14.3 �0.331 [�1.183] 20.5 0.945 1.291 7.857

(4, 0.10) �0.253 [�6.123] 16.1 �0.180 [�0.523] 11.7 0.940 1.172 5.838

(5, 0) �0.218 [�5.624] 14.0 �0.263 [�1.556] 16.7 0.948 1.355 5.898

(5, 0.025) �0.221 [�5.627] 14.2 �0.286 [�1.444] 18.0 0.947 1.324 5.943

(5, 0.05) �0.227 [�5.810] 14.6 �0.291 [�1.273] 18.3 0.946 1.282 5.733

(5, 0.10) �0.247 [�7.028] 15.7 �0.228 [�0.836] 14.6 0.942 1.191 4.346

(6, 0) �0.224 [�6.270] 14.4 �0.235 [�1.520] 15.0 0.948 1.338 4.991

(6, 0.025) �0.228 [�6.432] 14.6 �0.249 [�1.418] 15.9 0.947 1.309 4.818

(6, 0.05) �0.233 [�6.757] 14.9 �0.253 [�1.291] 16.1 0.946 1.276 4.478

(6, 0.10) �0.247 [�7.996] 15.7 �0.223[�0.994] 14.3 0.943 1.206 3.422

aBase case result in bold. T-statistics in [brackets]. Scenarios not meeting all statistical acceptance criteria in italics. The learning rate for learning by

doing ðLRDÞ and the learning rate for learning by searching ðLRSÞ are calculated using Eq. (3), and the elasticities from Eq. (4).
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perspective, the 0�4-year time lag scenario results
(including all deprecation rate scenarios) for the learning
by doing and learning by searching parameters ranged
from 11.4 to 18.4% and 12.9 to 25.9%, respectively.
Increasing the depreciation rate from 0 to 0.10 changed
the learning by doing and learning by searching percents
by –0.2 to 5.6, and –2.0 to –4.0 percentage points,
(footnote continued)

independent variables and thus high variance of the parameter

estimates. The 0-year scenario result has an L:M:46:635; indicating
serial correlation. All of the 5-year scenario results yielded t-statistics

o1, below the 90% significance cutoff criteria (See Kobos, 2002b).
respectively. The 5-year scenario results had a negative
(and theoretically incorrect) sign on the learning by
doing parameters.

The scenario results are in line with results presented
in other studies. For example, Kouvaritakis et al. (2000)
find solar PV energy technology two-factor experience
curve learning by doing and by searching rates of 25%
and 10%, respectively. Miketa and Schrattenholzer
(2004) report solar PV two-factor learning by doing
and by searching rates of 17.5% and 10%, respectively.
Criqui et al. (2000) illustrate two pairs of estimates,
including learning by doing and by searching rates of
16.6% and 36.0%, and 25.0% and 9.0%. Klaassen et al.
(2001) illustrate similar learning by doing and by
searching rates of 17.5% and 10%, respectively.
4. Implications for cost modeling and policy planning

Incorporating learning effects for cumulative capacity
(learning by doing) and RD&D (learning by searching)
in a two-factor experience curve provides a statistically
robust and transparent approach to capital cost projec-
tions for wind and solar PV technologies. The results
reinforce themes in the institutional economics literature
on the importance of RD&D investment and learning
networks early in a technology’s evolution and market
fruition. Sustained investment is particularly critical
against a backdrop of economic, cultural, and political
path dependence of traditional fuels and energy
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Table 2

Solar PV energy two-factor experience curve results, 1975�2000a

Scenario (time lag,

depreciation factor)

Cumulative capacity ðCCÞ Knowledge Stock ðKSÞ

Learning by doing

elasticity

LRD (%) Learning by searching

elasticity

LRS (%) Adj. R2 LM VIF

(0, 0) �0.254 [�3.036] 16.1 �0.433 [�2.057] 25.9 0.989 7.748 9.384

(3, 0) �0.202 [�2.340] 13.1 �0.290 [�2.543] 18.2 0.991 5.293 21.508

(3, 0.025) �0.232 [�3.048] 14.9 �0.269 [�2.599] 17.0 0.990 5.310 16.579

(3, 0.05) �0.257 [�3.739] 16.3 �0.252 [�2.632] 16.0 0.990 5.308 13.190

(3, 0.10) �0.294 [�4.945] 18.4 �0.223 [�2.602] 14.3 0.990 5.177 9.073

(4, 0) �0.174 [�1.676] 11.4 �0.267 [�1.997] 16.9 0.990 3.754 24.303

(4, 0.025) �0.206 [�2.229] 13.3 �0.246 [�2.031] 15.7 0.990 3.770 19.209

(4, 0.05) �0.231 [�2.765] 14.8 �0.228 [�2.053] 14.6 0.990 3.804 15.525

(4, 0.10) �0.269 [�3.694] 17.0 �0.200 [�2.052] 12.9 0.990 3.819 10.864

(5, 0) 0.215 [0.825] �16.1 �0.098 [�0.867] 6.6 0.991 1.683 22.452

(5, 0.025) 0.216 [0.823] �16.2 �0.089 [�0.842] 6.0 0.991 1.704 18.665

(5, 0.05) 0.217 [0.823] �16.2 �0.081 [�0.823] 5.5 0.991 1.719 15.679

(5, 0.10) 0.218 [0.824] �16.3 �0.067 [�0.796] 4.5 0.991 1.738 11.514

aBase case result in bold. T-statistics in [brackets]. Scenarios not meeting all statistical acceptance criteria in italics. Accordingly, only the scenario

(3, 0.10) meets all the statistical criteria. The learning rate for learning by doing ðLRDÞ and the learning rate for learning by searching ðLRSÞ are

calculated using Eq. (3), and the elasticities from Eq. (4).
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9Wind energy is competing in many regions of the world that have

favorable wind conditions, lower costs, and other factors.
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technologies. This work also reinforced the impetus to
include technological learning in the National Energy
Modeling System (NEMS). These models have been
criticized for their economic assumptions and moderate
to pessimistic technological development representation
of renewable energy technologies. However, beginning
with the 1993 version of the Annual Energy Outlook
based on the NEMS model, and expanding into other
energy sector models more recently, these models have
sought to include more technological progress (Kydes,
2002).

To translate these findings into policy relevant
conclusions, the base case estimates of learning para-
meters for wind and solar PV highlighted in Tables 1
and 2 provide a basis for illustrative capital cost
projections and estimates of years until cost competi-
tiveness with dominant energy technologies. Fig. 10
compares three projections for wind energy against two
illustrative target levels for competitiveness both with
and without a tax credit at 3.0 and 4.5 cents/kWh,
respectively. Levelized energy cost estimates are based
on Drennen et al. (2003) assuming: (1) a 20-year average
system lifetime; (2) a 10% annual rate of discount; (3)
$976/kW in initial capital costs; (4) 1.1 cents/kWh in
operation and maintenance costs; and (5) 2532 h of
annual operation (28.9% capacity factor times a
maximum 8760 h in a year).

In all three scenarios, the global installed cumulative
capacity is assumed to grow from 17,696MW in 2000
(based on IEA, 2001) to 188,000MW in 2020 (based on
Neij, 1997), with base case learning by doing and by
searching rates of 14.2% and 18.0%, respectively. The
different projections are based on three RD&D growth
rates, each starting at a world cumulative RD&D in
2000 of 2.7 billion US dollars derived from the IEA
(2002) and the EIA (2001), and growing at 2.8% (a
historical global average), 5%, or 10% per year. The
levelized energy cost for wind energy reaches a target of
4.5 cents/kWh by 2009, 2007, or 2006 depending on the
RD&D growth rate. A more difficult hurdle of 3.0 cents/
kWh is reached beyond the projection period for two of
the three RD&D scenarios.9 Subsidies for renewable
energy could help close this gap or more on the basis of
health and environmental considerations alone (not
including a premium for greater energy independence).
For example, Jacobson and Masters (2001) present the
argument that while energy costs from coal may be
3.5–4 cents/kWh, including health and environmental
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costs brings the energy costs to 5.5–8.3 cents/ kWh,
easily making wind energy competitive.

Similar scenario analysis can be conducted by varying
cumulative capacity, learning by doing and searching
rates, the capacity factor, discount rate, system lifetime,
and other system costs (i.e. balance of system and
maintenance costs). A similar analysis of solar PV, solar
thermal, and geothermal cost projections are reported in
Kobos (2002b). While estimates of time to cost
competitiveness vary (with wind being quite favorable),
all analyses point to a strong role for a coordinated
RD&D national policy.
10The reports included, ‘‘The US Program of Fusion Energy

Research and Development,’’ July 1995; ‘‘Federal Energy Research

and Development Challenges of the Twenty-First Century,’’ Novem-

ber 1997; and ‘‘Powerful Partnerships: The Federal Role in Interna-

tional Cooperation on Energy Innovation,’’ July 1999 (Holdren and

Baldwin, 2001).
11PCAST recommendations for federal technology R&D, Renew-

able column, Table 1 (Holdren and Baldwin, 2001, p. 416).
12Excluding hydrogen energy systems from the DOE (2004) figures

reveals the funding for renewable energy increased less than 1%

between 2001 and 2002, and decreased by 1% between 2002 and 2003.
5. Summary and conclusions

Given the estimates of learning effects and cost
scenarios presented in this article, a return to 1970s-
era goals for a US system of renewable technology
innovation could greatly accelerate market penetration.
Each of four technologies (wind, solar photovoltaic,
concentrated solar power, and geothermal) received
substantial financial and institutional support shortly
after the energy crises in the 1970s. Since that time,
however, not one of these four technologies maintains a
true national system of innovation.

For example, although wind technology costs have
recently declined in real terms, the US system of
innovation has been too fragmented to account for
recent reductions. Rather, recent growth in US wind
energy installations is more a result of financial
incentives for installation and capital cost reductions
from abroad than for technology innovation in the
domestic wind industry. RD&D collaborations between
US-based actors and foreign colleagues only serve to
promote the use of wind power and therefore the
domestic wind industry. These developments lend
evidence to the argument that capital cost ranges for
energy technologies may be international by nature, but
progressing from the innovation to market diffusion
stage for a technology is still likely dependent on
national institutions.

For solar PV, the US has yet to reach its goals of over
20 years ago. During the late 1970s and early 1980s
several laboratories including the National Renewable
Energy Laboratory and Sandia National Laboratories
were given the task to achieve ‘‘technology readiness’’ by
1982 and ‘‘commercial readiness’’ by 1986 according to
the PV plan of 1978 (NREL, 2000a, p. 1). However,
along with declining real oil prices throughout the 1980s
came a decline in political support for renewables. US
RD&D funds for solar photovoltaics declined 77% in
real terms (2003 $) between 1980 and 2000 (IEA, 2002;
BEA, 2004). In more recent years, federal support for
PV can be primarily found in US energy laboratories
and a select few domestic industry participants. The
National Renewable Energy Laboratory, Sandia Na-
tional Laboratories, the PV Program of the Department
of Energy, and participants in the PV industry still
maintain and foster some laboratory/industry links for
renewable energy technologies. The recent Photovoltaic
Program Five-Year Plan and the Photovoltaic Industry
Roadmap define the challenges for government and
private industry goals (NREL, 2000b; Energetics, 2001).

The potential for a renewed US system of innovation
for renewables has not gone unnoticed. During the late
1990s, the declining energy RD&D trend was recognized
as a potentially long-term problem for energy security
and environmental sustainability. The President’s Com-
mittee of Advisors on Science and Technology (PCAST)
produced three energy studies to address these concerns.
Specifically, the reports helped to lay the foundation for
broader academic, industrial, and nongovernmental
organization involvement in energy RD&D.10

Recent increases in international oil prices and
concerns about oil supply create a feeling of history
repeating itself from the 1970s energy crises. Addition-
ally, the California energy crisis of 2000�2001 high-
lighted key points between the energy supply, demand,
infrastructure, markets, and most importantly, the
energy production mix for the US in the new millennium
(Faruqui et al., 2001). However, despite these develop-
ments and recommendations by PCAST to modestly
increase renewable energy RD&D funding above their
initial levels by approximately 3% annually between
2001 and 2003,11 renewable energy RD&D funding
requests increased by 1% between 2001 and 2002, and
3% between 2002 and 2003 (DOE, 2004).12 Without
sustained support for renewable energy both at the
federal level (through RD&D) and in the commercial
marketplace, it is unclear how quickly these energy
technologies will continue to penetrate the market.

The methodology outlined in this article is transpar-
ent, yet should be considered a preliminary study of
learning and innovation through capacity development
and RD&D. Future work could examine different
formulations of the two-factor learning curve and other
methods of analysis (Miketa and Schrattenholzer, 2004).
This work would increase the level of fidelity for
RD&D’s role in more complex energy policy planning
models. With this understanding, and the methodologies
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developed in this article, energy policy makers can gain
insight into how energy technology costs may change
over time, thereby providing the basis for energy policy
planning and analysis.
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