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ABSTRACT 

 

 

 Remote sensing can provide a relatively low-cost and low-impact approach to 

large scale assessment of forest condition and productivity over time. However, the 

connection between canopy spectral signatures and scalable field metrics is not well 

understood.  To explore this relationship, we compared annual basal area increment 

(BAI) at 47 sites throughout northern Vermont and New Hampshire to a suite of 

vegetation indices derived from annual growing season Landsat 5 TM imagery. 

Correlation analysis was used to evaluate the relationship between annual BAI and these 

indices at each site from 1984-2010, and a stepwise multiple linear regression model was 

created to predict BAI growth using a combination of multiple indices. Results showed 

weak significant relationships between BAI and several vegetation indices (mean││ = 

0.104 ± 0.032) and that relationships between BAI and vegetation indices do not hold 

within most sites (<35%). The linear regression model created to predict BAI growth 

used a combination of four vegetation indices (r
2 

= 0.120, p< 0.0001), although average 

residuals were high (mean standard error = 24.34) and significantly varied by species 

type (p <0.001, F = 58.07).  

 These results indicates that while tracking relative changes in productivity is 

possible and more likely to be successful when species-specific, using remote sensing 

techniques for precise growth monitoring and accurate carbon accounting may be limited.  

The relationship between BAI, canopy characteristics and remotely sensed metrics at the 

plot level is likely nuanced, and complicated by heterogeneous species composition, 

variability in tree response to abiotic stressors, and the inability of single data imagery to 

characterize the quality of an entire growing season. While many have utilized remote 

sensing to quantify landscape scale productivity, the resulting coverages should be 

viewed conservatively. 
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  CHAPTER 1: Literature Review 

1.1. Forests in the Northeast 

 In the northeastern United States, forests are an important cultural, economic, 

and ecological resource. They provide recreational opportunities, non-timber forest 

products, and aesthetic beauty. Through direct forest-products manufacturing and forest-

related tourism, they contribute approximately $19 billion annually to the economies of 

Maine, New Hampshire, New York and Vermont (North East State Foresters Association 

2007). In addition to providing wildlife habitat, forests also perform crucial ecological 

services, including water filtration (Stein et al. 2009) and carbon sequestration (Goodale 

et al. 2002, Environmental Protection Agency 2010).  

 Forests in this region, however, also face an array of different stressors. Soil 

acidification associated with air pollution has been observed in the decline of certain 

species and the wider ecosystem (Driscoll et al. 2001). Established exotic insects and 

pathogens such as gypsy moth and beech bark disease, as well as newly invading pests 

such as the hemlock-woolly adelgid, emerald ash borer, and Asian long-horned beetle, 

are projected to have major effects on forested ecosystem processes (Lovett et al. 2006), 

with anticipated increases in frequency and severity of infestations and outbreaks (Allen 

2009, Dukes et al. 2009). Increases in the frequency of severe weather events such as 

wind and ice storms (Dale et al. 2001) are predicted to  lead to the decline of certain tree 

species, whereas changes in temperature and precipitation patterns may expand or limit 

the range of others (Iverson and Prasad 1998). Other studies, however, suggest that recent 
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widely observed forest declines are attributable to natural population senescence, as the 

majority of trees in the Northeast regenerated at roughly the same time (Wargo and 

Auclair 2000). 

Given the presence of these different stressors, and concerns that forest mortality 

may be on the rise (Vermont Department of Forests 2010), monitoring is an important 

step in forest protection. Common forest monitoring methods include field-based studies 

and aerial surveys, but these are often limited by restricted scalability to the broader 

landscape and lack of temporal continuity (Zhang et al. 2011). Other potential methods of 

monitoring forests include dendrochronology studies and remote sensing.  

1.2. Dendrochronology 

 

Dendrochronology, the study of annual growth rings produced in trees, can be 

used to record environmental processes and monitor changes over time (Speer 2010). In 

temperate climates, trees produce new xylem tissue over a growing season that can 

generally be distinguished from previous and subsequent years’ growth based on the 

color, size, and shape of cells that differentiate early wood (produced earlier in the 

growing season) and late wood (produced later in the growing season). This ring of 

xylem growth is known as a tree-ring. While the exact process that results in annual tree-

ring production is not fully understood, environmental conditions appear to affect the 

level of growth hormones (e.g., auxin and cytokinin) that in turn regulate the initiation 

and rate of radial growth (Speer 2010). The width of a particular tree-ring can thus 

capture information about the environmental conditions during the growing season it was 

produced. This relationship between environmental conditions and tree-ring production 
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can be used to help monitor and quantify forest health by identifying the timing of 

specific disturbance events as well as more general tree stress levels given the 

relationship between  prolonged reductions in radial growth and increased mortality risk 

(Wyckoff and Clark 2002). 

Discrete disturbance events can be identified and placed in a larger context 

through the study of tree-ring patterns. In their research on pandora moth (Coloradia 

pandora) in Oregon, Speer et al. (2001) successfully developed an outbreak “signal,” 

using knowledge of recent moth outbreaks, that was characterized by a precipitous 

reduction in ring-width that persisted for multiple years. With this outbreak signal, they 

identified similar occurrences over a 600+ year time span in 14 old-growth stands. The 

length and geographic scale of these tree-ring chronologies put recent pandora moth 

outbreaks in greater context and highlighted the potential role of historical processes and 

climate variation on the moth’s population dynamics. Similar research identifying past 

pine beetle (Kulakowski et al. 2003), forest tent caterpillar (Sutton and Tardis 2007), and 

ciacada (Speer et al. 2010) outbreaks have been used to recreate the timing and relative 

severity of outbreaks.  

Dendrochronology can also be used to identify specific occurrences of fire and 

drought. Swetnam and Baisan (1996), and Niklasson and Granström (2000) used burn 

scars present in tree-ring chronologies to reconstruct past fire history in the Southwestern 

United States and boreal Sweden respectively. Both of these studies revealed that the lack 

of fire in the region in the 20
th

 century has been fairly anomalous and coincided strongly 

with historical land use practices. Stahle et al. (1998, 2007) compared tree-ring width to 
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modern  precipitation and temperature measurements, and subsequently used this 

relationship to reconstruct nearly 800 years of drought occurrence history across North 

America.  This long-term reconstruction illustrates the ability of tree-rings to track the 

spatial and temporal location of both short-term drought events (e.g., <5-10 year) as well 

as broader “megadrought” patterns that existed across wider geographical regions and for 

longer duration. Placing these discrete disturbance (e.g., insect outbreaks, fires) and 

meterological (e.g., drought) events into broader historical context allows for more 

nuanced interpretation of stressors that affect current forest health and productivity 

presently.  

In addition to discrete disturbance events, dendrochronology can also be used to 

identify periods of long-term, more subtle, tree decline. Cherubini et al. (2002) examined 

the effects of two strains of fungal root pathogens on tree growth  in mountain pine 

(Pinus mugo). While unable to time the exact onset of fungal infection, using patterns of 

tree-ring development they were able to identify which fungal strain was affecting each 

tree independent of phytopathological analysis. Findings from their study also suggest 

that it is possible to identify periods of tree decline using tree-rings many years before 

symptoms visible to the human eye arise or tree death occurs. Similarly, Duchesne et al.’s 

(2003) work on sugar maple (Acer saccharum) decline in Quebec found that decline in 

basal area increment preceded visual symptoms of decline by up to a decade . Their 

comparison of actual basal area increment relative to expected growth (independent of 

age-related trends) allowed them to record the initiation and duration of long-term 

reductions in growth, as well as pinpoint periods in which conditions worsened. This last 
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finding is particularly helpful to forest ecologists when studying areas where there is little 

recorded information about past disturbance history—a common occurrence for most 

forested regions. 

In the Northeast, dendrochronology has been particularly used in the study of 

decline associated with acid deposition and winter injury. Local observations of red 

spruce (Picea rubens) decline since the 1960s and 1970s (Siccama et al. 1982) were 

shown to be quite widespread based on reductions in basal area increment measurements 

observed in 3,000+ trees cored in Vermont, New Hampshire, Maine, and the Adirondacks 

of New York in the 1960s-mid1980s relative to the previous 50 years (Hornbeck and 

Smith 1985). Research by Cook et al. (1987)  using red spruce tree-ring widths and 

reconstructed climate records from these chronologies, suggested that these observed 

trends in growth reduction were not attributable to climate alone, implicating an external 

factor (i.e., air pollution and acid deposition). However, using these same climate 

reconstructions they also identified unusually cold winters as an inciting factor in red 

spruce decline. Similarly, work by Schaberg et al. (2011) examining the effects of a 2003 

winter injury event found red spruce foliar dieback was significantly related to reductions 

in radial growth for multiple years. Notably, this work also identified trees with little 

evidence of foliar damage after the 2003 event that nevertheless had up to 31% reduction 

in radial growth. This hints at the complexity of environmental factors that influence 

growth and illustrates the cumulative effects of an entire growing season (and previous 

growing seasons) on final tree-ring width. 



 

6 

 Halman et al. (2011) also examined the effects of a widespread winter injury 

event in the Northeast—the 1998 ice storm—on the crown vigor and radial growth of 

twelve paper birch sites. By measuring calcium depletion in soils at these sites, which has 

been shown to be linked to acid deposition from air pollution, they found there was a 

significant association between higher calcium concentrations and stronger recovery of 

both foliage and basal area increment following damage from that storm. Combining 

dendrochronology techniques with visual crown assessments and soil chemistry data 

provided a more nuanced and robust picture of paper birch health. Another study that 

examined forest response to the 1998 ice storm was Smith and Shortle’s (2003) work 

measuring crown loss and radial growth of  347 hardwoods in New Hampshire and 

Maine. They found that while severe crown loss (>50%) led to significant immediate 

reductions in radial growth, most individuals showed signs of full recovery in tree-ring 

width by 2000. For some species (i.e., white ash (Fraxinus americana)), crown 

replacement occurred so quickly that the amount of crown loss in 1998 appeared to have 

no significant effect on measurements of radial growth 1998-2000. These studies 

illustrate how dendrochronology can be used to evaluate resiliency and recovery from 

disturbance, which is important both in the study of forest health as well as from a 

commercial timber management perspective.  

Tree-rings have annual resolution and can provide decades, if not centuries of 

information about the status of an individual tree or stand, making dendrochronology 

very well-suited to monitoring forest condition changes over long periods of time (Biondi 

1999). Although dendrochronology can provide a wealth of information about the long-
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term health, resilience, recovery and/or decline of various forest ecosystems, collecting 

and processing cores can be a lengthy and tedious process that requires specialized 

equipment and training. Due to these processing requirements, dendrochronological 

studies are often limited in their geographic extent. Given these spatial limitations, 

dendrochronology can be paired with other tools to analyze forest health and productivity 

at a broader scale.  

1.3. Remote Sensing of Forest Health and Productivity 

 In contrast to the highly detailed, yet localized information provided by tree-

rings, remote sensing is a technique that can be used to monitor forests at the wider 

landscape scale and in areas where field work is not feasible. Remote sensing can be 

generally defined as “...the science of acquiring information about the Earth’s surface 

without being in contact with it. This is done by sensing and recording reflected or 

emitted energy and processing, analyzing, and applying that information,”(Canada 

Centre for Remote Sensing 2007). The energy source most commonly utilized by aerial 

and space-borne remote sensing devices is the electromagnetic radiation emitted by the 

sun. This radiation, which has discrete contiguous wavelengths, travels from the sun and 

then interacts with the earth’s atmosphere and surface features where it is scattered, 

transmitted, absorbed or reflected back to the sensor.  Different features will interact with 

the different wavelengths in a unique manner depending on their physical properties and 

condition. For example plants reflect very little in the blue and red portion of the 

electromagnetic spectrum due to the presence of chlorophylla and chlorophyllb, which 

highly absorb wavelengths in in the blue and red range to power photosynthesis. In 
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contrast, blue light cannot penetrate water as effectively as longer wavelengths and is 

more highly reflected—hence the reason many bodies of water appear bluish to the 

human eye. Using knowledge of how various features interact with the electromagnetic 

spectrum, it is possible to classify and evaluate these features within larger images 

captured by the sensor. It is also possible to mathematically combine measurements of 

different wavelengths into ratios or other formulas to capture multiple pieces of 

information about a feature at once, while offsetting potential error associated with 

atmospheric attenuation and topography. 

  While there are a variety of sensors whose imagery can be used in remote 

sensing studies of forest health, imagery from the Landsat program is particularly well 

suited for this objective (Cohen and Goward 2004). The Landsat program has collected 

imagery nearly continuously since 1972 when the first sensor placed on a satellite 

platform for the purposes of studying and monitoring the earth’s surface was launched by 

NASA. The scene size (183km swath) and temporal resolution (16 days) of images 

captured by Landsat program permit broad geographic and more detailed temporal 

coverage.  Since 1982, with the launch of Landsat 4 Thematic Mapper (TM), spatial 

resolution has risen to moderate (30m) and the spectral resolution of imagery has 

expanded to 7 bands (3 visible, 1 near-infrared, 2 mid-infrared, and 1 thermal). Another 

major advantage to the use of Landsat data is that as of 2008, imagery is provided free-

of-cost and is easily accessible.  

 Landsat imagery has been used to study and classify forest damage for a variety 

of tree types and stress events.  Rock et al. (1986) found they could identify the relative 
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degree of damage (high v. low) to red spruce-balsam fir stands in northern Vermont with 

high accuracy (r
2 

= 0.94-0.95) using a moisture stress index derived from Landsat 5 TM 

data. However, it remained ambiguous exactly what biophysical mechanism (e.g., water 

stress, cell structure, leaf biomass) was driving the observed differences in the imagery. 

Landsat 5 TM imagery has also been used to identify areas experiencing the initial stage 

of mortality (reddening of needles) associated with mountain pine beetle attack in British 

Columbia (Franklin et al. 2003). For the single year considered (1999), using a 

supervised classification with 360 ground truth points, Franklin et al. successfully 

distinguished attacked from non-attacked areas with 73% accuracy. Similarly, Nakane 

and Kimura (1992) utilized Landsat 5 TM imagery to map Japanese red pine (Pinus 

densiflora) blight. Using their model, they were able to correctly classify field sites to one 

of five damage classes 62% of the time, and to the correct or an adjacent damage class 

96% of the time.  

 In addition to classifying and quantifying damaged areas from a single year, it is 

also possible to track changes in forests over time using Landsat imagery from different 

months or years. This is particularly useful when attempting to map damage extent, as it 

is possible to compare imagery pre-event to post-event imagery. In the Northeast, this 

type of analysis has been carried out by many researchers studying discrete disturbance 

events. In one of the earlier applications of Landsat TM technology for change forest 

detection, Vogelmann and Rock (1989) used imagery from 1984 and 1988 to identify 

deciduous forested areas affected by an outbreak of pear thrips (Taeniothrips 

inconsequens) in southern Vermont and western Massachusetts. Using ground-based 
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assessments and aerial sketch mapping they were able to estimate the degree of damage 

at the landscape scale from the Landsat imagery, however, it appears that no accuracy 

assessment was carried out to confirm their damage maps. Olthof et al. (2004) examined 

sugar maple damage in eastern Ontario caused by the severe region-wide 1998 ice storm 

using Landsat 5 TM images from 1996, 1997, 1998, and 1999. The percent crown lost 

due to storm damage was assessed at several training sites in and compared to raw 

Landsat bands and ratios pre- and post- storm. Using an independent set of sites where 

crown loss was also measured in the same manner as the training sites, their Landsat-

based model had roughly 69% accuracy in distinguishing areas with severe damage from 

areas with light or moderate damage.  Multi-year imagery has also successfully used to 

predict continuous, as opposed to discrete classes of defoliation. Townsend et al. (2012) 

compared the percent gypsy moth (Lymantria dispa) defoliation at several sites in 

northern Maryland to the degree of change in vegetation indices derived from 2000, 

2001, 2006, 2007 and 2008 Landsat 5 TM images. Their resulting model had relatively 

high accuracy (r
2
= 0.805, RMS error 14.9%) and they were able to apply the same model 

to a totally different system—aspen stands being defoliated by forest tent caterpillar in 

Minnesota—with apparent success based on visual comparison to sketch maps of that 

defoliation event. This illustrates the potential for expanding remote sensing forest 

monitoring techniques to new locations without always necessarily needing to invest in 

recalibration.  

 Due in part to the cost of obtaining Landsat imagery (prior to 2008) as well as 

the need for time-consuming image processing, there have been relatively few studies 
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that monitor forest condition over longer time scales than a few years. One example is the 

work done by Cohen et al. (2002) who used change detection on 11 years of Landsat 

images over a 23-year period (1972-1995) to identify areas associated with fire and 

harvesting activity in western Oregon. Given the relatively severe impact of fire and 

harvesting events on vegetation’s spectral response, they were able to distinguish 

disturbed areas from non-disturbed areas with high (87.8%) accuracy. By combining 

these Landsat-based maps of forest disturbance with additional data, they tracked rates of 

disturbance over time as well as by land ownership patterns. Vogelmann et al. (2009) also 

studied forest condition over a long time period (1988-2006), but in this case were 

attempting to see more gradual changes in forest health, rather than abrupt disturbance 

from discrete events (e.g., fire or timber harvest). Using eight Landsat TM images over 

an 18-year period, they were able to track changes in reflectance over time and found 

significant declining forest condition trends in their study area in New Mexico. While no 

quantitative ground-truthing was carried out, inspection of the modeled declining areas 

suggested that insect defoliation and drought were likely contributing to the poorer 

spectral response observed in the imagery. 

 More recently Pontius et al. (in prep.) carried out similar research tracking 

overall forest health, as opposed to discrete disturbance events, over multiple decades.  

Using Landsat 5TM imagery from eastern New York, Vermont, and New Hampshire 

they assigned a continuous forest condition rating (0-10), based on five vegetation indices 

(using methodology developed in (Pontius in Review)), to each cloud-free pixel in a 

given year 1984-2009. The long-term trend of each pixel was then calculated as the slope 
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of the best fit linear trend line of those condition values plotted over time. Analysis of the 

resulting forest health trend model suggested that at the landscape scale, while there have 

been fluctuations in forest condition from year to year, overall there is no trend towards 

improvement or decline. At smaller scales, however, they found that there were localized 

patches of declining forest, much of which seemed to be associated with higher 

elevations and balsam fir- paper birch- red spruce communities (Olson 2011). However 

this model, like the one created by Vogelmann et al. (2009), has not be explicitly ground-

truthed, making it difficult to gain a full picture of what ecological processes the Landsat 

imagery is recording.  

 Remote sensing studies designed to monitor forest condition over multiple years 

can be difficult to ground-truth, however, this is an important step given the complexity 

of processing remotely sensed images and the discrepancies between lab-findings and 

applications in the field (Hunt and Rock 1989, Pierce et al. 1990, Huete et al. 1994, 

Cunningham et al. 2009). There are few publically available, spatially explicit, long-term 

datasets that measure tree canopy condition, which is what the Landsat sensor is 

“seeing,” over time. The Forest Inventory and Analysis (FIA) program, a forest health 

monitoring program administered by the US Forest Service and state agencies, seems like 

a logical data source to use for comparison to Landsat imagery given its extensive plot 

network and detailed collection of canopy condition, mortality, and regeneration data. 

The geographic coordinates of plot locations, however, are not available for research use 

and the data also lacks annual resolution as it is not possible to survey all plots every 

year. One way to work around this lack of past data when attempting to ground-truth 
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multi-year remotely sensed models of forest condition is to use tree-rings as a proxy for 

tree condition. Tree-rings have near annual resolution and can provide decades if not 

centuries of information about relative tree and stand health, depending on age. The 

preservation of this long-term information in the wood itself, also permits collection of 

long-term data at a single point in time.   

 

1.4. Comparing Remote Sensing and Dendrochronology 

 

 The production of tree-rings is a complex process (Speer 2010), but there is 

field-based evidence that suggests the condition of foliage impacts tree-ring production 

(Smith and Shortle 2003, Halman et al. 2011, Schaberg et al. 2011) and that reduced 

radial growth is also associated with visual observations of foliar stress (Duchesne et al. 

2003). Measurements taken by remote sensing devices also provide information about the 

condition of foliage given the different ways healthy and unhealthy vegetation interacts 

with the electromagnetic spectrum. Thus it is reasonable to hypothesize that there should 

be an observable relationship between these two metrics of forest condition—radial tree 

growth (tree-rings) and vegetation indices derived from remotely sensed imagery (see 

Figure 1 for the conceptual hypothesized relationship). 

 The relationship between forest productivity as measured by tree-ring increment 

and forest productivity as measured by remotely-sensed vegetation indices has been most 

intensely studied in boreal forests. One of the first studies to do this was carried out by 

Malmström et al. (1997) using net primary productivity (NPP) models that were created 

by combining mean meteorological data with NDVI measurements from Advanced Very 
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High Resolution Radiometer imagery (AVHRR). They compared tree-rings from a single 

site in Alaska dominated by birch and spruce to those NPP models 1982-1990, finding 

moderate positive correlations when comparing raw ring widths (r = 0.366-0.419) and 

strong correlations after detrending the tree-ring data (r =0.791-0.812). While this 

comparison was only carried out at one site (as a component of a larger study on 

productivity), the authors did highlight characteristics of tree-ring data they speculated 

would be most successfully correlated with NDVI. They suggest analyzed cores should 

be representative of the growth patterns, species composition, and age class distribution 

of all trees in the pixel of imagery the samples were collected in.  

 Using one of these same NPP models derived from NDVI over the same time 

period (1982-1990), D’Arrigo et al. (2000) came to similar conclusions when comparing 

maximum latewood density  and tree-ring width to NPP at four sites in Alaska and 

Siberia. Correlation between NPP and a tree-ring width index was moderate to strong for 

all sites (r = 0.59-0.83), however, in this case detrending the tree-ring data actually lead to 

poorer correlation ( r = -0.16- -0.19). Another interesting finding from this study was that 

the relationship between tree-ring metrics and NPP derived from NDVI was significant 

and strong in areas where the percent cover of the species cored was relatively rare (10%-

63%). Based on their findings, the authors speculate that strongest relationship between 

tree-ring increment and NDVI will be observed in areas with a similar limiting growth 

factor for all species (e.g., temperature or water). This is because poor or strong growth 

of the species of interest will be mirrored by other (i.e., non-cored) vegetation, which also 

influences the signal received by the remote sensing satellite.   
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 In 2004, the Global Land Cover Facility of the University of Maryland 

developed a multi-year bi-monthly model of NDVI 1981-2006, based on AVHRR 

imagery, with worldwide coverage known as the GIMMS (Gobal Inventory Modeling 

and Mapping Studies) NDVI dataset. With the creation of this dataset, it was possible to 

easily compare NDVI to tree-ring metrics without significant digital image processing 

requirements. This facilitated several more studies comparing NDVI to tree-ring data, 

again in boreal forests, with a focus of tracking these forests’ responses to changes in 

climate. Comparing data 1981-2003, Kaufmann et al. (2004) found a significant robust 

correlation (r
2
 = 0.68-0.91) between tree-ring increment and  mean June, July and an 

integrated “growing season” NDVI value at 48 primarily-coniferous sites around the 

boreal region. In a similar study, Lopatin et al. (2006) cored Scots pine and Siberian 

spruce at five sites in northern Russia and found a significant overall correlation (r
2
=0.44-

0.59) between the standardized tree chronologies and NDVI summed June-August 1982-

2001. This correlation, however, was statistically significant for four of the five Siberian 

spruce chronologies and only two of the four scots pine chronologies. Authors speculated 

that the lack of a significant relationship at certain sites may be attributable to spectral 

contributions from the understory, which presents more of a problem with narrow-

crowned columnar trees. 

  Other studies comparing NDVI to tree growth in the boreal forest of the 

northern hemisphere also found a broad overall positive correlation, but that the 

relationship between tree-rings and NDVI fell apart for certain sites and species. Berner 

et al. (2011) cored 27 pine, spruce, and larch trees at sites in Canada and Russia and 
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found a consistently positive correlation between growing season NDVI (from the 

GIMMS dataset) and ring-width indices values (mean site r = 0.43 ± 0.19). However, this 

positive correlation was only statistically significant at nine sites at the p < 0.05 

significance level, and at fourteen sites at the p < 0.10 significance level. It also appeared 

that the strength of the relationship varied by site and by species, being weaker for larch-

dominated areas. In addition, they found that there was no significant correlation between 

trends in NDVI and trends in ring-width index. That is, sites whose growing season 

NDVI increased 1982-2008 did not always show similar positive trends in the tree-ring 

index over the same period.   

 There have been relatively fewer studies comparing NDVI and tree-ring width 

in temperate forests. Wang et al. (2004) compared a tree-ring width index to 

measurements of NDVI from the GIMMS dataset over eight growing seasons (1989-

1996) at a single oak-dominated site in Kansas. They found a very strong relationship (r = 

0.91) between tree-rings and NDVI measurements averaged from mid-May to late June, 

however, this relation was weaker (r = 0.76) when comparing tree-rings to NDVI 

averaged over the entire growing season from late April to October. Expanding on their 

previous work from 2004, Kaufmann et al. (2008) considered the relationship between 

GIMMS NDVI measurements a  tree-ring index at 101 sites, 53 of which were below 

40ºN in latitude and dominated by deciduous species. Like Wang et al. (2004), they 

found a significant relationship to NDVI measurements from only certain portions of the 

year. In this case, ring width at these 53 sites was positively associated with NDVI 

measurements from April and May and was negatively associated with NDVI 
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measurements from October. This is in contrast to their findings that deciduous sites 

north of 40ºN had positive correlations with August NDVI, and conifers had positive 

associations with June and July NDVI.  They speculate that variation in the relationship 

between tree-ring width and NDVI measurements from different months may be related 

to climate factors that affect growth.  

 Notably, all of these studies have been carried out using imagery that has coarse 

spatial resolution ranging from 8km to 1º degree (i.e., ~100km at northern latitudes). This 

means that NDVI measurements are very likely being averaged over a much larger area 

(64km
2
-1,000km

2
) than the area from which tree cores were collected to build a site 

chronology. Given the relatively homogeneous forest types found at northern latitudes, 

where the majority of the research comparing NDVI and tree-rings has been carried out, 

it is possible that cored sites were representative of enough of the surrounding landscape 

that the relationship was observable. Given the relatively short growing season boreal 

forests face, it is also possible that there are similar sources of environmental pressure 

(i.e., drought, cold temperatures) on multiple species that contribute to the NDVI signal 

recorded by the sensor. The potential influence from non-tree vegetation on NDVI is 

supported the work of Forbes et al. (2009) who studied the growth of willow shrubs in 

the Russian arctic. Comparing measurements of mid-July NDVI from the AVHRR 

dataset between 1981-2005 and ring widths from 15 site chronologies, they found a 

significant positive relationship (r > 0.6). However, the relationship between ring width 

and NDVI as measured in May and August was actually negative. This illustrates the 
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potential for shrubs to contribute to the NDVI signal, but also suggests that the variability 

of NDVI may make interannaul comparisons difficult, depending on imagery timing. 

 One of the few studies that has used imagery with moderate spatial resolution to 

derive NDVI estimates is the work carried out by Babst et al. (2010) on mountain birch in 

Sweden. In this complex study on the effects of autumnal moth (Epirrita autumnata) on 

tree-ring increment, they used three Landsat images (5TM and 7 EMT+) of three 

outbreak years and one Indian Remote Sensing Satellite (IRS) image in a year with no 

insect damage as a control. Comparing changes in NDVI between outbreak and normal 

years and changes in ring widths in outbreak and normal years for seven sites they 

developed a third degree polynomial regression model with an r
2
 of 0.64. The imagery 

used in this study was high enough resolution (23m-30m) to capture disturbances that 

happen at smaller or patchier spatial scales, such as the defoliation caused by this moth 

outbreak. It is interesting to note they found the change in NDVI was linear to leaf area 

lost, but the radial reduction in growth was not. This disconnect between defoliation and 

reduction in radial tree growth hints at a potential complication in that Landsat may be 

better able to record more subtle decline than tree-rings. 

1.5 Conclusions 

  

 A variety of stressors affect forests in the northeastern United States, and 

monitoring for these agents and the damage they cause is important in maintaining and 

improving forested ecosystem productivity in health. Satellite-based remote sensing is 

one technique that can be used to monitor forest health at the landscape scale, objectively, 

cheaply, and consistently. Landsat imagery is particularly well-suited to this task (Cohen 
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and Goward 2004). Recently Pontius et al. (in prep.) processed 27 years of Landsat 

imagery that covers eastern New York, Vermont, New Hampshire, and Maine. Using this 

imagery they were able to track changes in forest health using a newly developed 

vegetation index that is a combination of multiple hyperspectral indices adapted for 

multispectral imagery. This model as well as the suite of 49 additional vegetation indices 

derived from the same imagery 1984-2010, have yet to be ground-truthed to any metric 

of forest condition on the ground—a crucial step in assessing the limitations of a model. 

 Taking advantage of the relationship between environmental conditions/stress 

and radial tree growth, tree-rings have been used in a wide range of forest health studies 

throughout this region and the world. As tree-rings can provide long-term, nearly annual 

data they are a good source of information about past forest condition. This thesis 

research compares tree-ring data from 47 sites in Vermont and New Hampshire to 

vegetation indices derived from Landsat imagery to evaluate how well the latter 

corresponds to ground conditions of growth. Although previous authors have examined 

the relationship between radial growth and a single vegetation index (NDVI) with overall 

good (though varying) success, the majority of that research has been carried out in 

boreal forests with remotely sensed imagery that has much coarser spatial resolution than 

Landsat (Malmström et al. 1997, D’Arrigo et al. 2000, Kaufmann et al. 2004, Kaufmann 

et al. 2008, Forbes et al. 2009, Lloyd et al. 2010, Berner et al. 2011). Results of this 

research should provide more information about how well Landsat imagery can be used 

to monitor forest condition and productivity in temperate, Northeastern forests.  
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CHAPTER 2: Remote sensing of forest productivity in Northeastern forests 

2.1. Introduction 

 

Forests provide a range of goods and services including wood production and 

carbon sequestration. The ability of trees to perform these functions is dependent on 

many factors including water and nutrient availability, climatological factors, and both 

biotic and abiotic disturbances. Monitoring forests is a crucial step in ensuring forests 

remain biologically productive and meet desired management objectives (Ferretti 1997). 

Traditional approaches to long-term forest monitoring include repeated field assessments, 

but extrapolating these findings to the broader landscape scale can often be limited 

(Zhang et al. 2011). One monitoring technique that can provide landscape-scale coverage 

as well as new information at regular time intervals is satellite-based remote sensing.  

Remotely sensed imagery has been used to study forest response to short-term 

disturbance events (Vogelmann and Rock 1989, Olthof et al. 2004, Townsend et al. 2012) 

as well as long-term trends in health and productivity (Cohen et al. 2002, Maselli 2004, 

Vogelmann et al. 2009, Pontius et al. in prep.). Many researchers have used imagery from 

the Landsat program in particular for this purpose given its moderate spatial resolution 

(30m), relatively high temporal resolution (16 days), large scene size (183km), low cost 

and deep  historical record (1972-present) (Cohen and Goward 2004).  

These studies often make use of vegetation indices, which are a combination of 

two or more reflectance values from different portions of the electromagnetic spectrum 

that reveals a particular property of vegetation, while reducing complications associated 
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with atmospheric interference and differences in illumination. The normalized difference 

vegetation index (NDVI), a combination of the red and near infrared portions of the 

electromagnetic spectrum, is one of the most commonly utilized vegetation indices and 

has been applied in the study of forest land use change, carbon storage, and biomass 

estimation (Maselli 2004, Myeong et al. 2006, Meng et al. 2009). There are many other 

vegetation indices designed for multi-spectral Landsat data that were developed to 

measure a range of features associated with forest condition including canopy water 

content (e.g., the moisture stress index (MSI) (Rock et al. 1986) and the normalized 

difference infrared index (NDII5) (Hunt and Rock 1989) as well as overall “greenness” 

(e.g., the enhanced vegetation index (EVI), the soil adjusted vegetation index (SAVI), 

and the simple ratio index (SR)).  

More recently Pontius et al. (in Review) have taken a unique approach by 

adapting vegetation indices developed based on hyperspectral data and applying them to 

broadband Landsat data where possible. This approach takes documented narrow-band 

vegetation indices and uses the Landsat band containing the required wavelengths for 

index calculations.  While much of the information contained in the narrow absorption 

features is lost in using the Landsat bands, the modified vegetation indices were found to 

be significantly associated with forest decline metrics (Pontius in Review).  Using this 

methodology and summer growing season images they modeled forest decline in the 

Catskills region of New York, calibrated using a suite of canopy condition metrics 

(Pontius in Review). Across 11 distinct forest types, the resulting equation was able to 

predict a continuous 0-10 summary decline rating with r
2
 = 0.621, RMSE = 0.403 and 
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jackknifed PRESS RMSE = 0.436.  For comparison to more typical classifications of 

forest condition, this model predicted a 5-class condition with 100% accuracy (Pontius in 

Review). 

Understanding what vegetation indices derived from remotely sensed imagery 

are telling us about conditions on the ground is crucial to its appropriate interpretation 

and application for monitoring and measuring purposes (Huete et al. 1994). There are  

many cases where it is not clear what the biophysical basis is for the relationship between 

a particular vegetation index and field observations of tree or stand condition (Hunt and 

Rock 1989, Pierce et al. 1990). Furthermore, relatively few of the hundreds of vegetation 

indices in existence have been widely tested across many forest types or over time. While 

ground-truthing is important in understanding what information Landsat imagery is 

actually providing and quantifying the accuracy of the coverages created, it is often 

difficult to carry out that process with historical studies given the need for accompanying 

field observations coincident with image acquisition.  

One solution to the common lack of historical observations of canopy condition 

is to use another proxy for individual tree-health and productivity that is preserved from 

year to year in the trees themselves: annual xylem increment rings. Tree-rings have near-

annual resolution and can therefore be used to assess radial growth retrospectively 

(Biondi 1999). They have been used as a proxy of forest productivity, and by extension 

forest health in many field studies throughout the Northeast (Siccama et al. 1982, 

Hornbeck and Smith 1985, Duchesne et al. 2003, Smith and Shortle 2003, Halman et al. 

2011, Schaberg et al. 2011). Tree-rings have also been used to assess to multi-year 
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models of global productivity derived from remotely sensed imagery.  This has been most 

widely carried out in boreal forests given interest in how trees in this region are 

responding to climate change (D'Arrigo et al. 2008). Several of these studies on boreal 

forests have found quite strong associations (r
2
 up to 0.91) between metrics of tree-

growth on the ground and the remotely sensed models. However it appears that these 

relationships do not always hold for all sites and species with remotely sensed imagery 

from certain portions of the year.  

 The purpose of this research was to study the relationship between radial tree 

growth (tree-rings) and vegetation indices derived from Landsat 5 TM imagery in 

northeastern forests. The following questions were investigated: 

 1. Is there a relationship between measurements of basal area increment and 

 vegetation indices derived from Landsat 5 TM data the same year 1984-2010? 

 2. If these relationships exist, are they stronger for certain vegetation indices, 

 species types, or particular locations? 

 3. Is there some combination of multiple vegetation indices that can be used to 

 model BAI across the landscape? 

  Given the potentially broad applications of remote sensing technology for forest 

health monitoring (Franklin 2001) and carbon accounting, it is important to examine how 

well remotely sensed metrics of forest canopy characteristics relate to measurements of 

tree growth on the ground.  While there have been multiple studies comparing NDVI to 

tree-rings (D’Arrigo et al. 2000, Kaufmann et al. 2004, Lopatin et al. 2006, Forbes et al. 

2009, Lloyd et al. 2010, Berner et al. 2011), there is limited research on temperate forests 
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(Wang et al. 2004, Kaufmann et al. 2008) and most previous studies, with a few 

exceptions (Babst et al. 2010), utilize imagery with coarser spatial resolution (1km-8km 

pixel size). This study should provide an opportunity to examine the relationship between 

vegetation indices and radial tree-growth in a more heterogeneous forested ecosystem 

using more spatially precise imagery.  The resulting methodologies will describe the 

“best” approach for modeling forest productivity using multi-spectral imagery, as well as 

a better understanding of the accuracy and limitations of using remote sensing to assess 

forest growth. 

2.2. Methods 

2.2.1. Study Sites  

 In order to capture forest growth rates across a range of species, decline 

condition and land use histories, we used data from 47 plots throughout northern 

Vermont and New Hampshire (Table 1) (Figure 2). Falling across a broad elevational 

gradient (96 m-1155 m above sea level), plots were dominated by red spruce (Picea 

rubens), balsam fir (Abies balsamea), paper birch (Betula papyrifera), yellow birch 

(Betula alleghensis), red maple (Acer rubrum), sugar maple (Acer saccharum), American 

beech (Fagus grandifolia), white pine (Pinus strobus), and red pine (Pinus resinosa). Of 

the 47 sites, 16 were established in summer 2011 to capture a broad range of long-term 

canopy condition trends predicted by a remote sensing forest health model (Pontius et al. 

in prep.). To increase the sample size and robustness of findings,  31 pre-existing sites 

from research conducted by Halman et al. (2011) in fall 2006, and Kosiba et al. (in 
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review) in fall 2010, on paper birch and red spruce, respectively were also included in 

analysis. 

2.2.2. Dendrochronology 

 

 At each study site two xylem increment cores were collected at ~180º from 4-20 

co-dominant trees  present  within a ~15-30m radius of plot center. At the Halman and 

Kosiba sites, only red spruce and paper birch were sampled, while up to up to three 

dominant tree species were sampled at the 2011 sites ( 

Table 1). Cores were dried, mounted and sanded, according to standard procedures 

(Stokes and Smiley 1968) and visually cross dated using the list method (Yamaguchi 

1991). We then measured each core using a Velmex sliding stage (Velmex Inc., 

Bloomfield, NY) to the 0.001 mm level using J2X software (VoorTech Consulting, 

Holderness, NH). Statistical cross-dating was carried out using COFECHA (version 6.06) 

to verify and improve dating accuracy (Grissino-Mayer 2001, Speer 2010). Although 

cores were collected by different groups (Halman, Kosiba, Weverka), all processing steps 

were similar and much of the cross-dating was carried out using the same equipment and 

technicians. 

Once cross-dated, we converted raw measurements into annual basal area 

increment (BAI) (mm
2
/year), assuming a perfectly circular tree, using diameter at breast 

height (DBH) measurements. BAI was used instead of a ring-width index to facilitate 

comparison across multiple species and account for the fact that rings become smaller as 

a tree’s radius increases due to geometric properties (Speer 2010). To come up with a 

single annual BAI measurement for each site, the two cores from each tree were 
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averaged, and then all trees at each site were averaged. In cases where multiple species 

had been sampled at a site, we used species basal area (calculated using DBH field 

measurements of all trees > 12.5 cm diameter in a 17m radius plot) to calculate a 

weighted average BAI. 

2.2.3. Remote Sensing 

 

 In order to compare field measured BAI at each plot, to spectral reflectance 

metrics, imagery from the Landsat 5 Thematic Mapper (TM) sensor was obtained from 

the US Geological Service Global Visualization Viewer (http://glovis.usgs.gov/). For 

each of the 27 years imagery is available (1984 – 2010) we downloaded one growing-

season (i.e., June 10-August 20) image for two Landsat scenes covering our study area: 

Row 29-path 13 (Vermont/ New Hampshire) and row 29-path 14 (eastern New 

York/Vermont) (Table 2). A single growing-season image was deemed sufficient to 

capture the spectral characteristics of that year’s vegetation based on previous findings 

that foliar chemistry and associated reflectance values remain fairly stable after initial 

leaf-out in temperate forests (Martin 1994, Bauer et al. 1997). Due to consistent cloud 

cover, there was one year (1995) where no imagery was available for both Landsat 

scenes. On a site by site basis, there were often multiple years (up to 16 years) of missing 

data due to partial cloud cover.  

Landsat level 1T imagery includes a radiometric correction using the revised 

calibration gains for the reflective bands 1–5 and 7 (Chander et al. 2009) and a 

preliminary orthorecification. In order to control for inherent differences between 

Landsat images acquisitions that were not related to changes in canopy reflectance, 

http://glovis.usgs.gov/
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several additional processing steps were required to normalize reflectance across the 

imagery time series. We first converted raw digital number (DN) values to top of 

atmosphere reflectance to account for differences in illumination intensity and sun angle 

among acquisition dates using ENVI 4.8 (Exelis 2011, Colorado Springs, CO). 

Calculation of many of the vegetation indices explored in this study required an 

additional conversion to at-surface reflectance. We chose a histogram-based dark object 

subtract for each band.  This dark object subtract approach has been shown to be  as 

effective at reducing the differences in surface reflectance estimation between multi-date 

images as more complex radiative transfer models for multi-spectral imagery (Song et al. 

2001). To ensure accurate co-registration of pixels across years, we georegistered each 

image to a common mid-study cloud-free image using a 3
rd

 order polynomial with a 

nearest-neighbor resampling technique (root-mean square error < 0.2 pixels or 6m 

average accuracy). Considering the 17m radius field plots and 30 m spatial resolution of 

the Landsat sensor this level of accuracy is necessary to ensure correct spectra extraction 

for each field plot.   

Surface reflectance was extracted for bands 1-5, and 7 using the Spatial Analyst 

tools in Arc 10 (ESRI 2011, Redlands, CA) from the closest pixel to the GPS coordinates 

of plot center. Cloud cover, haze, and cloud shadow can “pollute” reflectance values as 

they mask and alter spectral data. To ensure that only cloud free data was included in our 

analysis we visually inspected each site across all images. Extracted values were 

manually converted to “NoData” for that year if the site was covered by cloud, cloud 

shadow or visible haze in any given image. Given that the two Landsat scenes included in 
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this study overlap for ~65 km across New Hampshire and Vermont (Figure 2), there were 

many study sites with two sets of spectral data available in each year. Where available, 

these spectral values were averaged to come up with one set of spectral data per year.  

While Landsat band locations were developed with vegetation applications in 

mind, there is a wealth of vegetation indices that can improve upon the ability of the 

sensor to detect specific canopy biophysical parameters (Table 3). This includes many 

broad-band indices, designed specifically using multi-spectral sensors like Landsat, but 

also extends to a suite of narrow-band indices designed specifically for hyperspectral 

applications, that to our knowledge have not been tested using broad-band sensors.   

In order to conduct a comprehensive assessment of Landsat’s ability to quantify 

forest growth and productivity, we created a spectral database to calculate a suite of 

vegetation indices with documented relationships to canopy characteristics. For narrow-

band indices, we calculated a Landsat equivalent where each distinct narrow-band 

wavelength required for calculation fell within a distinct Landsat band.  For example, the 

chlorophyll sensitive index proposed by Datt (1998) calls for a ratio between reflectance 

at 672 nm and R550 nm. We calculated a broad band equivalent as Landsat 5 TM 

Band3:Band2.  While the expectation is that much of the specific information pertinent to 

chlorophyllb content captured in the narrow-band equation will be lost in the broad-band 

equivalent due to the narrow chlorophyllb absorption feature, there may still be enough 

information relative to vegetation condition to make it useful in a more complex model.  

The resulting database calculated 55 pre-existing vegetation indices/raw bands (Table 3) 

including common multi-spectral indices such as the normalized difference vegetation 
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index (NDVI), and more complex narrow-band indices like the structure insensitive 

pigment index (SIPI). 

2.2.4. Statistical Analysis 

As a preliminary data exploration step, annual BAI measurements were 

compared to annual vegetation indices across all sites and all years 1984-2010 (n =701) 

using Spearman’s rho correlation. While statistically complicated by temporal 

autocorrelation, and artificially inflated sample size, this analysis was not intended to 

identify significant relationships, but instead to identify which of the 55 vegetation 

indices were likely to have a significant relationship with BAI in subsequent analyses. 

This was of considerable interest based on our goal to develop a global, or “landscape 

scale,” model to quantify forest growth.  Such a model would have to maintain 

relationships across sites of varying species composition and years of varying growth 

conditions.  To explore the strength of fit when analysis was limited to a single species, 

this test was rerun on 5 species “types”(“Red Spruce,” “Birch,” “Pine,” Mixed 

Hardwoods,” and “Mixed Balsam Fir/Red Spruce/ Birch”) that were created by 

combining data from sites with similar species composition. 

 To measure the relationship between BAI and vegetation indices while 

accounting for inherent differences in tree-ring series (as a result of different species 

composition, landscape characteristics, external disturbance etc.) and autocorrelation 

across years (Berner et al. 2011), we conducted a Spearman’s rho correlation across all 

available imagery years on a site by site basis.  Correlation analysis assumes 

independence among observations—a condition likely to be unmet by tree-ring data 
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given the effect one year’s growth may have on subsequent years. To address the 

statistical violation of carrying out correlations on datasets with potential temporal 

autocorrelation across years, the effective sample size was reduced by penalizing the 

sample size in proportion to the degree of first order autocorrelation between one year’s 

BAI and the following year’s BAI (Dawdy and Matalas 1964 adapted by Berner et al. 

2011; Appendix A) in R (version 2.15.1). In cases where there was no significant (p < 

0.05) autocorrelation, the full sample size was preserved. This site-specific analysis also 

highlights which types of stands have the strongest or weakest relationships between BAI 

and vegetation indices, or if different indices are required to quantify growth in different 

forest types.  Due to cloud cover present in the imagery, not all years were available at all 

sites, further limiting the sample size.  

Because woody growth is potentially related to many different canopy metrics 

(leaf area index, chlorophyll content, leaf moisture content, etc.) it is possible that no 

single spectral index can be used to quantify forest growth alone. To test this theory, we 

developed a multi-vegetation index model to predict forest growth across the region (i.e., 

with data from all sites and all years) using stepwise linear regression. With BAI as the 

dependent variable, the mixed platform tests all possible linear regressions combinations, 

retaining vegetation indices that strengthen the model fit.  To avoid over-fitting, model 

development was limited to a maximum of 5 terms (Williams and Norris 2001), α < 0.05 

for all terms and a variance inflation factor < 10 (Kleinbaum et al. 1998).  Jackknifed 

residuals calculated from the PRESS statistic were also used to assess the stability of the 

final predictive equation (Kozak and Kozak 2003). Based on preliminary results, an 
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analysis of variance with a Tukey HSD post-hoc test was run on the model’s residuals 

and it appeared that there was a significant species effect. Consequently this analysis was 

also carried for each of the 5 species “types.”  

  All analyses were carried out in JMP 9.0 (SAS Institute Inc., Cary, North 

Carolina). 

 

2.3. Results and Discussion 

2.3.1. Global Correlation Data Exploration 

  

Comparing BAI and vegetation indices across all years and all sites revealed 

fourteen vegetation indices that had significant (p ≤ 0.05) relationships with BAI 

measurements (Table 4). NDVI, one of the most commonly used vegetation indices in 

studies comparing remotely sensed data and tree-rings (Kaufmann et al. 2004, Lopatin et 

al. 2006, Kaufmann et al. 2008, Forbes et al. 2009, Babst et al. 2010, Lloyd et al. 2010, 

Berner et al. 2011) was not significantly correlated to BAI ( = - 0.055, p = 0.1389). 

Notably, however, the soil adjusted and atmospherically resistant vegetation index 

(SARVI) was significantly related ( = 0.077, p = 0.0409). SARVI is very similar to 

NDVI in what biophysical parameters it is designed to measure (Leaf Area Index, % 

green cover, green biomass, and absorbed photosynthethically active radiation) (Huete et 

al. 1994). The difference between NDVI and SARVI is that the latter is adjusted to offset 

contamination from soil brightness and atmospheric interference. Mathematically this is 

accomplished by normalizing blue reflectance (band 1) and including a constant to adjust 

for soil brightness, as opposed to NDVI, which is only calculated using the red and near 
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infrared (Bands 3 and 4) (Table 3). This built-in adjustment for atmospheric and soil 

interference may help explain why SARVI had a stronger relationship to BAI than NDVI.  

Of the remaining thirteen vegetation indices that were significant, three were 

indices designed for multispectral data (MSI, NDII5, NDII7), eight were adapted from 

hyperspectral indices for Landsat TM data (NPCI, SIPI, SRPI, MSR705, MND705, 

HAM, Flo, VogB) and two were the raw Landsat bands: band 5 and band 7 (Table 4). 

These two raw bands, as well as the moisture stress index (MSI), and the two normalized 

difference infrared indices (NDII5 and NDII7) are sensitive to water stress (Vogelmann 

and Rock 1988, Hunt and Rock 1989). Indices that record a water stress signal may have 

a stronger relationship to measurements of BAI because drought is a relatively non-

specific and non-fatal stress event. Unlike other stressors that target specific tree species 

or age classes (e.g., insect outbreak, storm damage), or occur rarely in our chronology, 

drought elicits a more general response. Climate events also occur beyond the scale of a 

single stand and so the fact that a broader portion of the landscape is likely to be 

responding to the same stressor may help account for any geographic inaccuracies in the 

Landsat data (D’Arrigo et al. 2000). Lastly, given that water stress in the Northeast is 

rarely prolonged enough to cause mortality, it is also likely trees will survive to carry a 

record of the event in their rings, as opposed to dying off before sites were cored in 2006 

and 2010. 

Seven of the remaining significant vegetation indices were developed to 

measure chlorophyll content (VogB) (Vogelmann et al. 1993), chlorophyll fluorescence 

(Flo) (Mohammed et al. 1995) or the ratio of total pigments and carotenoids to 
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chlorophyll (NPCI, SIPI, SRPI, MSR705, MND705) (Peñuelas et al. 1993, Peñuelas et al. 

1995, Sims and Gamon 2002). Chlorophyll levels are related to a plant’s ability to 

produce carbohydrates and by extension the xylem tissue that forms tree-rings. 

Chlorophyll fluorescence can be used as an early indicator of leaf stress as it is one of the 

first indicators of reductions in photosynthetic efficiency (Maxwell and Johnson 2000). 

Higher ratios of carotenoids to chlorophyll is also indicative of stress (Peñuelas et al. 

1995, Sims and Gamon 2002) as the relative concentrations of carotenoids tends to rise 

and persist longer than chlorophyll in unhealthy plants.  

The final vegetation index with a significant relationship to BAI was the 

hyperspectral adapted to multispectral (HAM) index developed by Pontius et al (in 

Review). This HAM index is a mathematical combination of multiple vegetation indices, 

calibrated to field measurements of canopy condition, designed to provide an overarching 

assessment of canopy condition across species types. Given that it contains three of the 

vegetation indices found significant in this analysis (SIPI, Flo, Band 5) it is perhaps not 

surprising that it also emerged as being significantly related to BAI in our global analysis.  

Despite logical explanations for why these particular vegetation indices have a 

significant relationship to BAI, it is important to note that these relationships were all 

quite weak with the absolute value of the Spearman-rho coefficient ranging from 0.0719 

to 0.157. This is lower than other similar studies. For example in their study comparing 

NDVI to ring-widths to 22 sites in Siberia and Canada (Berner et al. 2011), the overall 

mean Pearson product moment correlation value (r) was 0.43. Likewise Forbes et al. 

(2009) found a stronger association (r = 0.6), when comparing mid-summer NDVI to 
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tree-ring width index of willows at 27 sites in northern Russia.  There are many 

experimental and ecological explanations for the observed relatively low correlation 

coefficients, many of which are discussed in section 2.3.4. While these overall 

associations are relatively weaker, our results show that other vegetation indices 

outperformed the commonly used NDVI, suggesting that future studies using remote 

sensing techniques to quantify forest growth should consider expanding the range of 

indices utilized. 

At this “global” scale, plotting out BAI against each significantly correlated 

vegetation index and color coding data points by species membership (for an example, 

see Figure 3) also revealed that there are distinct species clusters, which suggests 

significant variation in the relationship by species. Re-running this same analysis for each 

species type (i.e., the same analysis, but only using data that fell into sites dominated by 

that particular type) resulted in more vegetation indices having a significant relationship 

to BAI measurements for some species types (Birch, Red Spruce, Mixed Hardwoods) 

(Table 5), and stronger absolute  values ( = 0.135-0.564) for all species types. Many of 

the indices found significant in the initial global correlation (i.e., data from all sites) were 

also found significant in these species type correlation analyses. These findings suggest 

comparing radial growth with remotely sensed metrics of forest condition are more likely 

to be successful if species-specific adjustments are made. Possible explanations for 

weaker associations between BAI and vegetation indices using a global correlation 

include differences in species’ inherent growth rates—the same amount of BAI can have 

different biological implications for productivity depending on a species’ usual rate of 
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growth.  There are also demonstrated cases where the relationship between a vegetation 

index and a particular biophysical property vary by species. For example,  Fassnacht et 

al. (1997) found a much stronger association between NDVI and LAI as measured from 

the ground for conifers (r 
2
 ~0.7) than deciduous trees (r 

2
 = 0.35) due to NDVI saturating 

more quickly in deciduous forest. Both differences in growth rates and tree appearance in 

imagery may complicate a global relationship. 

2.3.2. BAI and Vegetation Indices Correlation by Site 

 

Comparing BAI to vegetation indices for each site 1984-2010 resulted in 

inconsistent associations overall. Of the 47 total sites, only 19 had significant (p ≤ 0.05) 

relationships between any of the 55 vegetation indices and BAI measurements. After 

reducing the effective sample size to adjust for autocorrelation, only 10 sites still had 

significant relationships. Furthermore, there was no single vegetation index that was 

consistent across plots. NDVI, the most commonly used vegetation index in studies 

comparing tree-ring growth to remotely sensed imagery was significantly correlated to 

measurements of BAI at none of the 47 individual sites (mean  = 0.009 ± 0.236, mean p 

= 0.587 ± 0.268 ). The “best” index, as determined by being significantly correlated at the 

most sites with the most consistency was the middle infrared index (MIR), which was 

significantly correlated to BAI at five sites. MIR is calculated as Landsat TM band 5 / 

band 7 and was initially developed to identify mineral compounds in soils, but has been 

demonstrated to be related to the NIR/R simple ratio (which measures overall 

“greenness”), presumably due to its connection to leaf water content (Elvidge and Lyon 

1985). The correlation between BAI and MIR at these five sites was relatively strong 
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(average  = 0.609 ± 0.078). Among these sites with a significant relationship between 

BAI and MIR, there were not apparent similarities with regard to species composition ( 2 

paper birch, 1 mixed hardwoods, 2 red spruce), sample size (from 10-17 years of data), 

average BAI (629 ± 366 mm), or geographic proximity. For an example of how BAI and 

vegetation indices appear plotted over the study period (1984-2010) from two example 

sites (one which had a significant relationship to MIR and one which did not) see Figure 

4. 

In these site-by-site analyses, sample size (which is the number of years with 

both BAI and vegetation index data) was limited due to cloud cover masking Landsat 

data from certain sites as well as further penalization to account for temporal 

autocorrelation (17 of the sites had significant temporal autocorrelation in the vegetation 

index and/or BAI data) ( 

Table 1). The resulting average sample size for individual site analyses (10.78 ± 

5.18) corresponds with notably low statistical power.  Given these limitations, we also 

considered significance using a less conservative critical value (α) of 0.10. At this α level, 

17 of the 47 sites had a significant relationship between BAI and at least one of the 55 

vegetation indices. Again, however, there was no single vegetation index that had a 

significant relationship to BAI for all sites consistently.  

Even using this less conservative critical value, no sites’ BAI measurements 

1984-2010 were significantly related to NDVI. Of the 55 vegetation indices compared, 

the vegetation index that was significantly correlated with BAI for the most sites in a 

logical direction (in this case directly) was the second normalized difference infrared 

index (NDII7). Measurements of NDII7 were significantly, positively correlated (which 
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one would expect) with BAI measurements at 7 sites (mean  = 0.481 ± .074, mean p = 

0.063 ± 0.023). However, there were two sites that had a significant negative relationship 

(which one would not expect) between BAI and NDII7 as well (mean  = -0.479 ± .014, 

mean p = .0893 ± 0.013).  NDII7 is a combination of the near infrared (band 4) and mid 

infrared (band 7) bands (Table 3) (Hunt and Rock 1989) and was developed to evaluate 

water content by utilizing the high water absorbance of band 7 (e.g., lower reflectance 

signals higher water content) and the cell structure information provided by band 4 (e.g., 

higher reflectance signals healthy intercellular air spaces). 

It is interesting that the two vegetation indices (MIR, NDII7) that had a 

significant relationship to BAI measurements at the most sites are both associated with 

water levels in vegetation. This could be due to a range of different reasons including the 

direct association of water stress with reduced radial tree growth (Stahle et al. 2007, Klos 

et al. 2009) as well as water stress potentially serving as an indicator of the presence of 

other stressors such as insect and pathogen damage (Townsend et al. 2012). Being farther 

along the electromagnetic spectrum, the bands that compose these indices (band 4, 5, and 

7) are less susceptible to atmospheric interference, which may also permit a stronger 

relationship between these vegetation indices and BAI to emerge.  

Notably, comparisons of these two indices (MIR, NDII7) to estimates of actual 

water content field vegetation has had mixed results in other studies. MIR has been 

shown to be related to vegetation cover in the Southwest and  (Elvidge and Lyon 1985) 

hypothesized this was due to this index being sensitive to water content, but this 

relationship has not been directly evaluated. Similarly, Hunt and Rock (1989) found that 
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using near-infrared and mid-infrared bands (e.g., NDII7) to monitor actual water levels 

for a variety of species only worked for very severe cases of water stress. The only field-

based study we were able to identify used a simulated Landsat TM sensor mounted on a 

plane (Pierce et al. 1990) and found the strength of the relationship between the 

normalized difference infrared index using band 5 in place of band 7 (e.g., NDII5) and 

field measurements of water pressure varied based on the time of day. The sensor was 

able to see significant differences between healthy and severely girdled trees in the 

morning, but in afternoon imagery, no significant difference was visible between stands 

due to transpiration. Landsat imagery is collected at around the same time of day—

approximately solar noon—a point in the day when the differences between normal and 

water-stressed trees was not still distinguishable in the Pierce et al. (1990) study. 

Within-site analysis of the relationship between BAI and vegetation indices 

should hold constant factors such as species composition, topography, and soil properties 

that likely contribute variation in that relationship at a broader landscape scale. The fact 

that relatively few (21% using α = 0.05; 36% using α = 0.10) of these sites had a 

significant relationship between BAI and any of the 55 vegetation indices, and that no 

one index was significantly correlated with BAI at more than 7 sites suggests that there is 

not a consistent measurable relationship between BAI and any single vegetation index 

derived from Landsat 5 TM imagery. Having a limited number of years of Landsat 

imagery due to cloud cover and haze, compounded by the lack of imagery prior to 1984 

likely reduced our power to see this relationship. To find significant correlations similar 

to those found in our global assessment ( ~0.2) at α = 0.05 with power = 0.95 would 
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require 53 observations (online power calculator accessed from 

http://www.danielsoper.com/statcalc3/calc.aspx?id=9 ).  Therefore, while the site by site 

assessment is the most conservative and statistically sound approach to these analyses, 

site by site comparisons are much more likely to miss potentially significant  

relationships.   

2.3.3. Multi-Index Predictive Modeling 

  

 As the production of tree-rings is a complex process (Speer 2010), it is possible 

that a combination of multiple vegetation indices measuring different canopy 

characteristics may better predict BAI then any single vegetation index alone.  To 

combine multiple vegetation indices into a single predictive equation, a stepwise linear 

regression was used to identify the best overall model.  Using all data points, regardless 

of species type or year, the resulting  four-term model included the raw Landsat band 3 

value (red)  and three hyperspectral indices adapted to Landsat band structure—the 

simple ratio pigment index (Peñuelas et al. 1993),  the modified simple ratio (MSR 705) 

(Sims and Gamon 2002), and a combination of bands 2 and 4 (BNa)(Buschmann and 

Nagel 1993). Each of these indices was developed to measure different aspect of 

vegetation condition: the red portion of the spectrum (band 3) can indicate chlorophyll 

content and absorbance, SRPI measures the ratio of chlorophyll to carotenoids, MSR705 

indicates overall “greenness,” and BNa is designed to measure chlorophyll content. There 

was low autocorrelation between variables (maximum model variance inflation factor = 

9.19). While this model (Figure 5) was highly statistically significant (p = < 0.0001), the 

low model fit (r
2
 = 0.120, adjusted r

2
 = 0.115) and high root mean square error (648.38 

http://www.danielsoper.com/statcalc3/calc.aspx?id=9
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mm
2 

compared to a mean BAI of 1013.57 mm
2
) suggests that it may not be a very useful 

model from a predictive standpoint.  

 From visual inspection of the model, it also appears that data points are highly 

clustered by species type, further suggesting that there may be within-species differences 

in the relationship between BAI and remotely sensed metrics of forest condition. 

Comparing this model’s residual values, grouped by species type, using an analysis of 

variance also showed significant (p < 0.001, F = 58.07) differences among species types 

(Figure 6). Similar to the findings from the previous analysis, this suggests that 

attempting to predict BAI from vegetation indices derived from Landsat imagery using a 

single landscape-wide predictive equation will not be as accurate as one that is species-

specific.  

 Repeating the same stepwise linear regression analysis, but for each species type 

(Figure 7a-e) was limited by the smaller number of sites for some types (pine-4, mixed 

hardwoods-5, and mixed fir-spruce-birch-4). Using only the data collected by Halman et 

al. (2011) from paper birch trees at twelve sites in the Green Mountains of Vermont 

(Figure 7a), model fit was much stronger (p = <0.0001, r
2 

= 0.302, adj. r
2
 = 0.285; RMSE 

= 224.73 with mean BAI = 553.60).  The stepwise model fitting process retained the 

following vegetation indices for the final predictive equation:  a modified derivative 

between bands 7 and 5 (FD75)(Pontius et al. 2005), the reflectance absorbance index 

(RAI),  the greenness condition index (GI) (Sivanpillai et al. 2006), and the hyperspectral 

adapted to multispectral index (HAM) (Pontius in Review). These indices are designed to 
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measure canopy moisture content, leaf stress, vegetation biomass, and an integrated 

measure of “forest decline,” respectively.  

 Potential reasons for relatively better modeling success for paper birch include a 

larger sample size: 12 sites fell into this species type and on average these sites had 19 (± 

2.79) years of imagery data available, due in part to all sites falling in both Landsat row 

29 / path 14 and row 29/ path 13. The dendrochronological sampling used to collect the 

tree-ring data was also specifically designed to capture a range of canopy conditions and 

elevation types, and included many declining trees that were in poor enough condition to 

have locally absent rings (Halman et al. 2011).  By including a broader range of potential 

growth conditions, relationships between vegetation indices and BAI are more robust. 

Another potential explanation for the stronger predictive ability of this model compared 

to the model including all species, is that  paper birch do not retain their photosynthetic 

material from one year to the next, thus reducing complications from a lagged radial 

growth response related to damaged needles retained from previous years. Lastly, these 

sites were also relatively close to one another (<50km apart), which means that they may 

be more likely to share characteristics not accounted for in the modeling process, that 

nevertheless likely affect BAI including precipitation patterns, storm and winter injury 

damage, and  some soil properties. 

 The other species type with a large sample size available on which to base a 

predictive BAI model was red spruce (with 22 sites). Unlike the model developed for 

paper birch, however, this model (Figure 7b) performed more poorly than the global 

model (p = <0.0001, r
2 

= 0.116, adjusted r
2 

= 0.107, RMSE = 548.79 with mean BAI = 
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1048.65). The stepwise model fitting process retained the following vegetation indices 

for the final predictive equation for red spruce: the first derivative of two mid-infrared 

bands (Landsat band 7 and band 5) (FD75)(Pontius et al. 2005), optimized soil adjusted 

vegetation index (OSAVI) (Rondeaux et al. 1996), and the VogB index (Vogelmann et al. 

1993). These indices are designed to measure canopy moisture content, total vegetation 

density adjusted for soil reflectance, and total chlorophyll content, respectively. Given 

this model’s poor fit and high root mean square error relative to the average BAI 

measurement of these red spruce sites, it appears there is only a very weak relationship 

between BAI and vegetation indices derived from Landsat imagery—one that is probably 

too weak to be very ecologically meaningful.  

 Potential reasons for the poorer fit of this model include the fact that red spruce 

is often rarer (particularly at lower elevations) and has smaller crown size than deciduous 

species, making it is possible that other un-cored tree species contributed to the spectral 

information captured by Landsat. This would weaken the relationship between BAI and 

vegetation indices because the BAI measurements of red spruce may not be 

representative of growth of other species, which the sensor is also detecting. Like the 

birch sites cored by Halman et al. (2011), the majority of the red spruce sites (19 of 22) 

were also located to capture a range of elevation and canopy damage levels (Kosiba et al. 

in review).  However, the red spruce sites were also distributed over a much larger 

portion of the landscape, across Vermont and New Hampshire, up to 130km apart. Thus 

these sites are less likely to experience similar climate and stress events that also 

contribute to tree-ring width that were not accounted for in the model. More red spruce 
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sites also had significant temporal autocorrelation in BAI measurements (34% compared 

to only 25% for paper birch sites), likely due in part to needle retention from year-to-

year. This temporal autocorrelation in growth may contribute to the disconnect between 

BAI measurements and Landsat vegetation index measurements from the same year.  

 Because of the independent calibration and spectral difference inherent between 

species key model variables were not consistent across species.  This further indicates 

that there is no “one” vegetation index that is able to capture BAI across the landscape. 

2.3.4. Limitations and Next Steps 

 

 Our finding that there is not an observable, strong, consistent relationship 

between BAI and vegetation indices over a 27 year period is in contrast to many of the 

other studies that have analyzed tree-ring increment and remotely sensed metrics of forest 

condition.  The majority of published studies on this topic have found moderate (r = 

0.366-0.59 ; r
2
 = 0.44-0.59, p < 0.005) (Malmström et al. 1997, D’Arrigo et al. 2000, 

Lopatin et al. 2006, Berner et al. 2011) to extremely strong (r
2
 = 0.91, p <0.005) 

(Kaufmann et al. 2004, Wang et al. 2004) associations between NDVI and tree-ring 

increment, even using data with much coarser spatial resolution (30m for Landsat vs. 

>8km for these other studies).  

 One potential reason for these stronger observed relationships is that the 

majority of sites used were located in boreal forests, which tend to be more homogeneous 

both in species composition and land use type. In contrast, forests in the Northeast 

typically have higher species diversity and patchier composition, which may make it 

more likely that trees of different species type and health conditions are being averaged 
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together spectrally in the imagery. With a longer and wetter growing season, forests in 

the Northeast also tend to experience catastrophic disturbance with less frequency than 

other forested ecosystems (Seymour et al. 2002). Less dramatic loss of canopy from 

disturbance events and relatively quick regeneration of the understory post-disturbance 

may also hamper the ability of Landsat imagery to “see” areas where trees have been 

damaged. This is because the sensor cannot detect the difference between older 

recovering vegetation and new vegetation that has grown in and taken its place. 

Furthermore, due to permitting restrictions and time constraints, only a subsample of 

trees were cored on each site. It is possible that the trees selected for coring were not fully 

representative of all the trees that contributed to a pixel’s spectral response, due either to 

there being too few samples taken or non-representative trees being cored. The spectral 

response of the understory, which was not sampled, may also be contributing to the 

Landsat measurement (Spanner et al. 1990, Ghitter et al. 1995), particularly in places 

with sparser canopies such as the pine plantations cored in this study.  

 This study also had several temporal limitations that should be noted. Due to 

availability and processing requirements, yearly images used to calculate the vegetation 

indices were from a single date, whereas a tree-ring represents an integrated metric of 

forest condition over an entire year (and in some cases, previous years). Early growing 

season imagery may reflect growing conditions in the prior year, as initial leaf out is in 

part fueled by starch reserves (SOURCE). Imagery from earlier in the growing season 

may also not capture reduced growth rates that result from stress events later in the 

growing season such as drought or insect defoliation. Some studies have also found that 
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tree-rings correlate better with NDVI measurements from certain parts of the year, some 

of which were not in our June 10 -August 20 growing season definition. For example, in 

their study of an oak stand in Kansas, Wang et al. (2004) found that tree-rings correlated 

strongly with NDVI averaged over mid-May to June (r
2
 =0.91), but only moderately well 

with the average (r
2
 =0.76) or maximum (r

2
 =0.25 ) NDVI value over a growing season 

(April-October).  Kauffman et al. (2008) compared tree-ring data to NDVI at 53 

deciduous sites south of 40ºN 1981-2003, and found that there was a positive correlation 

to NDVI in the months of April and May, no relationship June-September, and a negative 

relationship with October values. Interestingly, when repeating the same analysis on 48 

deciduous and coniferous sites north of 40ºN, they found a positive significant 

relationships between tree-ring index and NDVI from June and July, and a negative one 

with May NDVI measurements. They speculate that this may be due to the effect climate 

has on both leaf development as well as tree-ring production. These findings suggest that 

using imagery from a single date for each year to calculate vegetation indices may have 

missed crucial portions of the growing season. However, given the expertise, time, and 

storage requirements involved with processing Landsat imagery, using multiple images 

from each year may not be feasible for many researchers.  

 Another potential temporal limitation of our study is that trees cored in 2006 

(Halman), 2010 (Kosiba) and 2011 (Weverka) are not necessarily representative of the 

trees in that Landsat pixel over the entire study period 1984-2010.  For example, at one 

site it is likely that several trees were harvested at some point between 2003 and 2010 

(Kosiba, personal communication). In theory the Landsat sensor should have been able to 
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pick up that loss of biomass. The remaining trees at that site cored in 2010, however, 

would not have had any sign of reduced growth post- harvesting activity in their tree-ring 

records, and in fact may have experienced release. This difference between Landsat 

measurement of forest condition and the record contained in the tree-rings of individuals 

cored could lead to muddying of their relationship. In this particular example, this site 

was removed from this analysis to reduce that potential source of error. However, the 

history of many sites included in analysis remains unknown.  

 While there are many potential sources of error specific to this study, there is 

also some evidence that the relationship between canopy condition (which is what the 

Landsat imagery directly captures) and radial growth is somewhat complicated and non-

linear. In a lengthy literature review on forest decline and basal area increment in Europe, 

Innes (1993) concluded that trees had to lose between 30% and 50% of their foliage 

before growth reductions were apparent in the tree-rings. There are similar examples of 

this in the Northeast where Schaberg et al. (2011) found examples of red spruce trees 

with 100% canopy loss that resulted in only a 60% reduction in radial growth for that 

year.  Work  by Smith and Shortle (2003) on hardwoods after the 1998 ice storm also 

revealed that for certain species (i.e., white ash), the degree of damage experienced 

appeared to have no effect on tree-ring increment immediately post-disturbance. There 

are also examples of the reverse of this phenomenon in the literature. Duchesne et al. 

(2003) found that reduction in ring-width preceded visual observations of decline at 

several of their sugar maple sites by at least a decade. Cherubini et al.(2002) and found 
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that in some cases tree-ring production stopped up to 30 years before a tree was 

considered dead based on visual observation of absence of foliage.  

 Another good example of this disconnect between foliage condition and radial 

growth can be drawn from several experiments carried out in the Hubbard Brook 

Experimental Forest in the White Mountains of New Hampshire. In this forest 

Wollastonite (CaSiO3) was added to an experimental watershed in 1999 to mimic pre-

industrial calcium levels. Post application, multiple studies found higher calcium levels 

and higher winter stress tolerance in red spruce trees in the experimental watershed 

versus the reference watershed (Hawley et al. 2006, Halman et al. 2008, Kessler 2008). 

There were also observable differences in spectral reflectance values from red spruce 

foliage from the two watersheds measured using a handheld spectroradiometer  as well as 

Landsat 7 TM data (Kessler 2008). However, red spruce cored at four sites in the 

experimental watershed and four sites in the reference watershed in 2010 (which were 

also used in this analysis) appear to not have significantly divergent growth patterns since 

the application of calcium (Kosiba, personal communication). This example at Hubbard 

Brook, as well as the studies mentioned above illustrate a potential source of error in one 

of the crucial assumptions of this analysis—that canopy condition is strongly related to 

radial growth and can therefore serve as a link between the two metrics of forest 

condition (i.e., BAI and vegetation indices).    

 Given that there were only relatively weak relationships between BAI and any 

of the 55 vegetation indices considered, this raises the question about what biophysical 

properties of forest vegetation are driving the changes observed in vegetation indices. 
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Many of these vegetation indices used in this analysis have been developed in controlled 

lab settings or have been designed for hyperspectral sensors. Some previous attempts at 

evaluating the ecological basis of vegetation indices in the field have had poor results 

(Pierce et al. 1990).  

 However, Landsat imagery averages together reflectance values from all 

vegetation (and other ground cover) in a 30m x 30m pixel area, and thus may actually be 

providing a more comprehensive picture of biomass than what can be captured in the 

growth of 10-20 trees in the same pixel. For example, Wolter et al. (2008) were able to 

estimate basal area forest-wide with strong accuracy (r
2
 = 0.62, RMSE 4.67m

2
/ha. or 20% 

of measured basal area) using many of the same vegetation indices in our study derived 

from Landsat imagery from multiple seasons in Northern Minnesota and Ontario. Their 

accuracy rose considerably (r
2
 = 0.65-0.88, RMSE = 4.99-12.32m

2
/ha. or 16-23% of 

measured basal area) when calibrating their equation for individual species or forest types 

(i.e., deciduous, coniferous). In a study examining net primary productivity in the Bartlett 

Experimental Forest (where three sites used in our study were located), Potter et al. 

(2007) found a moderate relationship (r
2
 = 0.50) between an NDVI-based model (with 

input data from 2001 Landsat imagery) and metrics of stand productivity (e.g., tree 

diameter, litter fall, and other factors derived from allometric equations) at 1900+ sites. 

Accounting for elevation and aspect further improved the model fit (r
2
 = 0.69). These 

studies illustrate that remotely sensed imagery can be used to model forest productivity at 

a single point in time relatively well. It is possible that our findings in this study may be 

limited by attempting to see smaller scale changes (i.e., increment vs. total productivity) 
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as well as variability in the  proportion of primary productivity (viewable by the Landsat 

sensor) that is ultimately allocated to radial trunk growth (tree-rings). 

 

2.4. Conclusions 

 

 Statistically significant, although weak, relationships between BAI and some 

vegetation indices were observed. The most consistently significant indices across the 

three analyses (defined as either the strongest, or showing up in multiple analyses) 

include: NDII7, MIR, SARVI, OSAVI, Flo, SRPI, and VogB .  These are designed to 

measure water stress, “greenness” (a combination of biomass, leaf area index, vegetation 

cover) adjusted for atmospheric and soil interference, and chlorophyll and carotenoid 

content. While NDVI is a very widely used vegetation index, in our analyses, it appears 

to have underperformed many other multispectral and hyperspectral indices. The strength 

of associations and model fit were also improved by focusing on single species types 

instead of attempting to carry out analyses on all sites, regardless of species composition. 

  These findings suggest that while remotely sensed products have been shown to 

be usable in identifying disturbance events (Rock et al. 1986, Vogelmann and Rock 1989, 

Cohen et al. 2002, Olthof et al. 2004, Townsend et al. 2012), factors such as the timing 

and availability of imagery, mixed pixel issues common to heterogeneous forests such as 

those in the Northeast, mortality and  regeneration captured in pixels and not in cores, 

among other factors, may make it difficult to use this imagery to accurately model radial 

growth. If efforts were undertaken to model forest productivity (in terms of BAI) from 

Landsat imagery at the landscape scale, we suggest expanding the range of vegetation 
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indices beyond NDVI alone and developing species-specific equations as opposed to 

applying a single equation across an entire image. Any results should also be interpreted 

with care, understanding that accuracy may only be within 20-25% (proportion of 

RMSE/mean) of true BAI at best. While limited in absolute accuracy, in this study using 

a suite of vegetation indices derived from Landsat imagery to predict BAI was an 

improvement over NDVI alone and could potentially be used as a general relative 

measure of landscape scale productivity from year to year. 
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Tables: 

Table 1: Data Summary by Site 

Site ID State Collector Species #Trees 

n (years 

w/ 

imagery 

and tree 

data) 

neff 

Significant 

relationship 

(α = 0.10) 

between BAI 

and any 

VI’s? 

ABE042 VT A. Weverka 

ABBA  7 

16 6  No BEPA 10 

PIRU 10 

ABE043 VT A. Weverka 
ABBA 10 

18 7  No 
BEAL 8 

BAR001 NH A. Weverka PIRU  10 11  11 Yes 

BAR002 NH A. Weverka FAGR  10 12 2  No 

BAR003 NH A. Weverka PIRU  10 16 5  No 

CAM070 VT A. Weverka 
ABBA 9 

17  17 Yes 
PIRU 9 

CAM071 VT A. Weverka 

ABBA  9 

20  5 Yes BEPA 10 

PIRU 5 

CEN001 VT A. Weverka PIST 10 20 20 Yes 

CEN002 VT A. Weverka PIST 11 20 20 Yes 

JRF229 VT A. Weverka PIRE 17 21  5 No 

JRF242 VT A. Weverka PIRE 11 21 21  No 

HEG018 NH A. Weverka PIRU  12 12  12 No 

MIC001 NH A. Weverka 

ACSA 5 

11  4  No BEAL 6 

FAGR 8 

MIC002 VT A. Weverka 

ACSA 5 

8 8  No  BEAL 8 

FAGR 4 

SUG001 VT A. Weverka 
ACRU 9 

14 14   Yes 
FAGR 10 

SUG002 VT A. Weverka 

ACSA 6 

11 3   No BEAL 6 

FAGR 7 

BKE58  VT A. Kosiba PIRU 10 13 13  No  
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BNT182  VT A. Kosiba PIRU 10 12  12 Yes  

BNT185  VT A. Kosiba PIRU 10 10  10 Yes  

CAR176  VT A. Kosiba PIRU 11 12 12  Yes  

CAR180  VT A. Kosiba PIRU 10 11 11 Yes  

HUB164 NH A. Kosiba PIRU 5 15 5  No  

HUB165 NH A. Kosiba PIRU 5 15  6 No 

HUB167 NH A. Kosiba PIRU 5 15  15 Yes 

HUB168 NH A. Kosiba PIRU 5 15  15 No  

HUB169 NH A. Kosiba PIRU 6 13  5 No  

HUB171 NH A. Kosiba PIRU 6 13  4 No  

HUB172 NH A. Kosiba PIRU 6 13  4 Yes  

HUB174 NH A. Kosiba PIRU 6 13  5 No  

MAN77  VT A. Kosiba PIRU 14 15 7 No  

MID101 VT A. Kosiba PIRU 10 19 8 No 

MOO158 NH A. Kosiba PIRU 10 15 15  No  

MOO161 NH A. Kosiba PIRU 10 13 13   Yes 

MRG127  VT A. Kosiba PIRU 10 18 18  No  

MRG128  VT A. Kosiba PIRU 10 17 17   Yes 

CH-Low  VT J. Halman BEPA 10 16 16  No  

CH-Mid  VT J. Halman BEPA 20 15 15  No 

CH-High  VT J. Halman BEPA 10 13  13  Yes 

Granville  VT J. Halman BEPA 19 19  19  Yes 

Roxbury  VT J. Halman BEPA 20 16 16   Yes 

App. Gap  VT J. Halman BEPA 18 15  5 No 

MHM-

Low 
 VT J. Halman BEPA 10 12  12  No 

MHM-

Mid 
 VT J. Halman BEPA 19 10  10  Yes 

MHM-

High 
 VT J. Halman BEPA 7 11  11  No 

MHW-

Low 
 VT J. Halman BEPA 10 11 11   No 

MHW-

Mid 
 VT J. Halman BEPA 20 13 13   Yes 

MHW-

High 
 VT J. Halman BEPA 9 11 11   No 

 

Species Code: 

ABBA= Abies balsamea  = balsam fir FAGR = Fagus grandifola = beech 

ACRU = Acer rubrum = red maple  BEAL =Betula alleghensis = yellow birch 

ACSA = Acer sacharum = sugar maple PIST = Pinus strobus = white pine 

BEPA =Betula papyrifera = paper birch  PIRE = Pinus resinosa = red pine 
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Table 2: Landsat 5 TM Images Used 

Landsat Scene 

(Row/Path) Date Images Obtained 

 29/13 

 

38 of 47 sites fell 

into this scene 

8/3/1986, 7/5/1987, 6/21/1988, 7/26/1989, 7/13/1990, 7/16/1991, 

6/16/1992, 8/16/1993, 7/8/1994, 7/29/1996, 6/30/1997, 7/3/1998, 

7/28/2000, 7/14/2002, 7/1/2003, 7/3/2004, 8/7/2005, 7/9/2006, 

6/26/2007, 6/12/2008, 8/18/2009, 6/18/2010 

Missing Years: 1984, 1985, 1995, 2001 

 29/14 

 

30 of 47 sites fell 

into this scene 

 8/14/1984, 7/22/1985, 7/25/1986, 8/13/1987, 7/30/1988, 

8/10/1989, 8/8/1991, 6/13/1994, 8/5/1996, 7/26/1998, 6/11/1999, 

7/2/2001, 7/21/2002, 6/6/2003, 7/26/2004, 6/27/2005, 7/16/2006, 

8/4/2007, 7/15/2008, 7/27/2010,  

Missing Years: 1990, 1992, 1993, 1995, 1997, 2000, 2009 

 

 

Table 3: Sources and equations for vegetation indices used 

Vegetation 

Index 

Landsat 5 TM band 

combination 

Biophysical 

Parameter 

Source Expected 

relationship  

NDVI (B4-B3) / (B4 + B3) “Greenness” Rouse et al. 2004 + 

AI B3/B1 Foliar 

senescence 

Wolter and Townsend 

2011 
- 

DVI B4-B3 “Greenness” Jordan 1969 + 

EVI 2.5*((B4-B3)/ B4)+ (6*B3) -

(7.5*B1)+1)) 

 

“Greenness” Huete et al. 2002 + 

GI B2/B3 Light Use 

Efficiency 

Sivanpillai et al. 2006 + 

MIR B5/B7 leaf water 

content 

Elvidge and Lyon 

1985 
+ 

MSAVI 0.5* (2*B4+1 –(Sqr((2*B4+1) 

*(2*B4-1))-(8*(B4-B3))) 

“Greenness” Qi et al. 1994 + 

MSI B5/B4 Moisture stress Rock et al. 1986 - 

NDII5 (B4-B5)/(B5-B4) Leaf water 

content 

Hardisky et al. 1983 + 

NDII7 (B4-B7)/(B7-B4) Leaf water 

content 

Hunt and Rock 1989 + 

OSAVI (B4-B3) / (B4+B3+0.16) Optimized 

“Greenness” 

Rondeaux et al. 1996 + 

RAI B4/(B3+B5) Leaf stress Arzain and King 1997 - 

RDVI Sqr((B4-B3)/ ((B4+B3) *(B4-

B3))) 

“Greenness” Roujean and Breon 

1995 
+ 
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RVI B4/B3 “Greenness” Pearson and Miller 

1972 
+ 

SARVI 1.5* (B4-(B3-(B1-B3)) / (B4-

(B3 + (B1-B3) + 0.5)) 

Soil-adjusted and 

atmosperhically 

resistant 

“Greenness” 

Huete and Liu 1994 + 

SAVI 1.5 *((B4-B3)/(B4+B3+0.5)) Soil-adjusted 

“Greenness” 

Huete 1988 + 

Aoki B2/B4 chlorophyll 

content 

Aoki et al. 1981 - 

BNa B3-B2 chlorophyll 

content 

Buschman and Nagel 

1993 
- 

CMS B3/B4  Cater 1994 - 

Datt B3 *(B2*B3) Total chlorophyll 

content 

Datt 1998  

Dattb B3/B2 Chlorophyllb 

content 

Datt 1998 - 

Flo (B4-B2)/ (B5-B3) chlorophyll 

fluorescence 

Mohammed et al. 

1995 
+ 

Gitc  1/B3  Gitelson and Merzylac 

2001 
? 

GM B4/B2  Gitelson and Merzylac 

1994 
? 

MCARI1 1.2 * ((2.5*B3)-1.3(B4-B2))) green leaf area 

index 

Haboudane et al. 2004 + 

MCARI2 1.5 * ((2.5 *((B4-B3))- (1.3 

*(B4-B2)))/ (Sqr(((2*B4+1) * 

(2*B4 +1))) – (6*B4-(5* 

Sqr(B3)))-0.5)) 

green leaf area 

index 

Haboudane et al. 2004 + 

MND705 (B4-B3)/ (B4+B3 +(2*B1)) Chlorophyll: 

carotenoids 

Sims and Gamon 2002  - 

MSR ((B4/B3-1) / (Sqr((B4/B3)+1))  Chen 1996  

MSR705 (B4-B1)/(B4+B1) Chlorophyll: 

carotenoids 

Sims and Gamon 2002 - 

MTVI 1.2 *((1.2*(B4-B2))-(2.5*(B3-

B2)) 

green leaf area 

index 

Haboudane et al. 2004 + 

MTVI2 1.2 *((1.2*(B4-B2))-(2.5*(B3-

B2)) /(Sqr 

(((2*B4+1)*(2*B4+1)) – (6*B4 

– (5* (Sqr(B3)))) – 0.5)) 

green leaf area 

index 

Haboudane et al. 2004 + 

NPCI (B3-1)/(B3+B1) Total pigments: 

chlorophylla 

Penuelas et al. 1993 - 

PSSRa B4/B3  Blacburn 1998 + 

SIPI (B4-B1)/(B4+B3) carotenoids: 

chlorophyll 

Penuelas 1995 - 

SRPI B1/B3 carotenoids: 

chlorophyll 

Penuerlas 1993 + 

TVI 0.5 * (120 *(B4-B2) -200 *(B3-

B2)) 

 Broge and LeBlanc 

2001 
+ 

VogB (B4-B3) / (B5-B4) Chlorophyll 

content 

Vogelmann et al. 1993 + 



 

55 

HAM - 51.76 + (B5*0.946) + 

((B2/B4) * 0.706) - 

((1.5*((2.5*(B4-B3)) - 

(1.3*(B4- B2))) / 

(Sqrt((((2*B4+1) * (2*B4+1)))) 

- (6*B4 - (5*(Sqrt(B3)))  0.5))) 

*0.236) +  ((B4-B1) / (B4-B3) 

*54.536) + ((B4-B2) / (B5 - 

B3) * 0.451) 

 

Forest decline Pontius et al. in review - 

 

 

Band Name Wavelength 

Landsat 5 TM Band 1 (B1) “blue” 0.45- 0.52 µm 

Landsat 5 TM Band 2 (B2) “green” 0.52- 0.60 µm 

Landsat 5 TM Band 3 (B3) “red” 0.63- 0.69 µm 

Landsat 5 TM Band 4 (B4) “near infrared” 0.76- 0.90 µm 

Landsat 5 TM Band 5 (B5) “short-wave infrared” 1.55- 1.75 µm 

Landsat 5 TM Band 7 (B7) “mid infrared” 2.08- 2.35 µm 

 

 

 

Table 4: Vegetation Indices with a significant relationship to BAI, across all years and all 

sites 

 

Vegetation Index Absorbance Feature Spearman  p-value 

NPCI Total Pigments: chlorophyll a -0.1572 <.0001 

SIPI Chlorophyll: Carotenoids -0.1555 <.0001 

HAM Forest Health -0.138 0.0002 

MSR705 Chlorophyll: Carotenoids -0.107 0.0046 

MND705 Chlorophyll: Carotenoids -0.087 0.0214 

MSI Moisture Stress -0.084 0.0238 

B7 Moisture Stress -0.0757 0.0418 

B5 Moisture Stress -0.0719 0.0497 

SARVI 

LAI, green biomass, absorbed  

photosynthetically active radiation 0.0773 0.0409 

NDII7 Leaf Water Content 0.0819 0.0276 

NDII5 Leaf Water Content 0.0838 0.0242 

Flo Chlorophyll Fluorescence 0.0935 0.0118 

VogB Chlorophyll Content 0.0935 0.0118 

SRPI Chlorophyll: Carotenoids 0.1505 <.0001 
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Table 5: Vegetation indices with a significant relationship to BAI by species type 

Species 

Type 

Vegetation 

Index 

Spearman 

rho 

p-

value Species Type 

Vegetation 

Index 

Spearman 

rho 

p-

value 

Birch SD34 -0.3535 <.0001 Mixed Hardwoods MSI* -0.3275 0.0088 

Birch SD43 -0.3535 <.0001 Mixed Hardwoods NDII7* 0.2813 0.0255 

Birch MSI -0.3505 <.0001 Mixed Hardwoods RAI 0.2861 0.023 

Birch FD54 -0.3415 <.0001 Mixed Hardwoods NDII5* 0.3275 0.0088 

Birch SIPI* -0.3317 <.0001 Mixed Hardwoods VogB* 0.3327 0.0077 

Birch SD4 -0.3114 <.0001 Mixed Hardwoods Flo* 0.343 0.0059 

Birch HAM* -0.3111 <.0001 Mixed Fir-Spruce-Birch MCARI1 -0.5614 <.0001 

Birch MCARI1 -0.3075 <.0001 Mixed Fir-Spruce-Birch SD4 -0.5448 <.0001 

Birch SARVI -0.2737 0.0003 Mixed Fir-Spruce-Birch SARVI* -0.5379 <.0001 

Birch SD54 -0.2699 0.0002 Mixed Fir-Spruce-Birch FD54 -0.5346 <.0001 

Birch TD720 -0.2681 0.0003 Mixed Fir-Spruce-Birch SD34 -0.531 <.0001 

Birch NPCI -0.2472 0.001 Mixed Fir-Spruce-Birch SD43 -0.531 <.0001 

Birch FD75 -0.1818 0.014 Mixed Fir-Spruce-Birch TD720 -0.522 <.0001 

Birch GM 0.16 0.031 Mixed Fir-Spruce-Birch SD54 -0.5155 <.0001 

Birch MIR 0.2426 0.001 Mixed Fir-Spruce-Birch FD75 -0.3556 0.0019 

Birch SRPI* 0.2591 0.0006 Mixed Fir-Spruce-Birch MSI* -0.2643 0.0229 

Birch B4 0.2744 0.0002 Mixed Fir-Spruce-Birch B7* 0.2586 0.0261 

Birch MTVI2 0.2744 0.0002 Mixed Fir-Spruce-Birch Flo* 0.2596 0.0255 

Birch MTVI 0.2775 0.0001 Mixed Fir-Spruce-Birch VogB* 0.2643 0.0229 

Birch SD3 0.2787 0.0001 Mixed Fir-Spruce-Birch NDII5* 0.2649 0.0226 

Birch TVI 0.2814 0.0001 Mixed Fir-Spruce-Birch B5* 0.347 0.0025 

Birch DVI 0.2876 <.0001 Mixed Fir-Spruce-Birch EVI 0.4811 <.0001 

Birch FD43 0.2876 <.0001 Mixed Fir-Spruce-Birch B4 0.5234 <.0001 

Birch MSAVI 0.2876 <.0001 Mixed Fir-Spruce-Birch SD3 0.5367 <.0001 

Birch BNa 0.2917 <.0001 Mixed Fir-Spruce-Birch MTVI 0.5378 <.0001 

Birch RDVI 0.297 <.0001 Mixed Fir-Spruce-Birch TVI 0.5394 <.0001 

Birch MCARI2 0.2976 <.0001 Mixed Fir-Spruce-Birch BNa 0.5413 <.0001 

Birch SAVI 0.2984 <.0001 Mixed Fir-Spruce-Birch DVI 0.5439 <.0001 

Birch RAI 0.2992 <.0001 Mixed Fir-Spruce-Birch FD43 0.5439 <.0001 

Birch OSAVI 0.3003 <.0001 Mixed Fir-Spruce-Birch MSAVI 0.5439 <.0001 

Birch EVI 0.3089 <.0001 Mixed Fir-Spruce-Birch MTVI2 0.5455 <.0001 

Birch VogB* 0.3469 <.0001 Mixed Fir-Spruce-Birch OSAVI 0.5498 <.0001 

Birch NDII5* 0.3508 <.0001 Mixed Fir-Spruce-Birch MCARI2 0.5589 <.0001 

Birch Flo* 0.3609 <.0001 Mixed Fir-Spruce-Birch SAVI 0.5625 <.0001 

Birch NDII7* 0.3663 <.0001 Mixed Fir-Spruce-Birch RDVI 0.5635 <.0001 
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Species 

Type 

Vegetation 

Index 

Spearman 

rho p-value 

Species 

Type 

Vegetation 

Index 

Spearman 

rho 

p-

value 

Pine HAM* -0.4308 <.0001 Red Spruce Flo* -0.2258 <.0001 

Pine SIPI* -0.4001 0.0001 Red Spruce VogB* -0.2206 <.0001 

Pine MSR705* -0.3846 0.0003 Red Spruce MCARI1 -0.1973 0.0004 

Pine NPCI* -0.3364 0.0016 Red Spruce FD75 -0.1867 0.0008 

Pine MND705* -0.3236 0.0025 Red Spruce CS -0.1758 0.0016 

Pine FD75 -0.3119 0.0037 Red Spruce SD54 -0.1753 0.0016 

Pine GM -0.2548 0.0186 Red Spruce SARVI -0.1734 0.0022 

Pine Gitc -0.226 0.0375 Red Spruce NDII5* -0.1674 0.0027 

Pine B3 0.234 0.0311 Red Spruce TD720 -0.1557 0.0052 

Pine B2 0.2419 0.0257 Red Spruce Aoki -0.1482 0.0079 

Pine B5* 0.2704 0.0123 Red Spruce HAM* -0.1439 0.0112 

Pine SRPI* 0.3463 0.0012 Red Spruce NDII7* -0.1406 0.0118 

    

Red Spruce SD4 -0.1345 0.0161 
 

   

Red Spruce GM 0.141 0.0116 

    

Red Spruce MND705 0.1485 0.0088 

    

Red Spruce B4 0.1524 0.0063 

    

Red Spruce BNa 0.1635 0.0034 

    

Red Spruce SD3 0.1676 0.0026 

    

Red Spruce MSI* 0.1676 0.0026 

    

Red Spruce MTVI 0.168 0.0026 

    

Red Spruce TVI 0.1683 0.0025 

    

Red Spruce EVI 0.1686 0.0029 

    

Red Spruce DVI 0.1693 0.0024 

    

Red Spruce FD43 0.1693 0.0024 

    

Red Spruce MSAVI 0.1693 0.0024 

    

Red Spruce NDVI 0.1758 0.0016 

    

Red Spruce PSSRa 0.1762 0.0016 

    

Red Spruce RVI 0.1762 0.0016 

    

Red Spruce MSR 0.1779 0.0014 

    

Red Spruce SAVI 0.182 0.0011 

    

Red Spruce B7* 0.185 0.0009 

    

Red Spruce B5* 0.194 0.0005 

    

Red Spruce RDVI 0.1949 0.0005 

    

Red Spruce MCARI2 0.2013 0.0003 

    

Red Spruce OSAVI 0.2087 0.0002 

    

Red Spruce MTVI2 0.2142 0.0001 

* = also significant (p < 0.05) in 

the global correlation index (Table 

4) 
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   Figures: 

   

Landsat 5 TM Landsat Scene 

Affects 

Previous 
Year’s 

-Production of 
sugars/ starch  
-Defense 
compound 
production 

-Reproductive 
allocation 

Radial growth (tree-rings) 

Current 
Year’s 

-Production of 
sugars/ starch  
-Defense 
compound 
production 

-Reproductive 
allocation 

Affects 

Affects 

Current year vegetation 

Captures an 
image of  resulting in 

Is there a relationship? 

Figure 1: A conceptual model of the hypothesized relationship between Landsat 

imagery and radial-growth (tree-rings) 
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Figure 2: Map of the study region with Landsat 5 TM scene boundaries and site locations 
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Figure 3: An example of the “global” (all years and all sites) relationship between BAI 

and vegetation index measurements, in this case the structure insensitive pigment index 

(SIPI)(Peñuelas et al. 1995). Data points are color coded by species. Note the obvious 

clustering of similar species types.  

 

 = -0.155 
p < 0.0001 
n = 746 

     Red Spruce 

     Paper Birch 

     Pine 

     Mixed Hardwoods 

     Mixed Fir-Spruce-Birch                
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Figure 4: BAI vs. NDVI and MIR for two sites:  CAM070 (with a significant relationship 

to MIR) and  BAR003 (without a significant relationship to MIR). Gaps in the vegetation 

index values are years where imagery was not available.  
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NDVI: 

 =0.013; p = 0.958 
 
MIR: 

 = 0.509; p =0.031 

n = 16 

 
NDVI: 

 =0.103; p = 0.704 
 
MIR: 

 = 0.118; p =0.664 
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Figure 5: The four-term model that predicts BAI (mm
2
) with r

2  
= 0.120, RMSE = 645.71 

using the following equation developed with data points from all species types and all 

years: 12148.476 - 61358.22* (B3 ) + 1714.863*(BNa) -11198.23*(MSR705) - 541.938*(SRPI). 

 

  

 

p =  <0.0001 
r2 =  0.120; adjusted r2 = 0.115 
RMSE= 645.71 
Press RMSE =648.38 
# sites = 47 
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     Mixed Hardwoods 

     Mixed Fir-Spruce-Birch                
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Figure 6: Average residual values from the global model predicting BAI from Band 3, 

SRPI, MSR705 and BNa (Fig. 5) by species type. Values are mean ± 1 S.E. Means with 

different letters differ significantly (F =58.07, p = <0.0001, n = 700).  
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a) Paper Birch 

b) Red 

Spruce 

c) Pine 

p =  <0.0001 
r2 =  0.302; adjusted r2 = 0.285 
RMSE= 224.73 
Press RMSE =227.37  
# sites = 12 
 
Equation:  
BAI (mm2) = 
168.573 - (FD75*2141.902) - 
(GI*218.683) + (RAI*456.432) - 
(HAM*199.696) 

p =  <0.0001 
r2 = 0.116; adjusted r2 = 0.107 
RMSE= 548.79 
Press RMSE = 551.87 
# sites = 22 
 
Equation: 
BAI (mm2) = 
-2664.277 + (FD75*9336.504) + 
(OSAVI*4347.924) + 

(VogB*1146.568) 

p =  0.0016 
r2 = 0.114 ; adjusted r2 = 0.103 
RMSE=  911.2357 
Press RMSE = 919.582 
# sites = 4 
 
Equation: 
BAI (mm2) = 

14.872- (FD75*42301.793) 
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Figure 7: Actual vs. predictive BAI models developed using stepwise model fitting for 

the following species types: a) Paper Birch, b) Red Spruce c) Pine d) Mixed Fir-Spruce-

Birch e) Mixed Hardwoods.  

 

 

d) Mixed Fir-

Spruce-Birch 

e) Mixed 

Hardwoods 

p =  <0.0001 
r2 =  0.311; adjusted r2 = 0.301 
RMSE=131.571 
Press RMSE = 133.64655 
# sites =  4 
 
Equation: 
BAI (mm2) = 

 -213.725 + (SAVI*1818.632) 

p =  0.0194 
r2 = 0.094; adjusted r2 = 0.077 
RMSE= 332.64 
Press RMSE = 339.81 
# sites = 5 
 
Equation:  
BAI (mm2) = 
1016.202 - (SARVI*104.291) 
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Appendix A: 

R code developed by A. Bunn (used in Berner et al. 2011) to calculate the effective 

sample size of a dataset relative to its degree of temporal autocorrelation. This code is 

adapted from work by Dawdy and Matalas (1964).  

 

# this calculates neff between x and y 
calc.neff <- function(x,y){ 
  x.ar1 = acf(x,plot=F) 
  sig.lvl = qnorm((1 + 0.95)/2)/sqrt(x.ar1$n.used) 
  x.ar1 = x.ar1$acf[2,1,1] 
  x.ar1 = ifelse(x.ar1 < sig.lvl, 0, x.ar1) 
 
  y.ar1 = acf(y,plot=F) 
  sig.lvl = qnorm((1 + 0.95)/2)/sqrt(y.ar1$n.used) 
  y.ar1 = y.ar1$acf[2,1,1] 
  y.ar1 = ifelse(y.ar1 < sig.lvl, 0, y.ar1) 
 
  n <- length(x) 
  neff <- floor(n*(1-x.ar1*y.ar1)/(1+x.ar1*y.ar1)) 
  neff 
} 
# on a df does each column 
calc.neff2 <- function(dat){ 
  dat.acf <- rep(NA,ncol(dat)) 
  for(i in 1:ncol(dat)){ 
    tmp = acf(dat[,i],plot=F) 
    sig.lvl = qnorm((1 + 0.95)/2)/sqrt(tmp$n.used) 
    tmp2 = tmp$acf[2,1,1] 
    dat.acf[i] = ifelse(tmp2 < sig.lvl, 0, tmp2) 
  } 
  dat.acf2 <- data.frame(x = dat.acf[1], y = dat.acf[-1]) 
  n <- nrow(dat) 
  neff <- floor(n*(1-dat.acf2$x*dat.acf2$y)/(1+dat.acf2$x*dat.acf2$y)) 
  neff 
} 
 

 

 

  



 

67 

Literature Cited: 

Allen, C. D. 2009. Climate-induced forest dieback: An escalating global phenomenon? 

Unsylva 60:43-39. 

Babst, F., J. Esper, and E. Parlow. 2010. Landsat TM/ETM+ and tree-ring based 

assessment of spatiotemporal patterns of the autumnal moth (Epirrita autumnata) 

in northernmost Fennoscandia. Remote Sensing of Environment 114:637-646. 

Bauer, G., E.-D. Schulze, and M. Mund. 1997. Nutrient contents and concentration in 

relation to growth of Picea abies and  Fagus sylvatica along a European transect. 

Tree Physiology 17:777-786. 

Berner, L. T., P. S. A. Beck, A. G. Bunn, A. H. Lloyd, and S. J. Goetz. 2011. High-

latitude tree growth and satellite vegetation indices: Correlations and trends in 

Russia and Canada (1982-2008). J. Geophys. Res. 116:G01015. 

Biondi, F. 1999. Comparing tree-ring chronologies and repeated timber inventories as 

forest monitoring tools. Ecological Applications 9:216–227. 

Buschmann, C. and E. Nagel. 1993. In vivo spectroscopy and internal optics of leaves as 

basis for remote sensing of vegetation. International Journal of Remote Sensing 

14:711-722. 

Canada Centre for Remote Sensing. 2007. Fundamentals of Remote Sensing. Canada 

Centre for Remote Sensing. 

Chander, G., B. L. Markham, and D. L. Hedler. 2009. Summary of current radiometric 

calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. 

Remote Sensing of Environment 113:893-903. 

Cherubini, P., G. Fontana, D. Rigling, M. Dobbertin, P. Brang, and J. L. Innes. 2002. 

Tree-life histories prior to death: two fungal root pathogens affect tree-ring 

growth differently Journal of Ecology 90:839-850. 

Cohen, W. B. and S. N. Goward. 2004. Landsat's Role in Ecological Applications of 

Remote Sensing. BioScience 54:535-545. 

Cohen, W. B., T. A. Spies, R. J. Alig, D. R. Oetter, T. K. Maiersperger, and M. Fiorella. 

2002. Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in 

Western Oregon Forests with Landsat Imagery. Ecosystems 5:122-137. 

Cook, E. R., A. H. Johnston, and T. J. Blasing. 1987. Forest decline: modeling the effect 

of climate in tree rings. Tree Physiology 3:27-40. 

Cunningham, S. C., R. M. Nally, J. Read, P. J. Barker, M. White, J. R. Thomson, and P. 

Griffioen. 2009. A robust technique for mapping vegetation condition across a 

major river system. Ecosystems 12:207-219. 

D'Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini. 2008. On the ‘Divergence 

Problem’ in Northern Forests: A review of the tree-ring evidence and possible 

causes. Global and Planetary Change 60:289-305. 

D’Arrigo, R. D., C. M. Malmstrom, G. C. Jacoby, S. O. Los, and D. E. Bunker. 2000. 

Correlation between maximum density of annual tree rings and NDVI based 

estimates of forest productivity. International Journal of Remote Sensing 21:2239-

2336. 



 

68 

Dale, V. H., L. A. Joyce, S. McNutly, R. P. Neilson, M. P. Ayres, M. D. Flanagan, P. J. 

Hanson, L. C. Irland, A. E. Lugo, C. J. Peterson, D. Simberloff, F. Swanson., B. J. 

Stocks, and B. M. Wotton. 2001. Climate Change and Forest Disturbances. 

BioScience 51:723-734. 

Datt, B. 1998. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and 

Total Carotenoid Content in Eucalyptus Leaves. Remote Sensing of Environment 

66:111-121. 

Dawdy, D. R. and N. C. Matalas. 1964. Analysis of variance, covariance, and time 

series.in V. T. Chow, editor. Handbook of applied hydrology. McGraw-Hill New 

York, NY. 

Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. 

Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers. 2001. Acidic 

deposition in the Northeastern United States: Sources and inputs , ecosystem 

effects, and management strategies. BioScience 51:180-198. 

Duchesne, L., R. Ouimet, and C. Morneau. 2003. Assessment of sugar maple health 

based on basal area growth pattern. Canadian Journal of Forest Research 33:2074-

2080. 

Dukes, J. S., J. Pontius, D. Orwig, J. R. Garnas, V. L. Rodgers, N. Brazee, B. Cooke, K. 

A. Theoharides, E. E. Stange, R. Harrington, J. Ehrenfeld, J. Gurevitch, M. 

Lerdau, K. Stinson, R. Wick, and M. Ayres. 2009. Responses of insect pests, 

pathogens, and invasive plant species to climate change in the forests of 

northeastern North America: What can we predict? Canadian Journal of Forest 

Research 39:231-248. 

Elvidge, C. D. and R. J. P. Lyon. 1985. Estimation of the Vegetation Contribution to the 

1.65/2.22-Mu-M Ratio in Airborne Thematic-Mapper Imagery of the Virginia 

Range, Nevada. International Journal of Remote Sensing 6:75-88. 

Environmental Protection Agency. 2010. Inventory Of U.S. Greenhouse Gas Emissions 

and Sinks: 1990-2008. 430-R-10-006. 

Ferretti, M. 1997. Forest health assessment and monitoring--issues for consideration. 

Environmental Monitoring and Assessment 48:45-72. 

Forbes, B. C., M. M. Fauria, and P. Zetterberg. 2009. Russian Arctic warming and 

‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 

16:1542-1554. 

Franklin, S. E., M. A. Wulder, R. S. Skakun, and A. L. Carroll. 2003. Mountain Pine 

Beetle Red-Attack Forest Damage Classification Using Stratified Landsat TM 

Data in British Columbia, Canada. Photogrammetric Engineering and Remote 

Sensing 69:283-288. 

Ghitter, G. S., R. J. Hall, and S. E. Franklin. 1995. Variability of Landsat Thematic 

Mapper data in boreal deciduous and mixed-wood stands with conifer understory. 

International Journal of Remote Sensing 16:2989-3002. 

Goodale, C. L., M. J. Apps, R. A. Birdsey, C. B. Field, L. S. Heath, R. A. Houghton, J. C. 

Jenkins, G. H. Kohlmaier, W. Kurz, S. Liu, G.-J. Nabuurs, S. Nilsson, and A. Z. 

Shvidenko. 2002. Forest Carbon Sinks in the Northern Hemisphere. Ecological 

Applications 12:891-899. 



 

69 

Grissino-Mayer, H. D. 2001. Evaluating crossdating accuracy: A manual and tutorial for 

the computer program COFECHA. Tree-ring Research 57:205-221. 

Halman, J. M., P. G. Schaberg, G. J. Hawley, and C. Eagar. 2008. Calcium addition at the 

Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity 

and cold tolerance in native red spruce (Picea rubens). Tree Physiology 28:855-

862. 

Halman, J. M., P. G. Schaberg, G. J. Hawley, and C. F. Hansen. 2011. Potential role of 

soil calcium in recovery of paper birch following ice storm injury in Vermont, 

USA. Forest Ecology and Management 261:1539-1545. 

Hawley, G. J., P. G. Schaberg, C. Eagar, and C. H. Borer. 2006. Calcium addition at the 

Hubbard Brook Experimental Forests reduced winter injury to red spruce in a 

high-injury year. Canadian Journal of Forest Research 36:2544-2549. 

Hornbeck, J. W. and R. B. Smith. 1985. Documentation of red spruce growth decline. 

Canadian Journal of Forest Research 15:1199-1201. 

Huete, A., C. Justice, and H. Liu. 1994. Development of vegetation and soil indices for 

MODIS-EOS. Remote Sensing of Environment 49:224-234. 

Hunt, E. R. and B. N. Rock. 1989. Detection of changes in leaf water content using near- 

and middle-infrared reflectances. Remote Sensing of Environment 30:43-54. 

Innes, J. L. 1993. Forest health: Its assessment and status. CAB International 

Wallingford, Oxon, U.K. 

Iverson, L. R. and A. M. Prasad. 1998. Predicting abundance of 80 tree species following 

climate change in the eastern United States. Ecological Monographs 68:465-485. 

Kaufmann, R. K., R. D. D’Arrigio, L. F. Paletta, H. Q. Tian, W. M. Jolly, and R. B. 

Myeni. 2008. Identifying climatic controls on ring width: The timing of 

correlations bewteen tree rings and NDVI. Earth Interactions 12:1-12. 

Kaufmann, R. K., R. D. D’Arrigo, C. Lakowski, R. B. Myneni, and L. Zhou. 2004. The 

effect of growing season and summer greenness on northern forests. Geophysical 

Research Letters 31:LO9205. 

Kessler, W. R. 2008. Spectral Effects of a Calcium Amendment on Red Spruce Foliage at 

Laboratory and Stand Scale. University of New Hampshire, Durham. 

Kleinbaum, D. G., L. Kupper, M. K.E., and A. Nizam, editors. 1998. Applied Regression 

Analysis and Other Multivariable Methods. Cole Publishing, Inc., Pacific Grove, 

Ca. 

Klos, R. J., G. G. Wang, W. L. Bauerle, and J. R. Rieck. 2009. Drought impact on forest 

growth and mortality in the southeast USA: an analysis using Forest Health and 

Monitoring data. Ecological Applications 19:699-708. 

Kosiba, A. M., P. G. Schaberg, G. J. Hawley, and C. F. Hansen. in review. Quantifying 

the influence of winter injury on the carbon sequestration of red spruce trees in 

the northeastern United States. 

Kozak, A. and R. Kozak. 2003. Does cross validation provide additional information in 

the evaluation of regression models? Canadian Journal of Forest Research 33:976-

987. 



 

70 

Kulakowski, D., T. T. Veblen, and P. Bebi. 2003. Effects of fire and spruce beetle 

outbreak legacies in the disturbance regime of a subalpine forest in Colorado. 

Journal of Biogeography 30:1445-1456. 

Lloyd, A. H., A. G. Bunn, and L. T. Berner. 2010. A latitudinal gradient in tree growth 

response to climate warming in the Siberian taiga. Global Change Biology 

17:1935-1945. 

Lopatin, E., T. Kolstrom, and H. Spiecker. 2006. Determination of forest growth trends in 

Komi Republic (northwestern Russia): combination of tree-ring analysis and 

remote sensing data. Boreal Environmental Research 11:341-353. 

Lovett, G. M., C. D. Canham, M. A. Arthur, K. C. Weathers, and R. D. Fitzhugh. 2006. 

Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North 

America. BioScience 56:395-405. 

Malmström, C. M., M. V. Thompson, G. P. Juday, S. O. Los, J. T. Randerson, and C. B. 

Field. 1997. Interannual variation in global-scale net primary production: Testing 

model estimates. Global Biogeochem. Cycles 11:367-392. 

Martin, M. E. 1994. Measurements of foliar chemistry using laboratory and airborne high 

spectral resolution visible and infrared data. University of New Hampshire, 

Durham, NH, USA 

 

Maselli, F. 2004. Monitoring forest conditions in a protected Mediterranean coastal area 

by the analysis of multiyear NDVI data. Remote Sensing of Environment 89:423-

433. 

Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. 

Journal of Experimental Botany 51:659-668. 

Meng, Q., C. Cieszewski, and M. Madden. 2009. Large area forest inventory using 

Landsat ETM+: A geostatistical approach. ISPRS Journal of Photogrammetry and 

Remote Sensing 64:27-36. 

Mohammed, G. H., W. D. Binder, and S. L. Gillies. 1995. Chlorophyll fluorescence: A 

review of its practical forestry applications and instrumentation. Scandinavian 

Journal of Forest Research 10:383-410. 

Myeong, S., D. J. Nowak, and M. J. Duggin. 2006. A temporal analysis of urban forest 

carbon storage using remote sensing. Remote Sensing of Environment 101:277-

282. 

Nakane, K. and Y. Kimura. 1992. Assessment of pine forest damage by blight based on 

Landsat TM data and correlation with environmental factors. Ecological Research 

7:9-18. 

Niklasson, M. and A. Granstrom. 2000. Numbers and sizes of fires: Long-term spatially 

explicit fire history in a swedish boreal landscape. Ecology 81:1484-1499. 

North East State Foresters Association. 2007. The Economic Importance and Wood 

Flows from the Forests of Maine, New Hampshire, Vermont and New York, 

2007. North East State Forester's Association. 

Olson, M. G. 2011. Remote sensing of forest health trends in the northern Green 

Mountains of Vermont. University of Vermont, Burlington. 



 

71 

Olthof, I., D. J. King, and R. A. Lautenschlager. 2004. Mapping deciduous forest ice 

storm damage using Landsat and environmental data. Remote Sensing of 

Environment 89:484-496. 

Peñuelas, J., F. Baret, and I. Filella. 1995. Semi-empirical indices to asess 

carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 

31:221-230. 

Peñuelas, J., C. Field, K. Griffin, and J. Gamon. 1993. Assessing community type, plant 

biomass, pigment composition and photosynthetic efficiency of aquatic vegetation 

from spectral reflectance. Remote Sensing of Environment 46:1-25. 

Pierce, L. L., S. W. Running, and G. A. Riggs. 1990. Remote detection of canopy water 

stress in coniferous forests using the NS001 Thematic Mapper Simulator and the 

Thermal Infrared Multispectral Scanner. Photogrammetric Engineering and 

Remote Sensing 56:579-586. 

Pontius, J., R. A. Hallett, and M. E. Martin. 2005. Assessing hemlock decline using 

hyperspectral imagery: signature analysis, indices comparison and algorithm 

development Journal of Applied Spectroscopy 59:836-843. 

Pontius, J. A. in Review. A hyperspectral approach to multi-spectral forest decline 

assessments. 

Pontius, J. A., M. E. Martin, M. G. Olson, K. M. White, W. L. Young, and E. M. D. 

Regan. in prep. Forest health trends in the Northeastern United States: a 25 year 

Landsat TM assessment. 

Potter, C., P. Gross, V. Genovese, and M. L. Smith. 2007. Net primary productivity of 

forest stands in New Hampshire estimated from Landsat and MODIS satellite 

data. Carbon balance and management 2:9. 

Rock, B. N., J. E. Vogelmann, D. L. William, A. F. Vogelmann, and T. Hoshizaki. 1986. 

Remote detection of forest damage. BioScience 36:439-445. 

Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soil-adjusted vegetation 

indices. Remote Sensing of Environment 55:95-107. 

Schaberg, P. G., B. E. Lazarus, G. J. Hawley, J. M. Halman, C. H. Borer, and C. F. 

Hansen. 2011. Assessment of weather-associated causes of red spruce winter 

injury and consequences to aboveground carbon sequestration. Canadian Journal 

of Forest Research 41. 

Seymour, R. S., A. S. White, and P. G. deMaynadier. 2002. Natural disturbance regimes 

in northeastern North America—evaluating silvicultural systems using natural 

scales and frequencies. Forest Ecology and Management 155:357-367. 

Siccama, T. G., M. Bliss, and H. W. Vogelmann. 1982. Decline of Red Spruce in the 

Green Mountains of Vermont. Bulletin of the Torrey Botanical Club 109:162-168. 

Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and 

spectral reflectance across a wide range of species, leage structures and 

developmental stages. Remote Sensing of Environment 81:337-354. 

Sivanpillai, R., C. T. Smith, R. Srinivasan, M. G. Messina, and X. B. Wu. 2006. 

Estimation of managed loblolly pine stand age and density with Landsat ETM+ 

data. Forest Ecology and Management 223:247-254. 



 

72 

Smith, K. T. and W. C. Shortle. 2003. Radial growth of hardwoods following the 1998 

ice storm in New Hampshire and Maine. Canadian Journal of Forest Research 

33:325-329. 

Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney, and S. A. Macomber. 2001. 

Classification and Change Detection Using Landsat TM Data: When and How to 

Correct Atmospheric Effects? Remote Sensing of Environment 75:230-244. 

Spanner, M. A., L. L. Pierce, D. L. Peterson, and S. W. Running. 1990. Remote sensing 

of temperate coniferous forest leaf area index The influence of canopy closure, 

understory vegetation and background reflectance. International Journal of 

Remote Sensing 11:95-111. 

Speer, J. H. 2010. Fundamentals of Tree-ring Research. The University of Arizona Press, 

Tucson, AZ. 

Speer, J. H., K. Clay, G. Bishop, and M. Creech. 2010. The effect of periodical cicadas 

on growth of five tree species in midwestern deciduous forests. The American 

Midland Naturalist 164:173-186. 

Speer, J. H., T. W. Swetnam, B. E. Wickman, and A. Youngblood. 2001. Changes in 

pandora moth outbreak dynamics during the past 622 years. Ecology 83:679-697. 

Stahle, D. W., M. K. Cleaveland, D. B. Blanton, M. D. Therrell, and D. A. Gay. 1998. 

The Lost Colony and Jamestown Droughts. Science 280:564-567. 

Stahle, D. W., F. K. Fye, E. R. Cook, and D. Griffin. 2007. Tree-ring reconstructed 

megadroughts over North America since A.D. 1300. Climatic Change 83:133-

149. 

Stein, S. M., R. E. McRoberts, L. G. Mahal, M. A. Carr, R. J. Alig, S. J. Comas, D. M. 

Theobald, and A. Cundiff. 2009. Private Forests, Public Benefits: Increased 

Housing Density and Other Pressures on Private Forest Contributions. USDA 

Forest Service Pacific Northwest Research Station. 

Stokes, M. A. and T. L. Smiley. 1968. An Introduction to Tree-Ring Dating. University 

of Chicago Press, Chicago. 

Sutton, A. and J. C. Tardis. 2007. Dendrochronological reconstruction of forest tent 

caterpillar outbreaks in time and space, western Manitoba, Canada. Canadian 

Journal of Forest Research 37:1643-1657. 

Swetnam, T. W. and C. H. Baisan. 1996. Fire Histories of the Montane Forests in the 

Madrean Boderlands. USDA, Forest Service. 

Townsend, P. A., A. Singh, J. R. Foster, N. J. Rehberg, C. C. Kingdon, K. N. Eshleman, 

and S. W. Seagle. 2012. A general Landsat model to predict canopy defoliation in 

broadleaf deciduous forests. Remote Sensing of Environment 119:255-265. 

Vermont Department of Forests, Parks and Recreation,. 2010. 2010 Vermont Forest 

Resources Plan., Vermont Agency of Natural Resources, Montpelier, VT. 

Vogelmann, J. E. and B. N. Rock. 1988. Assessing forest damage in high-elevation 

coniferous forests in vermont and new Hampshire using thematic mapper data. 

Remote Sensing of Environment 24:227-246. 

Vogelmann, J. E. and B. N. Rock. 1989. Use of Thematic Mapper data for the detection 

of forest damage caused by pear thrips. Remote Sensing of Environment 30:217-

225. 



 

73 

Vogelmann, J. E., B. N. Rock, and D. M. Moss. 1993. Red edge spectral measurements 

from sugar maple leaves. International Journal of Remote Sensing 14:1563-1575. 

Vogelmann, J. E., B. Tolk, and Z. Zhu. 2009. Monitoring forest changes in the 

southwestern United States using multitemporal Landsat data. Remote Sensing of 

Environment 113:1739–1748. 

Wang, J., P. M. Rich, K. P. Price, and W. D. Kettle. 2004. Relations between NDVI and 

tree productivity in the central Great Plains. International Journal of Remote 

Sensing 25:3127-3138. 

Wargo, P. M. and A. N. D. Auclair. 2000. Forest declines in response to environmental 

change. Pages 117-145 in R. A. Mickler, R. A. Birdsey, and J. Hom, editors. 

Responses of northern U.S. forests to environmental change. Ecological Studies 

139. Springer-Verlag, New York. 

Williams, P. and K. Norris. 2001. Near-Infrared Technology in the Agricultural and Food 

Industries. American Association of Ceral Chemists, Inc., St. Paul, MN. 

Wolter, P. T., P. A. Townsend, B. R. Sturtevant, and C. C. Kingdon. 2008. Remote 

sensing of the distribution and abundance of host species for spruce budworm in 

Northern Minnesota and Ontario. Remote Sensing of Environment 112:3971-

3982. 

Wyckoff, P. H. and J. S. Clark. 2002. The Relationship between Growth and Mortality 

for Seven Co-Occurring Tree Species in the Southern Appalachian Mountains. 

Journal of Ecology 90:604-615. 

Yamaguchi, D. K. 1991. A simple method for cross-dating increment cores from living 

trees. Canadian Journal of Forest Research 21:414-416. 

Zhang, L., B. D. Rubin, and P. D. Manion. 2011. Mortality: the essence of a healthy 

forest. Pages 17-49 in J. D. Castello and S. A. Teale, editors. Forest Health, An 

Integrated Perspective. University Press, Cambridge, UK. 

 

 


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: Literature Review
	1.1. Forests in the Northeast
	1.2. Dendrochronology
	1.3. Remote Sensing of Forest Health and Productivity
	1.4. Comparing Remote Sensing and Dendrochronology
	1.5 Conclusions

	CHAPTER 2: Remote sensing of forest productivity in Northeastern forests
	2.1. Introduction
	2.2. Methods
	2.2.1. Study Sites
	2.2.2. Dendrochronology
	2.2.3. Remote Sensing
	2.2.4. Statistical Analysis

	2.3. Results and Discussion
	2.3.1. Global Correlation Data Exploration
	2.3.2. BAI and Vegetation Indices Correlation by Site
	2.3.3. Multi-Index Predictive Modeling
	2.3.4. Limitations and Next Steps

	2.4. Conclusions

	Tables:
	Figures:
	Appendix A:
	Literature Cited:

