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Abstract

Mercury (Hg) contamination in freshwater fish is a widespread environmental problem
throughout the northern hemisphere. Atmospheric sources of Hg are thought to be responsible
for increasing Hg burdens in Lake Champlain but the sources and mechanisms of transport and
accumulation are not well understood. Though most Hg deposited in soils accumulates or is
revolatilized into the atmosphere, other studies have suggested that the small percentage of Hg
mobilized from soils to streams is significant and may be enough to contribute 25-75% of Hg
reaching lakes. In order to better understand the transport of Hg from soils to streams, I sampled
soil solution and stream water from three locations in two small forested catchments in Underhill
Center, VT. I first identified methods of collecting soil water, tested the suitability of using
custom-made passive capillary wick samplers, then used these devices to collect soil solution
samples for this study. Seil solution and stream samples collected during snowmelt and rain
storms between April and November 1997 were analyzed for Hg, dissolved organic carbon
(DOC), color, trace elements, and major ions. Mercury in Oa and B horizon soil water ranged
from 1.1t0 34.9 ng L' and 0.1 to 10.2 ng L™, respectively. In streams, dissolved Hg was 0.9-4.1
ng L' and total (dissolved + particulate) Hg was 0.9-9.2 ng L. In soil water and stream water,
Hg was positively correlated with DOC and color. Mercury concentrations followed a pattern
similar to other trace metals known to form complexes with organic acids, such as Al, Cu, and
Pb. The buik of Hg in these streams during high flow is associated with particulate matter, but
the small and continual contribution of dissolved Hg from soils and groundwater is also a
significant route of Hg export from these forested ecosystems.
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Comprehensive Literature Review

INTRODUCTION

Mercury (Hg) contamination in freshwater fish is a widespread environmental problem
throughout the northern hemisphere. Locaily, Hg has been given the highest priority for
management action in Lake Champlain because of elevated levels in fish (Lake Champlain
Management Conference, 1996). Mercury has natural and anthropogenic sources, but the amount
released into the biosphere has increased since the beginning of the industrial age (Fitzgerald es
al., 1998). Although the problem is widespread, there is substantial variation in Hg levels within
different lakes and fish species even in pristine areas (Nillson and Hakanson, 1992).

Environmental Hg enters a lake by three primary routes: direct deposition onto the lake
surface, surface runoff from the watershed, and groundwater inflow. In the Lake Champlain
basin, more than 90% of the water in Lake Champlain first passes through the 21,150 km®
watershed before reaching the lake (Lake Champlain Management Conference, 1996). Forests
cover 64% of the watershed area (personal communication, Vermont Center for Geographic
Information, 1998), therefore, the presence of Hg in forest soils in the watershed likely
mfluences the loading of Hg into the surface waters that drain into Lake Champlain. Mercury in
forest soils is strongly bound to soil constituents or revolatilized into the atmosphere and only a
minor fraction is transported from the soils to surface waters. This small percentage nevertheless
may be enough to account for 25-75% of the Hg reaching lakes (Lee e al., 1994).

In order to better understand the mechanisms of Hg transport, this thesis focuses on Hg
in forest soils, soil water, and stream water within two small forested catchments in the Lake

Champiain basin. This literature review summarizes the current knowledge of Hg and its



1993). In addition, a substantial fraction of oceanic Hg emissions represents recycling of Hg that
entered the marine environment from anthropogenic sources. Lake sediment records provide
evidence that remote regions have received significént inputs of anthropogenic Hg by long-range
atmospheric transport (Fitzgerald et al., 1998). One study estimated that the pre-industrial
atmospheric flux of Hg was 3.7 pug m” year', whereas the modern rate is approximately 12.5 pg
m? year', a 3.4-fold increase in 140 years (Swain ef al., 1992). In recent decades, however,
industrial use of Hg has declined and air pollution controls have caused Hg emissions to decrease
(Engstrom and Swain, 1997). Subsequently, localized declines in Hg deposition have been
observed in some areas of the upper Midwest U.S., but such declines are not evident in Alaskan

ice cores indicating that global Hg emissions have not abated (Engstrom and Swain, 1997).

Mercury Chemistry

As a pure element, Hg is a liquid at -39°-~357°C, can vaporize readily, and is only
slightly soluble in water. It is a soft acid and as such tends to form covalent bonds rather than
tonic bonds, Mercury can form strong complexes with organic compounds. Depending on the
redox conditions, Hg may occur in three different valence states: Hg® (elemental mercury), Hg"
in the form of Hg,” (mercurous), and Hg* (mercuric or Hg(II)). Mercurous mercury tends to be
unstable and 1s rarely present in ordinary environmental conditions. The compounds that are
most common under environmental conditions are the mercuric salts, HgCl,, Hg(OH),, and HgS;
and the methylmercury compounds, methylmercuric chloride (CH,;HgCl) and methylmercuric
hydroxide (CH,HgOH) (Schuster, 1991; USEPA, 1997),

As noted, solid waste incinerators and coal combustion chambers are major sources of
atmospheric Hg. In these sources, nearly all Hg is converted to Hg® and vaporized to the exhaust

gas system. As exhaust reaches a stack, temperatures decrease and some Hg® reacts with other
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relationship to soil and stream water. Research on Hg in the Lake Champlain basin has recently

been reviewed by Shanley er a/. (in press) and will not be duplicated here.

Mercury Toxicity and Sources of Mercury

Mercury {as methylmercury) is a neurotoxin that can be completely absorbed into the
blood and distributed to all tissues, including the brain. Mercury poisoning can cause irreversible
damage to the central nervous system as well as sensory, visual, and auditory functions and to
areas concerned with coordination (Hamasaki ef al., 1995). It can also pass through the placenta
to a fetus and the fetal brain (USEPA, 1997), Many states in the USA, including Vermont, have
set limits on the consumption of certain species of freshwater fish based on health risks posed by
Hg. Piscivorous wildlife species such as loons, eagles, minks, otters, and the endangered Florida
panther are also at risk (USEPA, 1997). Adverse effects of Hg on fish and wildlife include death,
reduced reproductive success, impaired growth and development, and behavioral abnormalities
(Friedmann et al., 1996; Weiner and Spry, 1996; USEPA, 1997).

Mercury is widely used in industry to make fluorescent lamps, thermostats, batteries,
mnstruments that measure temperature and pressure, dental amalgams, paints, pharmaceuticals,
and fungicides. The largest amount of Hg used in manufacturing in the USA is in the production
of chlorine and caustic soda by mercury cell chior-alkali plants (Fitzgerald, 1993; USEPA,
1997). In areas where there are no direct industrial discharges, high Hg levels are thought to be
the result of atmospheric Hg pollution, Globally, the dominant sources of atmospheric Hg are
manufacturing, waste incineration, coal combustion, and non-ferrous metal smelting (Engstrom
and Swain, 1997).

The amount of Hg entering the atmosphere from anthropogenic sources considerably

exceeds natural emissions from velcanoes, forest fires, and the surface of the ocean (Fitzgerald,

2



presence of humic acid (Takamatsu er al., 1983), or can be methylated to form methylmercury
(methyl-Hg). Reduced Hg may revolatilize back into the atmosphere as Hg’. Lindberg (1996)
suggests that the forest floor is an active site of Hga exchange. He estimated that 657 mg Hg ha™!
yr’' was volatilized from soil at a Tennessee site. Bishop et al. (1998) estimated a flux of 90 mg
ha yr' from soils at a site in Sweden. Revolatilization of Hg may account for the seasonal
variability observed in ambient air in Nova Scotia, where total gaseous Hg levels are highest in

the summer when days are longer and warmer (Beauchamp er al., 1997).

Mercury Cycling

Of the Hg that is not volatilized, Hg* and methyl-Hg may remain in the soil or be
transported through the watershed to a water body via runoff and leaching (USEPA, 1997). Most
Hg originating from atmospheric deposition, however, is immobilized as organic complexes in
the upper horizons of soils (Meili, 1991a), and only a minor fraction of the Hg is transported
from the soils to surface waters. In central and southern Sweden, this small percentage of Hg
released from soils (< 0.1%) is enough to contribute 25 to 75% of Hg reaching lakes (Lee ef al.,
1994). Mercury in forest soils will be discussed in greater detail in the next section.

Although Hg*" and methyl-Hg complexes in soils are potentially available for biotic
uptake and translocation, the storage of Hg in biomass is small compared to fluxes between soil
layers (Aastrup ef al., 1991; USEPA, 1997). Root uptake of Hg may occur, but translocation of
Hg within the plant appears to be minimal (Padberg and Stoeppler, 1991; Schuster, 1991:
USEPA, 1997). Nevertheless, Bishop er al. (1998) found Hg concentrations in the range of 10 to
16 ng L' in xylem sap in Norway spruce and Scots pine. Mercury in soil water at their study

sites ranged from 20 to 170 ng L”', indicating some exclusion of Hg at the root level. Grosheva

flue gas constituents, oxidizing Hg® to Hg®", It is generally aséumed that the Hg® in flue gases is
in the form of HgCl, because chlorine occurs naturally in coal and is also present in municipal
solid waste emissions from the incineration of chlorinated plastics and other chlorine-containing
wastes (Carpi, 1997). The Hg™ emitted directly from a point source is quickly removed from the
atmosphere locally by precipitation or dry deposition and has a residence time of hours to
months. Elemental Hg® on the other hand, has a residence time of about one vear because of its
high vapor pressure and low water solubility (Carpi, 1997; USEPA, 1997: Fitzgerald ef al.,
1998). As 'a result, Hg® is distributed fairly evenly in the troposphere (USEPA, 1997) and more
than 95% of atmospheric Hg is in the gaseous Hg’ form (Nater and Grigal, 1992). Concentrations
of Hg* are assumed to be minimal in the free troposphere because of efficient wet removal

(Shannon and Voldner, 1995).

Mercury Deposition

Direct deposition of Hg onto land or water comes in the form of dry deposition (gaseous
and 1o a lesser extent particulate phase) and wet precipitation. In Underhill Center, VT, total
atmospheric Hg deposition was estimated to be 425 and 463 mg ha yr' for two years beginning
March 1994 (Scherbatskoy ef al., 1998). Dry deposition accounted for most of this Hg flux, with
only 75 and 93 mg ha' yr'' arriving as wet deposition in those two years. Between December
1992 and August 1994, vapor phase Hg concentrations ranged from 1.2 to 4.2 ng m™ without
much seasonal variation (Scherbatskoy er al., 1997), particle phase Hg ranged from 1 t0 43 pg m’
* with the highest concentrations during the winter, and precipitation concentrations ranged from
1.5 to 26 ng L™ with highest concentrations generally during the summer months.

When deposited on land, Hg* can bind tightly to certain soil components, primarily
humic matter. Soil Hg** can be reduced to elemental Hg by the action of free radicals in the
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(USEPA, 1997). Most of the Hg in the water column (Hg® and methyl-Hg) is bound to organic
matter, either dissolved or suspended as particles. Studies indicate that 25-60% of Hg-organic
complexes are particle-bound in the water column .(USEPA, 1997). Mercury concentrations in
lakes tend o be positively correlated with dissolved organic carbon (DOC) (Lee and Iverfelds,
1991; Meili, 1991b; Mierle and Ingram, 1991; Nillson and Héikanson, 1992; Driscoll er al., 1994;
Driscoll et al., 1995) and negatively correlated with pH (Lee and Iverfeldt, 1991; Meili, 1991b;

Driscoll ef al., 1994; Driscoll et al., 1995).

Methylmercury

Mercury must be methylated to enter the food chain. Typically, less than 10% of the
total Hg in a water column exists as a methyl-Hg complex (Lee and Iverfeldt, 1991; Driscoll et
al.,, 1995; USEPA, 1997). Although this amount appears small, Rudd (1995) estimated that
runoff of methyl-Hg from uplahd areas and direct precipitation was sufficient to account for all
methyl-Hg accumulated in fish yearly in Swedish lakes. Methylation of Hg** occurs in the water
column and sediment by microbial action and abiotic processes (USEPA, 1997). Anaerobic
conditions support the formation of methyl-Hg (Branfireun et al., 1996). Rates of methylation in
lakes are positively correlated with water temperature but the influence of temperature is
difficult to separate from other seasonal changes, such as increased primary production during
the summer (Kelly ef al., 1995; Weiner and Spry, 1996). Methylation is also enhanced in waters
with high DOC levels. Microbial methylation tends to occur in streams and lakes with significant
concentrations of DOC because it is a source of decomposable carbon for microbial populations
(Miskimmin et @l., 1992; Weiner and Spry, 1996). Often there is an increase in the production of
methyi-Hg after flooding a reservoir resulting from inputs of DOC and enhanced microbial

methylation of inorganic Hg present in the inundated terrestrial habitats (Kelly ef al., 1995;
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(1993} measured Hg concentrations in several mushroom spécics, which had a range of 0.19 to
0.43 ug g (wet weight). Mercury in tree wood and lichen was aiso within this range.

Whereas Hg does not appear to be transported from roots to tree leaves, studies have
shown that Hg does accumulate in leaf tissue as a result of atmospheric exposure, consistently
increasing in foliage throughout the growing season and peaking in litterfall (Lindberg, 1996;
Rea ef al., 1996; Rea, 1998). Mercury on leaves may be washed off by precipitation or held by
the leaves and deposited as litterfall to the forest floor (Rea ef al., 1996). Annual deposition of
Hg to forested areas in the Lake Champlain basin in 1994 was estimated to be 11.7 ug m? v1”' in
throughfall and 13 pg m? yr'' in litterfall (Rea ef a/., 1996). The deposition of Hg in precipitation

only accounted for 7.9 pg m? year’, or 32% of the 1994 below-canopy total (Rea et a/., 1996).

Movement into Aquatic Systems

In a freshwater environment, Hg can enter an ecosystem directly via atmospheric
deposition and indirectly from deep or shallow groundwater discharge or runoff. The importance
of each pathway varies depending on the local conditions. In Lake Michigan, for example,
atmospheric deposition accounts for approximately 80% of Hg input and 17% is riverine input
(Mason and Sullivan, 1997). In Lake Champlain, relative importance of these inputs is probably
reversed, given the basin’s large watershed:lake ratio. Cleckner ef /. (1995) found Hg in Lake
Champiain to be significantly correlated with several crustal elements, suggesting a drainage
basin or sediment source for Hg in the lake. Average total Hg concentrations of filtered (0.45
pm) water collected in Lake Champlain 1.6 km west of Burlington was 3.4 ng L' for the surface
microlaver, 3.2 ng L' for 0.3 m depth, and 2.2 ng L' for 15 m (Cleckner et al., 1995). Once in a
body of water, Hg can remain in the water column, leave the lake from drainage water,

revolatilize into the atmosphere, settle into the sediment, or be taken up by aquatic biota
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MERCURY IN THE SOIL ENVIRONMENT

In upland soils Hg tends to accumulate an_d only a smal! amount is released in soil
solution. Despite this accumuiation, the amount of Hg in uncontaminated soils is very low. Table
1 presents Hg soil concentrations as reported in the literature. This section begins by briefly
summarizing major soil forming processes, which will provide background to the behavior of Hg
in soils. The major forms of Hg in soil are then identified and Hg adsorption and solubility are
discussed. Finally, the section concludes with a description of methods used to collect soil

solution.

Soil Processes in Northeast Forests

Soil development in northeast U.S. forests occurs by the movement of organic
compounds and inorganic minerals. Organic compounds are produced in the canopy and forest
floor and are transported downﬁard through the soil profile by water flow, Organic acids help
weather mineral soil in upper soil horizons and form organic-metal complexes that deposit in the
lower mineral soil. This section will briefly discuss the chemistry of organic and inorganic
solutes present in soils.

In a forested ecosystem, the sources of soluble organic substances in soils are natural
depositions of plant residues (from leaves, branches, and reproductive parts) as well as organic
matter derived from decomposing roots and root exudates (Pohlman and McColl, 1988). Plant
litter is decomposed by microorganisms and leaching moves some of the products downward.
Organic material may remain in the O horizon up to 100 years and in the B horizon for 300-1000

years {(Thurman, 1985; McDowell and Likens, 1988).

Wein(n: and Spry, 1996). Wetlands and peatlands also tend 'to be net sources of methyl-Hg
because they provide anaerobic conditions under which microbial methylation can occur
(Branfireun er ai., 1996; St. Louis et al., 1996).

Mercury as methyl-Hg bioconcentrates in living organisms. Mason and Sullivan (1997)
measured total Hg and methyl-Hg concentrations in phytoplankton, zooplankton, amphipods,
and fish species in Lake Michigan, They found that by the third trophic level all Hg was methyl-
Hg. Zooplankton had an average methyl-Hg concentration of 12.0 ng g’ and an average total Hg
concentration of 64.2 ng g”' dry weight. Bloater, which feed on zooplankton, had an average Hg
concentration (all methyl-Hg) of 200.6 ng g’ dry weight, and lake trout, a piscivorous species,
had an average Hg (as methyl-Hg) concentration of 551.7 ng g'' dry weight.

The tendency of fish to bioconcentrate Hg is a public health concern. The U.S. Food and
Drug Administration (FDA) has set an action level of 1 ppm (1 pg g") for Hg in fish. In
Vermont, 33% of the fish samples collected for analysis since 1990 have had Hg levels greater
than 0.5 ppm, and 10% exceeded | ppm (NESCAUM er al., 1998). Some of the highest Hg
ievels were found in walleye from Lake Champiain. Based on exceedances of that action level,
the Vermont Department of Health has issued an advisory that limits the consumption of

walleye, lake trout, and smallmouth bass throughout Vermont.

Summary

Mercury cycles in the environment as a result of natural and human activities. In the
atmosphere, the dominant form of mercury is Hg®. In precipitation, natural waters, and soils, Hg
is most common as Hg”". The soil is considered to be a net sink for deposited Hg, but enough
may be mobilized to rivers and streams to account for a large amount of Hg in lakes. In the next

section, Hg in the soil environment is discussed in greater detail.
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lonic Hg also forms strong complexes with humic matter, m particular, fulvic acids.
Mercury apparently has a greater affinity for humic substances than for inorganic ions such as
Cl" and OH" (Roulet and Lucotte, 1995). Complexes may be formed with the predominant
functional groups of organic matter, namely phenolic and carboxylate groups, but recent research
has demonstrated the importance of reduced sulfur functional groups in the complexation of Hg
to humic substances (Xia ef al., 1999). Under acidic oxidizing conditions present in most upland
soils in the northeast, these complexes are fairly stable (McBride, 1994).

Mercury as Hg”" tends to be more common than elemental Hg’ in soils because Hg® can
be lost by volatilization or oxidized to ionic forms. Under natural conditions, the release of Hg’
from the soils is probably important in the cycling of Hg in the environment (Stienﬁes, 1990).
Reduction of Hg*" to Hg® can be achieved in soils by both biological and chemical reactions
(McBride, 1994). It has been reported that rapid conversion of organic and inorganic Hg* to the
elemental state can occur in the presence of humic substances. Bacteria and yeast can also be
involved in this transformation, but they may in turn oxidize ¢lemental Hg to ionic Hg (Kabata-
Pendias and Pendias, 1992),

Methylmercury is also present in soils in small amounts. but the abiotic and biotic
mechanisms of methylation are not fully understood. Mercury can be methylated under
anaerobic conditions by soil microbes (McBride, 1994) or by humic substances that release
labile methy! groups. Methylation of soil Hg® can occur from the methyl transfer of vitamin B,,
to Hg® (Kelly er al., 1995). Methylated Hg is readily mobile and easily taken up by living
organisms, inciuding some plants (Kabata-Pendias and Pendias, 1992).

Accumulation of Hg in the soil is controiled by organic complex formation and by

sorption. Mobility of Hg requires dissolution processes and biological and chemical degradation
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As depth increases in a soil profile, the concentration of organic matter decreases, by
bacterial decay or adsorption, and the pH increases (McDowell and Wood, 1984; Thurman,
1985; Drever, 1988; Ross and Bartlett, 1996). Iron and Al hydroxides dissolve in the organic
horizon under low pH conditions. As the solution percolates through the soil column, ion-
exchange and weathering reactions cause the solution pH to increase until the Fe or Al hydroxide
solubility limit is reached and the compounds precipitate out of solution. The metal hydroxides
provide adsorption sites for removal of organic anions (Cantrell, 1989). Calcium stabilizes
organic matter by cation bridging (Van Cleve and Powers, 1995), and if acid rain leaches Ca out

of the soil, the solubility of organic colloids could also increase.

Forms of Mercury in Soils

As noted briefly in the previous section on mercury cycling, the cationic form of
mercury, Hg®', is most common in the soil environment. Because of its strong ability to form
complexes, Hg* rarely occurs in free ionic form under natural conditions (Stiennes, 1990). Ionic
mercury can form ligands with several anions, including CY, OH, F, SO, and NO;, but the
compounds HgCl, and Hg(OH), are the dominant inorganic complexes in natural systems
because chloride and hydroxide ions are generally of a sufficient concentration to form these
compounds (Thanabalasingam and Pickering, 1985; Schuster, 1991). Mercury can also form
strong associations with S. In strongly alkaline soils, the soluble HgS,* ion is formed (Stiennes,
1990) and in reducing conditions and acid gley soils, HgS formation is favored (Kabata-Pendias
and Pendias, 1992; McBride, 1994). Accurately predicting which Hg compounds might exist in
the field, however, is difficuit because of the limited knowledge of both the species composition
in natural systems and the interactions between Hg species and organic substances or colloidal

particles (Schuster, 1991).
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concentration of the soil (Harris ef @/, 1996). All concentrations at this site were much higher
than uncontaminated sites influenced by atmospheric deposition, however,

New research using synchotron-based X-ray absorption spectroscopy improves the
understanding of the relationship between trace levels of Hg and soil organic matter. This
research indicates that Hg™ binds with reduced S functional groups, such as thiol and
disulfide/disulfane, in complexation with humic substances (Xia ef al., 1999). Their results give
evidence that Hg™ prefers reduced S-containing functional groups over other functional groups
in humic acid. The amount of reduced S is more abundant than Hg in uncontaminated areas, and
ranges from 10% of total S in a mineral soil humic substance to more than 50% of total S in an
aquatic fulvic acid (Xia ef al,, 1999). Although the number of reduced S sites may be limited,
with low Hg concentrations, the strong affinity of Hg for S probably makes these sites the
primary adsorption sites for Hg. When Hg is present at contaminated levels, the reduced S sites
may become saturated and other reactions will take place, changing the apparent behavior of Hg
with respect fo organic matter,

The adsorption of Hg depends on several factors. In the following subsections, the
effects of soil pH, organic matter, and particle size on the adsorption of Hg will be discussed. It
is important to keep in mind that those factors that reduce the adsorption ability of Hg also tend

to increase the solubility of Hg.

Soil pH

Soil pH is one of the most important factors determining metal distribution between
solid and liquid phases. Most cations tend to become more soluble at low pH, and in areas
affected by acid rain, nutrients like calcium are being leached from the soil at a higher rate than

usual. It is generally thought that Hg differs from other metals in this respect because the strong
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of erganomercury compounds (Kabata-Pendias and Pendias, 1992). The next two subsections

discuss the adsorption and dissolution of Hg in soils.

Adsorption of Mercury in the Soil

Migration of Hg in the soluble form is thought to be somewhat limited and Hg species
are retained in the soils by adsorption. When losses from volatilization are small, the Hg content
in surface soils is thought to slowly build up even with low inputs (Kabata-Pendias and Pendias,
1992). According to Schuster (1991}, the dominant mechanism for sorption on the solid phase 1s
not ion exchange but stable insoluble inorganic and organic complex formation.

Clay minerals, sesquioxides, and organic material are the three groups of soil
compoenents that are responsible for retaining elements in the solid phase (Andersson, 1979). The
relative importance of each component depends on the soil type and horizon of the soil profile. It
is assumed that Hg* in acidic soils is mainly attached to organic matter, and in neutral and
slightly alkaline soils it is attached to mineral compounds (Stiennes, 1990).

Harris et al. (1996) used scanning electron microscopy and electron probe microanalysis
to locate, image, and determine how Hg is bound to soil particles from flood plain soil at a
contaminated site at Oak Ridge, TN. The authors found that Hg-bearing matter was present in
several modes. Mercury was present in discrete pm-sized particles, as fillings in pores and
fissures of plant debris, and as coatings on organic and inorganic constituents. In all
observations, Hg was found to coexist with S, which was not unexpected because Hg is known to
have an affinity for . Mercury and S entities were observed in association with Ca in numerous
cases, which suggested that Ca-rich matter might act as an adsorbing surface for Hg. The authors

also observed that the form and associations of Hg-bearing entities were independent of the Hg
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4.7, organic material dominated the retention of Hg. These studies may reflect conditions present
in the forested areas of Vermont where Spodosols are common.

Thanabalasingam and Pickering (1985) used laboratory-derived humic acids to observe
adsorption of Hg in solutions. The affinity between active sites on the substrate and Hg was
extremely high: more than 98% of the initial Hg in solution was sorbed by the organic materials,
When the authors added 1 M HNOQ,, only about half of the sorbed Hg was displaced, therefore,
they concluded that much of the Hg was strongly bonded to the organic matrix. They also
proposed that the reactive sites on the organic substrates were the functional groups that contain
sulfur and nitrogen (carbon functional groups were not mentioned).

The bonding strength of metal ions onto humic or fulvic acids has been measured in
several studies, and Hg has been shown to be one of the strongest to bind organic acids, with an
order approximately as follows (Férstner and Wittman, 1981; Takamatsu et a/., 1983):

Hg*" > Cu* > Pb¥ > Zn* > Ni** > Co ?* = Cd* > Mn?*

Kerndorff and Schnitzer (1980) used laboratory-derived humic acids to observe the
adsorption of Hg(Il), Fe(Ill), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co, and Mn in solution. The authors
used all cations in the same solution to mimic natural field conditiofis. At all pH levels (2.4, 3.7,
4.7, and 5.8), Hg adsorbed more than other cations. In addition, Hg appeared to be bound more
tightly than other heavy metals; it could not be displaced by them, especially when metal
concentrations were very low. This is additional evidence for non-carboxylic binding of Hg to
humic acids. At low concentrations, reduced S groups have not been saturated and can bond with
all available Hg ions. Other trace metals that do not tend to bind with S will not be in

competition for these sites.

15

affinity of Hg to organic matter means that it may become more mobile at higher pH levels as
organic acids dissolve under higher pH conditions (Yin es al., 1996). Increasing pH usually
causes immobilization of cations, particularly hydrolysable metals, by sorption to solid surfaces
or precipitation (Ledin er al., 1996),

Studies that have used field and laboratory soils to conduct Hg studies under different
pH levels have had varied results (Thanabalasingam and Pickering, 1985; Barrow and Cox,
1992a; Barrow and Cox, 1992b; Arnfalk et al,, 1996; Yin er al, 1996). Yin et al. (1996)
investigatéd the Hg adsorption behavior of 15 different New Jersey soils by adding laboratory
solutions of Hg(NO,), to soil suspensions held at different pH levels. At low pH, Hg?" was
strongly adsorbed by all soils. The maximum adsorption occurred between pH 3 and 5 for all
s01ls and ranged from 86 to 98% depending on soil type. Thanabalasingam and Pickering (1985)
used laboratory-derived humic acids to observe adsorption with Hg solutions, The amount of
Hg** adsorbed varied with pH, and peaked at a pH of 4.5. At pH levels below 4.5, adsorption

decreased due to competition with H” ions for complexation sites.

Organic Matter

As mentioned previously, organic matter has a great capacity for binding Hg.
Accumulation of Hg is related to organic carbon and sulfur levels in soil, and for this reason
organic soils tend to have greater concentrations of Hg than do mineral soils (Schuster, 1991;
Kabata-Pendias and Pendias, 1992; McBride, 1994).

Dmytriw et al. (1995) studied four soils in Quebec (a forest Spodosol, a flooded forest
Spodosol, a gleysol, and pre-impoundment lake sediment now part of a reservoir) and observed
that Hg was predominantly associated with the distribution of organic carbon in ali four profiles.

Andersson (1979) also noted that in a beech forest with podzolic soils ranging in pH from 3.9 to
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(Stiennes, 1990). These factors, in turn, can affect the adsorption and desorption processes that
Schuster described. Transformations may also be mediated by microbial activity (Stiennes,
1990).

The dominant species of Hg™ in solution are uncharged complexes (Schuster, 1991).
Organic Hg complexes may be more prevalent than inorganic complexes in the soil solution
(Andersson, 1979). The most common inorganic complexes formed in the ficld are probably
compounds with chlorine (Arnfalk ef al., 1996; Yin ef al., 1996). Organic complexes with Hg are
‘formed with particulate organic matter in the soil matrix (as described in the previous
subsection) and dissolved organic ligands. Apparently mercury’s affinity to dissolved organic
ligands is so strong that the presence of organic matter in solution has been reported to inhibit
the adsorption of Hg*" on mineral surfaces (Schuster, 1991).

There 1s some disagreement about the relative contribution of dissolved Hg in natural
waters. Thanabalasingam and Pickering (1985) noted that with Hg equilibrium constants
favoring the solid phase, the transport of Hg in stream water would mainly be associated with
suspended colloidal particles. Research in Minnesota appears to support this conclusion, with the
concentration of Hg in streams having a stronger correlation with particulate organic carbon
(POC) than DOC or total organic carbon (TOC) (Kolka, 1996). On the other hand, Yin et al.
(1996) cited a study that concluded that most of the Hg in river water may be present as
complexes with dissolved organic matter. Kabata-Pendias and Pendias (1992) also cited several
Swedish studies which demonstrated that relative mobility of Hg in dissolved form was fairly
high. In these studies, Hg appeared to be leached from acidic soil profiles in a form bound to
organic compounds. In neutral and slightly alkaline soils, Hg was leached out in association with
inorganic fractions. The largest amounts of Hg were found to be transported in autumn and

spring, when water was more acidic and discharge was high.
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Particle Size and Surface Area

Adsorption of Hg increases with decreasing particle size and increasing surface area
(Andersson, 1979). The rank of importance to Hg sorption is as follows: surface area > organic
content > cation exchange capacity > grain size (Schuster, 1991). Yin er al. (1996) used
regression to predict the adsorption rate of Hg at a fixed pH of 4. Surface area, the aluminum
concentration, and organic matter content were the most significant predictors of Hg adsorption.
Of the soils in their study with low organic content, a soil with more silt and clay than other soils
tended to adsorb more Hg™". This observation supports the hypothesis that increased surface area

(silt and clay > sand) contributes to higher adsorption rates of Hg.

Mercury in the Soil Solution

The strong bond between Hg and soil colnstituents generally means that interactions
between Hg cations and soil particles are strong enough to limit their availability to plants and
animals and that only minute quantities are leached into water systems (McBride, 1994).
Knowledge about the speciation and transformation reactions affecting the equilibria between the
soil solution and solid phases is necessary in order to explain the retention and mobility of Hg in
soils.

General statements about the mobility of Hg are difficult to make because of the
complicated chemistry of Hg (McBride, 1994). According to Schuster (1991}, the lower the
concentration of heavy metals in the soil, the more sites there are available for high affinity
adsorption, and the more likely it is that adsorption/desorption processes will determine the
concentration of elements in solution. The parameters that affect chemical transformations of Hg

in the soil solution have been identified as the redox potential, pH, and Cl concentration
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South Central Sweden. They reported that the Teflon samplers yielded higher Hg levels than
porcelain, with the difference being attributed to the larger pore size of the holes in the Teflon (3
pum in Teflon; 1 um in porcelain). Porcelain is also Ia surface that Hg adheres to; therefore, it is
likely that more Hg in the soil solution was adsorbed by the porcelain lysimeters than the Teflon
ones. Lee ef al. (1994) used suction lysimeters made with Prenart PTFE with a pore size of 5 um
in a study in western Sweden. They described the lysimeters as having an inert character and
good hydraulic conductivity. Kolka (1996) used a zero tension steel box connected to a PVC
pipe, stainless steel bucket, and polyethylene collection tank to obtain soil solution from below
the organic O and inorganic Bt horizons in Mimnesota soils. Because steel is not typically
recommended for use in collecting trace levels of Hg, I think the results of this study are
questionable.

Bishop ef al. (1995) collected soil solutions from the Svartberget Catchment in northern
Ssweden. They collected soils from soil profiles and centrifuged 100 g portions of mineral soil in
a polyethylene holder for 1 hour. Centrifugation was used to collect soil solutions because there
is less risk of altering the sample through contact with a lysimeter surface or during storage in
the lysimeter. However, the authors noted that TOC concentrations from centrifuged soii
solutions tend to be higher than those in samples from lysimeters.

The technique of extracting water from bulk soil samples or soil cores by centrifugation
or chemical means of separation was not used in this study because these methods yield water
samples that represent the solute concentration in micropores and macropores (Boli et al., 1992),
but not necessarily the concentrations in bulk flow. Many methods that use bulk soil samples
require air-drying and re-wetting soil, and this method alters the chemistry of the collected
solution sample (Lawrence and David, 1996). Finally, with bulk extraction of soils, multiple

samples cannot be taken from the same location in the field.
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The solubility of humic acids decreases at low pH. In solutions with a pH between 6 and
8, metals will most likely move with dissolved organic matter, and the organic matter will
prevent precipitation of Hg as hydroxides (Schuster, 1991). In acid waters, such as those found in
organic carbon-rich forest soils, metals should be drawn downwards along with the transport of
organic matter and then trapped in the horizon where organic matter is immobilized (Schuster,
1991). For this reason, in temperate climates, organic soil horizons are thought to have higher

concentrations of Hg in soil solutions than in lower soil horizons.

Collecting Soil Selution for Mercury Analysis

The soil solution is defined as the aqueous phase of soil and its solutes (Sparks, 1995).
Many different techniques are used to collect soil solutions, but none of them obtain a soil
solution truly representative of its relationship in dynamic equilibrium with plant roots,
microorganisms, or solid phases of the soil. In addition, the chemistry of solution collected from
macropores may be very different from the chemistry of water tightly held to the same soil
during dry spells. Nevertheless, each collected sample represents a condition present in the soil
solution at a given moment.

Because different methods for sampling soil solution tend to yield different chemical
results, the best method to use frequently depends on the purpose of a particular study. For this
study, I wanted to collect water moving through the soil horizons. I could also use only certain
materials for sampling because ultra-clean laboratory methods are required for analyzing trace
levels of Hg.

Several other studies have reported collecting soil solutions for Hg analysis. Table 2
presents Hg concentrations in soil water as reported in the literature. Aastrup et al. (1991) used

ceramic suction lysimeters and Teflon suction samplers to collect soil water in a Spodosol in
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the soil matrix (Brandi-Dohin ef al., 1996). A fiberglass wick collector was chosen to collect soil
solution in this study. The collector was custom-made and was tested in the field and compared
with the performance of a glass funnel ZTL. The ﬁ1'§t article in this thesis describes testing that I
completed to assess whether the wick would collect enough water and to see whether the Hg

content was significantly aitered by the wick,

TRANSPORT OF MERCURY TO STREAMS

The previous section discussed Hg in soils. We will now explore the transport of Hg
from soils to the streams. This section will also examine the relationship between Hg and organic
carbon because several studies have shown that in terrestrial ecosystems, the concentration of Hg
in soil water and lake water s highly correlated with the concentration of humic matter. The
section concludes with a brief summary of methods used for assessing the concentration of

humic matter in natural waters,

The Connection Between Soil Water and Stream Water

First it 1s important to identify some of the sources of wager in streams. Groundwater
supplies base flow to streams. Base flow carries solutes downstream from chemical weathering
of bedrock and soils and decomposition of organic matter (Lindberg and Turmner, 1988). During
storms, streamflow is comprised of varying proportions of base runoff, subsurface stormflow,
overland flow, and direct precipitation. Subsurface stormflow is runoff derived from subsurface
flow paths that arrives .quickly enough to become part of the stream discharge associated with a
storm. Overland flow is the flow of rainwater or snowmeit over the land surface towards stream

channels. The latter sources of water, along with precipitation, tend to carry soluble and
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Ross and Bartlett (1990} have developed a syringe-ﬁessure technique for soil solution
extraction that squeézes water out of soil. This technigue allows for chemical analysis of the bulk
soil from which the soil solution came, and can give an accurate representation of the soil water
moving through soil horizons (Ross et al., 1994), but may alter solution chemistry by disturbing
the soil (Ross and Bartlett, 1996). The volume of water obtained from this method was too small
to be considered for work with Hg (60 mL of packed soil yields 4 to 10 mL of solution). A
volume of more than 100 mL is desired for Hg analysis.

Tension (or suction) lysimeters also extract tightly-bound water contained in small soil
pores (Swistock et al., 1990), and therefore tend to collect higher concentrations of soil
constituents. Tension lysimeters are said to collect solution that has interacted more closely with
the soil than zero tension lysimeters (ZTLs) (Lawrence and David, 1996). ZTLs collect solution
that moves downward through the soil by force of gravity, often through macropores. This
method is therefore believed to be representative of soil water that is actualty moving through
the soil. One possible drawback is that they require that the soil above the samplers be saturated
in order fo collect a sample (Boll et a/., 1992). Installation of lysimeters disturbs soil, but it is
generally assumed that the soil will recover to pre-installation conditions, although the length of
time required is not well documented (Lawrence and David, 1996).

A new technique to sample water and solutes moving through the unsaturated layers in
soil uses fiberglass wicks to create capillary suction (Holder er al., 199%; Boll et al., 1992:
Poletika ef al., 1992; Brandi-Dohrn er a/., 1996; Knutson and Selker, 1996). The wick is self-
priming and acts as a hanging water column, making it possible to draw samples from
unsaturated soil without external application of suction (Boll ef al., 1992). There is evidence that
the wick method collects water representative of that which moves through the soil profile,

whereas suction cup samplers collect a solution that contains constituents more firmly bound to
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individual contributions to stormflow from groundwater, soil water, and direct precipitation into
the stream channel based on 0/"°O ratios of the three source waters. The study took place at
Laurel Hill in southwestern Pennsylvania during thé months of October and November in 1986.
Analysis of individual rain events suggest that total storm runoff was composed of 6 to 40% soil
water. Contributions from direct precipitation never surpassed 14% and groundwater accounted
for the remaining flow. The rglative contribution of soil water increased as antecedent soil
moisture increased. The results of this study suggest that soil water can at times be a major
contributor to stormflow, but the short duration of the study makes it impossible to draw
conclusions about the year-round conditions in other streams, such as those in the Champlain
vailey of Vermont.

Several other studies have identified a chemical connection between soils and streams.
In their summary of the literature, Reuter and Perdue (1977) noted that the striking similarity
between soil humic substances and aquatic humics implies a soil origin for at least part of
aquatic humic matter. They specified that the main fraction of dissolved humic substances in
river waters closely resembled soil fulvic acids. In several southeastern U.S. coastal plain
streams, organic carbon concentrations increased when discharge incteased and decreased during
periods of low discharge. This trend suggests that the bulk of organic carbon, and specifically
humic substances, is derived from the soil after the water level has risen up through the profile
during rain storms and overland flow becomes a significant contributor to total Tunoff (Reuter
and Perdue, 1977).

Other studies have demonstrated a link between soil water and stream water chemistry
using correlation between major ion concentrations, Ross ef al. (1994) extracted soil solutions
from fresh soil horizon samples on the western side of Camel’s Hump in Vermont. In one

watershed, B horizon water was the dominant contributor to stream chemistry. In another
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particulate forms of metals that are directly and indireotly'derived from the atmosphere. In
undisturbed forests of humid temperate climates, subsurface stormflow is the dominant
contributor to streams unless the soil becomes saturated to the surface. Saturated overland flow
i1s of limited extent except at the base of the slope and during spring snowmelt (Bonell, 1693),

A large proportion of soil water and Hg entering streams has passed through deeper soil
layers and is comparatively “old” (Meili, 1991a). Isotopic analyses have demonstrated that
stream water is nearly always dominated by pre-event, or “old,” water rather than by event, or
“new,” water. Some studies have shown that this pre-event water reaching the channel during a
storm event may be supplied from a fairly localized near-stream zone (Buttle, 1994). The
contribution of pre-event water during periods of high runoff may be explained by the
groundwater ridging mechanism: infiltration of storm water can raise the water table thereby
increasing the hydraulic gradient to the stream and enhancing the flux from groundwater to the
strearn. Translatory flow is another mechanism that explains the contribution of pre-event water
to stream flow. According to this theory, “new” precipitation inputs cause lateral throughflow of
“old” rainwater or snowmelt that was stored in the soil. This old water is displaced by the new
precipitation and released to channel flow (Buttle, 1994).

Macropore flow may also be significant in the delivery of water from soils to streams.
Event water infiltrates to a bedrock surface and at the top of this surface a transient perched
aquifer forms. The water from this transient aquifer has a pre-event chemical signature and is
rapidly drained down slope through a macropore network and eventually discharged to the
stream (Buttle, 1994).

Isotope studies that show stormflow dominated by “old” water unfortunately group soil
water and groundwater contributions together, masking the individual importance of either

component. DeWalle er al. (1988) used a three component "0 tracer mode! to estimate the
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In general, the majority of humic substances in small streams are of allochthonous origin
from soil and plant matter. Only a minor amount of DOC reaches streams via groundwater
discharge (Thurman, 1985). In natural waters, much. of the dissolved organic matter is composed
of aquatic fulvic acids. Fulvic acids tend to occur in a dissolved state and have a smaller
molecular mass (less than 700) than humins or humic acids. They play an especially important
role in bonding metals because of their numerous functional groups and solubility. Fulvic acids
bond particularly well with divalent metal ions to form compiexes (Thurman, 1985; Chin ef al.,
1994).

It is difficult to characterize the exact relationship with fulvic acid because Hg®
hydrolyzes and there are many possible fulvic acid chelating sites. Earlier research assumed that
Hg®" chelates with fulvic acid at the salicylic acid-like bidentate structure of fulvic acid, a site at
which Cu® is known to chelate (Cheam and Gamble, 1974). X-ray absorption spectroscopy has
recently revealed that reduced sulfur functional groups (thiol and disulfide/disulfane) and to a
lesser extent carboxyl and phenol ligands are involved in the complexation of Hg® to humic
substances (Xia e al., 1999). Hintelmann es al. (1995) looked at the stability constants of
methyl-Hg associations with humic and fulvic acids from Fawa Lake in Ontario. Based on the
high binding capacities they found, they assumed that CH,Hg" is bound to sulfidic binding sites
(Hintelmann ef al., 1995),

Several recent studies have shown a correlation between Hg and organic carbon without
identifying the exact relationship. Mierle and Ingram (1991) measured total Hg concentration in
eight inflowing brownwater streams from two headwater lakes and catchments in Ontario over a
two-year period. They found that over 95% of the variation in the export of Hg was explainable
by the color of the water. They measured organic carbon content by analyzing water color and

DOC concentrations. Color and DOC were correlated but there were systematic seasonal
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watershed, both seep water and non-seep B-horizon water were contributors. McDowell and

Likens (1988) observed that the organic chemisiry of stream water at Hubbard Brook, New
Hampshire was similar to that of the B horizon soil solution. They noted that most DOC lost
from the forest floor in soil solution is transtocated to the B horizon and never enters the stream.
During spring runoff, however, increased lateral flow through the upper B horizon would result
in an increase in the DOC of soil water entering the stream.

Similar to the conclusions of Ross ef a/. (1994) and McDowell and Likens (1988), David
ef al. (1992) proposed that the quality and quantity of DOC fractions in streams and lakes of
central Maine were strongly related to contact with soil leachates in the B horizons. David er al.
(1992) also observed that during large storm events, stream DOC increased. They hypothesized
that the increase of DOC during storms may occur because high-DOC water from the forest floor
does not have a chance to percolate downward and adsorb to solid particles in the lower soil
horizons, Most DOC loss and water export occurs in March, April, and May, with additional
export oceurring in October and November of wet autumns (David ef al., 1992).

Water flow paths control the chemistry of waters draining a forested catchment. This
subsection has demonstrated that forest soils can influence the chemistry of streams. The next

subsection discusses the relationship between Hg and organic carbon in natural waters.

Hg and Organic Carbon in Natural Waters

‘The affinity of Hg for organic matter holds true in rivers and streams in addition to soils.
Many researchers have concluded that the transport of Hg in freshwater systems is related to the
transport of humic and fulvic acids. However, it is difficult to predict the chemical behavior of
Hg in natural waters because at trace levels, microchemical phenomena and secondary reactions

are important but not well understood.
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practices that reduce stream bank erosion and soil erosion from croplands should reduce Hg

loadings into the lower Minnesota River (Balogh et al., 1997).

Measurement of Organic Carbon in Natural Waters

Measuring DOC and color are two ways of assessing the amount of dissolved organic
materials present in natural waters. Both methods have been used by researchers studying trace
levels of Hg. In this thesis, concentrations of DOC and color were determined in order to
compare results with all studies.

DOC is generally defined as the organic carbon that passes through a 0.45 um filter. The
boundary between DOC and POC (the difference between TOC and DOC) is somewhat arbitrary
and there are no major differences in their physical and chemical properties as far as metal
complexation is concerned (Reuter and Perdue, 1977). DOC is measured in the laboratory by
converting all organic matter in solution to CO, and then measuring this CO, (Drever, 1988). The
composition of DOC in natural waters varies, but a generalized breakdown of DOC is as follows:
50% 1s aquatic fulvic and humic acids, 30% is other hydrophilic acids (including fow molecular
weight organic acids), 10% is carbohydrates, 7% is carboxylic acids‘", 3% is amino acids, and less
than 1% is hydrocarbons (Thurman, 1985). The DOC concentration does not represent a
measurement of all organic material in the water, but it is a major fraction of the organic carbon
transported in streams (David ef al., 1992) -- in Bear Brook, NH, 47% of organic carbon was
transported in dissolved form (Tate and Meyer, 1983). Table 3 presents DOC concentrations in
natural waters from several different studies.

Color of humic substances is lincarly related to the concentration of humic matter n
natural waters and for this reason color is commonly used to measure the concentration of humic

matter in streams and rivers (Thurman, 1985). In their study of total Hg in lakes in Ontario,
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differences between the two, The difference between colorland DOC will be discussed in the
next subsection.

Johansson et al. (1991) drew a connection between Swedish soils and streams by
showing that, per unit of organic carbon, the Hg in soils is roughly equivalent to the Hg in
streams within the same catchment. The authors concluded that in these catchments, transport of
Hg is mainly controlled by Hg content in the soils and the humic matter content of stream
waters. On the other hand, Swain er al. (1992) refuted the idea that the terrestrial export of Hg to
lake basins may be controlled by the nature of catchment soils and the movement of organic
acids. They studied whole-basin Hg fluxes in several lakes in Minnesota and Wisconsin and
showed that the relative size of the catchment controls the humic content of a lake in a given
bioregion. Different soil types did not affect Hg fiuxes among the study watersheds.

Most studies of metal-fulvic acid interactions have concentrated on characterization of
dissolved complexes, but other mechanisms of interaction may be important. For example, trace
metals are readily adsorbed on the surface of particulate humic substances (Reuter and Perdue,
1977). A recent study in Minnesota indicates that total Hg concentrations in forest soil runoff
and streamflow are most closely related to POC (measured as the difference between TOC and
DOC) (Kolka, 1996). Balogh er al. (1997) analyzed water samples collected from different
locations in the lower Minnesota River in southeast Minnesota and found that Hg and suspended
sediment loadings are primarily determined by runoff-driven sediment inputs from upstream
tributaries. The land use in the Minnesota River watershed was 92% agricultural. They found
that 98% of the annual Hg load was carried between March and November. During high runoff
periods, total Hg and total suspended solids increased. The fraction of soluble Hg (passing
through a 0.4-um filter) decreased while the fraction of particulate Hg increased. They conciuded

that suspended sediment sources in the watershed are also sources of Hg; therefore, land use
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Table 1. Mercury concentrations (dry weight) in soils.

Concentration
Soil depth (ave. or range) ‘Lacation Reference
pg g’

Mor layer 0.250 Tiveden National Park, (Aastrup er al., 1991)
upper B horizon 0.058 South Central Sweden
lower B horizon 0.023
Organic layer 0.143 Cedar Creek Natural History  (Grigal ef al., 1994)
0-10 cm 0.036 Area, East Centrai MN
10-50 cm 0.011
Forest floor 0.12-0.18 Several sites in MN, W1, and  (Nater and Grigal,
Mineral soil 0.021-0.03 MI 1992)
Humus .22 Wallace Falls, Cascade (Lindqvist, 1991)
S5cm 0.244 Mountains, WA
17.5 e¢m .160
30 cm 0.155
2 cm 0.70 150 km northeast of (Padberg and
5cm 0.60 Cologne, Germany Stoeppler, 1991)
10 em 0.15
20 cm 0.10
Litter horizon 100 Walker Branch Watershed, (Lindberg, 1996)
0-2 e (organic) 680 Oak Ridge, TN
2-5 cm (mineral) 500 {nearby industrial source f)f
20~25 cm {mineral) 150 Hg)
6-10 cm (Oa horizon) 0.195 Underhili Center, VT This study
22-28 em (B horizon) 0.063

0.4-0.5 Proposed Swiss guideline for  (Johansson et al.,

health of seil microbiology

1991)
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Mierle and Ingram (1991) measured both DOC and color. Co-lor was measured by a colorimetric
method that compared the absorbence of water samples to a set of platinum cobalt standard
solutions. They found that although color and DOC were correlated, there were systematic
differences between the two. The authors suggested that color is probably a measure of humic
and fulvic matter in waters, whereas DOC measures all types of carbon (humic and fulvic acids
as well as carbohydrates, proteins, and other organic compounds). Because more than 95% of the
variation in the export of Hg was explainable in terms of the export of color, the authors
suggested an intimate link between humic matter and the concentration of Hg in streams. Meili

(1991) and Lee and Iverfeldt (1991) also measured color in Swedish lakes and found positive

correlation between Hg and color,
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Tabie 3. Dissolved organic carbon in natural waters,

Table 2. Mercury concentrations in soil solutions.

Concentration
Water source (mean or range) Location Reference
mg L
precipitation 1.09¢ Hubbard Brook Experimental  (McDowell and Likens,
throughfall 11.95%, 33.9 Forest, NH 1988)
E horizon 28.01, 37.5¢
upper B horizon 5917
B horizon (30 cm) 2.96%
seeps 1.73
Bear Brook 3.13%, 1.82%
groundwater 0.6-2.2 Allequash Creek, W1 {Krabbenhoft ef al.,
wetland streams 2.8-7.8 1995)
lower basin streams 4.1-7.4

surface runoff
(shallow soil water)
subsurface runoff
(deep soil water)

Oz horizon

B horizon

Nettle Brook weir
Stream 10

23.35%, 20.28+

15.90%, 8.66+

1.0-36.1

0.3-16.7
39
4.4

Two watersheds, MN

Underhill Center, VT

(Kolka, 1996)

This study

Concentration Coliection
Soil depth {mean or range) method Location Reference
ng L

0-8 cm 11.9 Ceramic suction  Tiveden National { Aastrup ef

8-20 cm 13.6 lysimeter Park, South Central «i., 1991)

20-50 cm 15.1 Sweden

5cm 12-70 Centrifugation Svartberget (Bishop er al.,

25 cm 315 Catchment, 1995)
Sweden

below the O horizon 25.5%,29.17t  Steel box zero- Two watersheds, (Kolka, 1996)

top of Bt horizon 20.22%, 15.03¢

tension lysimeter

MN

T Volume-weighted or flow-weighted mean
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5cm 4.91 Tension Walker Branch {Lindberg,
4.79% lysimeter Watershed, Oak 1996)
Ridge, TN
6-10 ¢cm 1.1-34.9 Fiberglass wick  Underhill Center, This study
22-28 cm 0.1-10.2 collector VT
T Volume-weighted mean
30




INTRODUCTION

Currenily there 1s concern about the level of mercury {Hg) in fish in Lake Champlain and
in other, more remote lakes in northeastern North America. Elevated Hg levels in fish and
ecosystems are attributed to decades of atmospheric deposition originating from emission
sources, Studies indicate that much of the Hg in lakes comes from the watershed (Lindberg and
Turner, 1988; Meili, 1991a; Lee er al., 1994) and that the ratio of catchment to lake area can
explain variation in the Hg accumulation in sediment in remote lakes (Swain et al., 1992). The
catchment-to-lake ratio for Lake Champiain is 19:1. Movement of Hg in forest soils may
therefore play an important role in the loading of Hg into surface waters draining into Lake
Champlain. In order to test hypotheses about Hg fransport in catchments, it is necessary to
examine the chemistry of soil water. Here we describe work completed to identify a suitable
device with which to collect soil water for Hg and trace metal analysis.

There are numerous Ways to obtain soil solufion, and the chemistry of the soil solution
varies depending on the means of extraction. Methods that collect soil solutions representative of
water naturally moving through soil horizons are best for transport studies. Techniques that
extract water from bulk soil samples or soil cores, for example, are not suitable because these
methods yield water samples that represent the solute concentration in micropores and
macropores (Boll ef al., 1992) and not necessarily the concentrations in bulk flow. Tension
lysimeters also extract tightly-bound water contained in small soil pores (Swistock er al., 1990)
and so tend to collect higher concentrations of soil solutes. For Hg, the strict requirements of
ultra-clean laboratory methods for analyzing trace concentrations also limited the possible
materials usable for sampling.

Zero-tension lysimeters (ZTLs) were considered because they collect solution that

moves downward through the soil by force of gravity, often through macropores. One drawback
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ABSTRACT

There are many methods for collecting soil water and different methods can yield
different chemical results. The best method for a particular study often depends on the purpose
of that study. This article identifies a passive capillary fiberglass wick sampler used for
analyzing trace levels of mercury (Hg) in soil water from an uncontaminated, forested watershed.
A wick sampler has not previousty been used for this application, and we completed several
small pilot tests to examine its suitability. Laboratory tests compared the amount of Hg in water
poured through the devices with the amount of Hg in control samples. The first laboratory test
showed that the wick sampler adsorbed ~ 20% of the Hg compared to control samples, Two
subsequent laboratory tests compared the amount of Hg and trace metals in water poured through
the devices after they had spent 1-2 months in the field. Results from these tests were affected by
soil present on the wick material after removal, but indicated that wick-to-wick variability was
low and the samplers did not grossiy affect the chemistry of a sample. In addition, the wick
device is capable of collecting sufficient volumes of water while being smalt enough for use in a

forested area with shallow bedrock.
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Norristown, PA) fit snugly inside Pyrex glass tubing (4 ¢m diameter x 30 cm length) and placed
vertically within the soil. The glass tubing was flared out at the top to form a flat plate against
which the top portion of the wick was unraveled, fanned out, and pressed. This part of the wick is
in contact with the soil, and our devices were made with a sampling area of 170 cm? (14.7 cm
plate diameter). Water flowing through the soif is intercepted by the plate, drawn into the wick,
and conducted down through the glass column. Water drains into a sample bottle through Teflon
tubing (based on Holder er al., 1991). Prior to use, the fiberglass wick material and Pyrex glass
" were baked for 90 minutes at 425°C in a muffle furnace and then rinsed with low-Hg deionized
water.

Adsorbence of Hg by fiberglass wick fibers has not yet been reported, but the possibility
of adsorption onto or desorption from exchange sites was examined by comparing the chemistry
of water passed through the wick coliectors against control water.

In the laboratory, initial performance of the collectors was quantified by rinsing them
with actual rainwater (pH ~ 4.5) composited from several] storms. For each “rinse,” 250 mL of
ramn water was poured through two clean fiberglass wick samplers at a rate of 10 mL every 4.5
minutes. The resulting samples were analyzed for Hg and compared against control samples of
rainwater. We also speculated that ion exchange sites in the collectors (which might adsorb or
desorb Hg) would become saturated over time. To examine this question, one fiberglass wick
sampler was installed at our field site in Underhill Center, VT at a depth of 6 cm below ground
surface for a period of one month (27 September to 27 October 1996). When removed, it was
rinsed as above with rainwater and analyzed for Hg and other trace metals, The experiment was
repeated the following year using three wick samplers which were buried for slightly more than

two months (29 July to 6 October 1997). Stream water (pH ~ 7) was used as the rinse and control
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of these and other lysimeters is that their installation can dlisturb the overlying soil and root
structures, but it is assumed that the soil eventually recovers to pre-installation conditions
(Lawrence and David, 1996). ZTLs also require that the soil above the samplers be saturated to
collect water (Boll e al., 1992).

A new technique uses fiberglass wicks to collect water by capillary action (Holder et al.,
1991; Boll ef al., 1992; Poletika et al., 1992; Brandi-Dohmn et al., 1996; Knutson and Selker,
1996). The wick is self-priming and acts as a hanging water column, thus samples can be drawn
from unsaturated soil without external application of suction (Boll et al., 1992). Based on a study
by Brandi-Dohm er al. (1996), there is evidence that the wick device collects solute
concentr=‘ions representative of water in motion through the soil profile.

We constructed several passive capillary wick samplers and conducted pilot tests in the
field and laboratory to determine if these devices were clean enough to use in a trace metal
study. Previous studies have indicated that the wick sampler has negligible effects on solute
transport (for Br', NOy, Cd, volatile organics, and Blue Dye No. 1) (Holder ef al., 1991; Knutson
and Selker, 1996). However, the concentrations used in these studies (mg L' range for Cd for
example) were much higher than what we expected in our study (ng L' for Hg and pg L7 for
other trace metals). We also require 75-100 mL soil solution for our analysis. Before beginning a
larger field study on Mt. Mansfield, Vermont, we wanted to confirm that enough water could be
collected with the wick samplers and that the Hg concentrations of our samples would not be

drastically changed by passage through the wick material.

MATERIALS AND METHODS

Fiberglass wick samplers (Figure 1) were custom-made with a length of 3.8-cm diameter
wick (braided medium-density 1.5-in diameter fiberglass wick, #10-863KR-10, Amatex Co.,
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In the second one-month field experiment, the first two rinses of the wick collector
produced higher Hg concentrations than the control rainwater (Figure 2). Only the third rinse
showed adsorption of Hg (~ 15%). It is likely that t}-m elevated Hg in the first two rinses was the
result of flushing soil material that had adhered to the collector following its removal from the
field. This hypothesis is supported by the behavior of titanium (Ti), a crustal element that was
barely present in rainwater but shows initially high and then declining concentrations in the wick
rinses (Figure 2).

In the third experiment, three wick collectors were installed in the field for a little more
than two months. Upon removal, soil again adhered to the wicks. Each wick was rinsed with
approximately 1 L water to flush out soil material, however results of this experiment again
show higher and declining Hg concentrations compared to control stream water (Figure 2), albeit
with lower concentrations than in the second experiment. Titanium also exhibited this pattern. In
the third experiment, wick-to-wick variability was low and was typically less than the variability
in control samples. The control water used in the third experiment (stream water), with its higher
pH and very likely higher organic carbon concentrations, may have caused Hg-organic carbon
complexes to be mobilized off residual soil particles and flushed thréugh the wicks.

The wick samplers buried just below the Oa horizon (5-10 cm) were typically able to
collect samples in excess of 100 mL during storms that brought greater than 12 mm rainfall.
Samplers buried within the B horizon (22-28 ¢m deep) generally needed more rainfall to collect
sufficient volumnes of water, and volumes collected varied greatly by site.

We believe that the disturbance of removing our devices influenced the laboratory
experiments, buf that if the residual soil effect is eliminated the results indicate that the non-
tension fiberglass wick sampler is a suitable device for collecting soil water for Hg analysis.

Once installed and allowed to equilibrate in the field, contributions from disturbed soil should he

37

waters for this experiment. Each wick was first rinsed with a;ﬁﬁroximateiy 1 L water to flush out
soil material before collecting rinse samples.

Soil water samplers were installed in the field by digging pits approximately 90 cm x 60
cm x 75 cm deep and tunneling laterally info the upslope wall so that the soil water samplers
could be placed under a given depth of undisturbed soil. After installation of the samplers, access
holes were back-filled with moistened soil. Solutions drained from a Teflon tube into a partially
buried plastic container where sample bottles were placed. Volumes of water collected by the
samplers were measured after each rainstorm.

Our study site is a forested area on the western slope of Mt. Mansfield at an elevation of
550 m. Sotls are Typic Haplorthods with a C horizon less than 1 m below the ground surface.

The laboratory portion of the experiments was conducted in a counter-top HEPA clean
chamber to avoid trace Hg contamination. Particle-free gloves were worn at all times when
collecting and handling samples. Samples were collected in triple-bagged, acid-washed Teflon
bottles. Samples were shipped by overnight courier to the University of Michigan Air Quality
Laboratory (UMAQL) in Ann Arbor, MI, where analysis for total Hg was performed using cold
vapor fluorescence spectrometry in a Class 100 ultra-clean laboratory. Trace metals were
analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). Analytical and

quality assurance details are given in Burke ez al. (1995).

RESULTS AND CONCLUSIONS

In the first laboratory experiment, the wick collector adsorbed approximately 20% of Hg
present m control rainwater (Figure 2). This adsorbence rate indicated that the wicks did not

grossty affect sample chemistry with respect to Hg.
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minimal. The wick sampler may adsorb as much as 20% Hg in soil solution, but this amount may

decline over time once exchange sites on the fiberglass material are filled.
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Figure |. Fiberglass wick soil water collector.
Ruler shown for scale is 38 cm (15 in}.
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matter, but the small and continual contribution of dissolved Hg from soil water and groundwater

also exports significant amounts of Hg from these forested systems.

Key words: mercury, Hg, trace metals, DOC, soil, soil water, stream, catchment, forest.

1. INTRODUCTION

Mercury (Hg) contamination in freshwater fish is a widespread environmental problem
throughout the northern hemisphere. In Vermont, Hg fish tissue concentrations above the U.S.
Food and Drug Administration action level of 1 ppm in some species have caused the State to
issue an advisory on fish consumption. Atmospheric sources of Hg are thought to be responsible
for increasing Hg burdens in Lake Champlain (Watzin, 1992; Scherbatskoy ef al., 1997) but the
sources and mechanisms of transport and accumulation are not well understood. In the Lake
Champlain basin, more than 90% of the water entering the lake first passes through the 21,150
km?® watershed (Lake Champlain Management Conference, 1996). Because of the large land-to-
lake area ratio (19:1), with 64% of the land area forested (recent unpublished data, Vermont
Center for Geographic Information, October 1998), the presence of Hg in forest soils likely
influences the loading of Hg to the surface waters that drain into Lake Champlain.

Mercury in forest soils is strongly bound to soil constituents or revolatilized into the
atmosphere and only a minor fraction is transported from the soils to surface waters. In a small
forested catchment in Underhiil Center, VT, dissolved Hg concentrations in stream water are
consistently low (< 4 ng L), but accounted for 26 and 38% of the total Hg exported in the
stream during two years of study (Scherbatskoy er al,, 1998). Although Hg has also been shown

to be primarily associated with suspended sediment in rivers and streams (Kolka, 1996; Balogh
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Abstract. Soil solution and stream water from locations in two small forested catchments in
Underhili Center, VT were analyzed for mercury (Hg), dissolved organic carbon (DOC), color,
trace elements, and major ions. Samples were collected during snowmelt and rain events
between April and November 1997. Mercury concentrations in Oa and B horizon soil water
ranged from 1.1 to 34.9 ng " and 0.1 to 10.2 ng L™, respectively. In streams, dissolved Hg was
0.9 to 4.1 ng L' and total (dissolved + particulate) Hg was 0.9 to 9.2 ng L'\, Mercury and other
trace metals were typically present in higher concentrations in soil water than streams, indicating
additional removal of these elements below the sampling depths before reaching streams. In soil
water and stream water, Hg was positively correlated with DOC and color. Mercury
concentrations followed a pattern similar to other trace metals that form complexes with organic

carbon, such as Al, Cr, Cu, and Pb. Most of the Hg in the streams is associated with particulate
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2. MATERIALS AND METHODS

2.1 SITE CHARACTERISTICS

This study focuses on two small catchments on the western slope of Mt. Mansfield in
Underhill Center, VT (Figure 1). The sites are centrally located in the Lake Champlain basin,
approximately 31 km northeast of Burlington, VT and 120 km south-southeast of Montréal, PQ.
Both sites lie within the Lamoille River watershed. Nettle Brook is a small stream draining an
11-ha mixed hardwoods catchment between 445 and 664 m elevation. The stream originates on a
wet hillslope, levels at a boggy area, and descends steadily until it discharges into Stevensville
Brook. Since October 1993, water samples have been collected for Hg and major ions at a
continuously gauged v-notch weir at 445 m elevation. Water flows out of the weir year-round,
but the upper parts of the stream often become dry during the summer. Stream 10 is a small
stream draining a 7.4-ha mixed conifer and hardwoods catchment between 775 and 1180 m
elevation. The stream originates near the “nose” portion of the summit ridge of Mt. Mansfield
and descends steeply down the west face, Water samples have been collected here since March
1995, at a point just upstream of a culvert under the CCC Road in Underhill State Park. Stream
flow at the culvert ceases during dry periods even when the stream is flowing at higher
elevations. The portion of the stream that includes the lower half of Mt. Mansfield has not been
studied.

The study sites are underlain by mica-albite-quartz schist bedrock. The surficial geology
1s dominated by a cover of glacial till deposited in the late Wisconsinan age (Connally, 1968).
Soils developed at the study sites are Typic (Nettle) and Cryic (Stream 10) Haplorthods, These
soils were originally mapped as the Peru extremely stony loam series in the Chittenden County
Soil Survey.,
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et al.,, 1997; Scherbatskoy ef al., 1998), the small percentaée of Hg mobilized from soils to
streams may contribute 25-75% of Hg reaching lakes (Lee ef al., 1994),

In dissolved and particulate form, the transport of Hg is closely related to the transport of
organic matter (Mierle and Ingram, 1991; Pettersson et al., 1995). The Hg i soils (as Hg™) is
associated with humic matter, most likely with fulvic acids. In the soil solution, the dominant
species of Hg” are uncharged complexes (Schuster, 1991), with organic Hg complexes more
prevalent than inorganic complexes (Andersson, 1979). X-ray absorption spectroscopy has
revealed that reduced sulfur functional groups (thiol and disulfide/disulfane) and to a lesser
extent carboxyl and phenol ligands are involved in the complexation of Hg® to humic substances
(Xia et al.,, 1999). Other major ions and trace metals (c.g., Al, Cu, Cr, Fe, Pb) are also known to
form stable complexes with dissolved organic acids and are transported through the soil 1n
complexed form (Tyler, 1978; Bergkvist, 1987), but Hg has one of the strongest affinities for
organic compounds compared to other elements, in the approximate order of Hg® > Cu? > Pb*'
> Zn* > Ni** » Co™ = Cd* > Mn®* (Cheam and Gamble, 1974; Férster and Wittman, 1981;
Takamatsu ef a/., 1983). Given the strong relationship between Hg and organic acids, adsorption
and desorption reactions of organic matter in soils will strongly affect the mobilization and
transport of Hg to streams.

The objectives of this work were to: (i) determine the concentrations of Hg, dissolved
organic carbon (DOC), and several trace metals in soil and stream solutions in two small
catchments in the Lake Champlain basin, (i) compare the behavior of Hg with DOC and trace
metals in these media, and (iii) use the results to identify factors that might affect the transport of

dissolved Hg in an upland catchment.
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study period 20 Apr.—3 Nov. 1997, Hg in precipitation at PMRC ranged from 1.2 to 53.1 ng L,
with an average (+ std. dev.) of 13.4 + 9.8 ng L". Throughfall Hg was measured during August
and September 1994 at PMRC (Rea et al., 1996). At that time, the mean volume-weighted
throughfall concentration of Hg was 12.0 = 8.5 ng L' (range 4.5-35.8 ng L"), and the yearly
throughfall deposition to all forested areas of the Lake Champlain basin was estimated to be 117
mg ha”. Yearly deposition of Hg via litterfall in 1994 was 130 mg ha" making a total annual

below-canopy Hg deposition of 247 mg ha™'.
2.2 FIELD SAMPLING TECHNIQUES

Passive capillary wick soil water samplers were custom made based on designs
described in Holder ef af., (1991); Knutson ef al., (1993); and Knutson and Selker (1996). The
samplers (see Figure 1 of the first article in this thesis) were made of 30 cm long x 4 cm diameter
Pyrex glass tubing and 3.8-cm diameter wick (fiberglass medium-density 1.5-in diameter knitted
rope, #10-863KR-10, Amatex Co., Norristown, PA). The glass tubing flares out at the top end to
form a flat plate (diameter 14.7 c¢m), and the wick fits inside the tubing with the top portion
unraveled and pressed flat on the plate. The flat top comes in contact with the soil; the 170 cm®
area of the plate is the sampling area. Water flowing through the soil is intercepted by the plate,
drawn into the wick, and conducted down the glass column through an 11-mm glass fitting at the
bottom. Soil solution drains into a 500-mL Teflon bottle via 11-mm inner diameter (i.d.) Teflon
tubing (Nalgene) and segments of 12.8-mm i.d. C-flex tubing {(Cole-Parmer) fitted through
drilled holes in the bottle caps. The C-flex tubing and sample bottle caps were acid cleaned and
installed before every sampling episode. A buried plastic trash barrel with fid, located down
slope of the lysimeters, housed the sample bottles. Tubing running underground from the

lysimeters to the sample bottles entered the barrel through cut holes.
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At the Nettle Brook sites, the forest is dominated by sugar maple (Acer saccharum
Marsh.), striped maple (dcer pensvivanicum L.), yellow birch (Betula alleghaniensis Britton),
and American beech (Fagus grandifola Enrh.). The hardwoods in this catchment have been
intensively used for lumber production for about 150 years, with the last 70 years under state
ownership (Cogbill, 1995). At the Stream 10 site, the forest is composed of American mountain
ash (Sorbus americana Marsh.), vellow birch (Berula alleghaniensis Britton), red spruce (Picea
rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.}, American beech (Fagus grandifola Ehrh.),
and striped maple (Acer pensylvanicum 1..). This area has been owned by the state of Vermont
since 1929 and is currently designated as a natural area with no plans for logging in the near
future.

The Nettle Brook and Stream 10 sites are both located within 3 km of the Vermont
Monitoring Cooperative (VMC) air quality monitoring site located at Proctor Maple Research
Center (PMRC) (400 m elevation) in Underhili Center, VT. Mercury concentrations in
precipitation, vapor, and particulate samples are continuously monitored at this site, as are
ambient and within-forest meteorology, ozone levels, wet and dry deposition, and particulate
trace metal concentrations, Average rainfall is 1100 mm yr"'. Rainfall during the sampling period
of this study, 20 Apr.-3 Nov. 1997 was 675 mm, with a maximum daily rainfall of 45.3 mm
occurring on 9 July.

Anthropogenic inputs of Hg to the forest floor come in wet precipitation, dry deposition,
throughfall, and litterfall. Wet deposition of Hg at the PMRC monitoring site averages 87 mg
ha! yr' (Scherbatskoy et al., in press). Dry deposition of Hg vapor to the forest ecosystem is
large during the warmer months, perhaps five times that of wet deposition (Scherbatskoy ef al.,
1998), but it is difficult to accurately estimate the dry deposition rate because of large

uncertainties in the re-emission of Hg from forests (Scherbatskoy ef al., in press). During the
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Soil solution and stream samples were collected during spring snowmelt and major rain
events between 20 April and 3 November 1997. Bottles for collecting soil solution were set out
just prior to each storm event and were collected when the bottle was full or after precipitation
ended. Grab samples of stream water were collected during storms near the three soil water sites
and at the Nettle Brook weir (Figure 1), with an attempt to collect successive samples during the
storm as stream flow increased, crested, and descended. Typically it was only possible to sample
once before and once after stream flow peaked. Appendix A presents flow data for the Nettle
Brook weir and Stream 10,

Soil samples were also coliected in December 1997 at each soil water sampling site
within a 10 m vicinity of the lysimeters. Soil samples were collected at two depths (4-7 cm and
22-28 c¢m, or the same horizons where the lysimeters were placed) using a soil corer. Soil that
did not come in contact with the corer was collected into acid-cleaned polypropylene vials.

Clean technique was used in handling all samples: all equipment and supplies used in
sampling were rigorously acid-cleaned in a 4- or 11-day cycle (Burke er al., 1995): sample

bottles were Teflon-taped and triple-bagged; and particle-free gloves were worn when handling

the samples.
2.3 SAMPLE PROCESSING

Upon collection, samples were brought to PMRC in Underhill Center, VT. Subsampies
were poured off inside a portable counter-top HEPA-filtered clean chamber for analysis of pH,
conductivity, DOC, color, and major ions. Samples for Hg and trace metals analyses were
shipped by overnight céurier to the University of Michigan Air Quality Laboratory (UMAQL) in
Ann Arbor, MI where they were oxidized with BrCl to a 1% solution and refrigerated until

analysis. Subsamples of those samples with sufficient volume were filtered before oxidation
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Prior to field installation, all materials were cleanéd of possible contaminants to ensure
they were suitable for sampiing for Hg and other trace metals. Pyrex glass and the fiberglass
wicks were baked for 24 hours at 500°C in a muffle oven and rinsed with low-Hg deionized
water. Pyrex glass parts were washed with Liquinox detergent prior to baking. Knutson ef al.
(1993) found that combustion of the wicks at 400°C removes over 98% of impurities within 3
hours. Teflon tubing was rinsed 3 times with low-Hg deionized water.

Soil water collectors were installed in the field by digging soil pits approximately 90 cm
long, 60 cm wide, and 75 cm deep. Lateral tunnels 20 ¢m deep were excavated in the uphill
direction so that the collectors could be placed under undisturbed soil. The soil surface that was
to come mto contact with the lysimeter was prepared by inserting a sharpened sheet of stainless
steel (20 gage) horizontally into the soil. Soil under the sheet was removed and the collectors
were placed vertically within the soil directly under the steel sheet. A small amount of soil was
poured onto the top of the sampler so that the settling of soil would not cause the lysimeter to
lose contact with the soil horizon. The sheet was then carefully removed so as not to disturb any
soil above it. Samplers were firmly wedged up against the prepared soil surface and tunnels were
back-filled with moistened soil. The lysimeters were transported to the field in three layers of
Ziploc bags and inserted using particle-free gloves. Two shallow collectors (just below the QOa
horizon, 4-7 cm below ground surface) and two deep collectors (below the Bhs or within the B
horizon, 22-28 cm below ground surface) were installed at each of two sampling locations along
Nettle Brook (Middle and Upper sites shown on Figure 1). At the Stream 10 site, it was only
possible to install one lysimeter at each depth because of rock obstructions and seasonal time
constraints. A fotal of 10 lysimeters were installed between 26 September and 18 December

1996.
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multiplier. The elements that were analyzed on this machine include Li, Be, Mg, AL, Ti, V, Cr,
Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, Nd, Sm, T, and Pb. The full set of analytical
results is presented in Appendix B. |

DOC was determined by ultraviolet persulfate oxidation with infrared detection at the
USGS laboratory in Albany, New York using a Dohrman C analyzer. Color was analyzed on a
UV-visible recording spectrophotometer (Shimadzu UV160U) at the University of Vermont
School of Natural Resources. Absorbence at 420 nm was compared against a standard curve
using platinum cobalt (Pt Co} solutions (Fischer SP120-500) (Black and Christman, 1963).

Major elements and ions (Ca, K, Mg, Na, S, Si, P, NH,", CI', NO,, PO,*, and SO*) were
analyzed following standard methods (as specified in Standard Methods for the Examination of
Water and Waste Water) at the University of Vermont Agricultural and Environmental Testing
Laboratory. A Perkin-Elmer Optima DV inductively coupled plasma atomic emission
spectrophotometer (ICP-AES) was used to measure concentrations of elements. Nitrate and
ammonium were determined by colorimetric analysis on a Lachat QuikChem AE flow injection
analyzer. Chloride, phosphate, and sulfate were measured by chemically suppressed ion
chromatography using a Dionex 2000 series instrument. In addition to the water samples, soil
samples collected from the study sites were analyzed for C, H, and N. These samples were

analyzed using an Exeter Analytical CE440 CHN elemental analyzer.
2.5 STATISTICAL ANALYSIS

Data were analyzed using the Statistical Analysis System software (SAS Institute, Cary,
NC). To compare mean concentrations of Hg, DOC, color, and pH, stream data were grouped by
filter category (unfiltered = total concentrations, filtered = dissolved concentrations) and by site.

Stream data for the four variables had a normal distribution and equal variances. Mean stream
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through 0.22-pm nitroceilulose filters (Millipore MF) to sepafa;[e operationally-defined dissolved
and particulate fractions. This size filter was chosen to maximize discrimination between
dissolved Hg and Hg associated with particles.

Subsamples retained at PMRC were analyzed for pH (Orion EA920) and conductivity
(VWR Scientific EC 2052), and then filtered using a 0.7-pm glass fiber syringe filter (Whatman
13-mm ZC GF/F). This size filter was chosen because it is the smallest glass fiber syringe filter
available. Filtered water samples were refrigerated until analysis for DOC, color, and major ions.

Soil samples were shipped to UMAQL where they were dried, ground with acid-cleaned
glass mortars and pestles, and microwave digested with 10% HNO, as described in Rea and

Keeler (1998),

2.4 LABORATORY ANALYSIS

All Hg analysis was performed at the UMAQL in a Class 100 clean room using cold
vapor atomic fluorescence spectrometry (CVAFS). For total Hg determination in soil water and
stream water, the oxidized Hg was reduced by NH,OH and SnCl, to elemental Hg, bubbled out
of solution in 2 Hg-free nitrogen gas stream, and captured onto a gold-coated bead trap. The Hg
was then thermally desorbed from the trap in a Hg-free helium gas stream and quantified by
CVAFS using dual amalgamation (Fitzgerald and Gill, 1979). Calibration curves covering the
appropriate concentration levels were run each day of analysis with control standards checked
after every sixth sample. The analyzer was recalibrated if the control standard was not within
10% of the expected value. No Hg speciation analysis was performed; all Hg data are total Hg
measurements.

Trace metal analysis at UMAQL was conducted on a Perkin-Elmer Elan 5000A

inductively coupled plasma-mass spectrometer (ICP-MS)} equipped with a thin film electron
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small number of samples collected, the data give only a general idea of the level of Hg in soils at
the sites. The average Hg concentrations at the Oa horizon {(4-7 cm below ground surface) were
151.0, 309.4, and 169.0 ng g' (dry weight) at mid Nettle, upper Nettle, and Stream 10,
respectively. Oa soils at these sites contained 11-18% carbon. The average Hg concentrations at
the B horizon (22-28 cm below ground surface) were 68.9, 46.6, and 74.7 ng g (dry weight) at
the three sites, respectively. B horizon soils at these sites contained 1.4-3.7% carbon.

At all sites, Hg concentrations in soil were higher in the Oa horizon than in the B
horizon. Other trace metals that followed this trend include As, Ba, Cd, and Pb. Several other
trace metals followed the opposite trend, with higher concentrations in the B horizon, including
Al, Ce, Cr, La, Mg, Mn, Ni, and Zn. Figure 2 presents the concentrations of a representative

subset of the trace elements. Tables B-1 and B-2 in Appendix B include all soil data.

3.2 SOIL WATER

Soil water was collected during one spring snowmelt event and eight summer and fall
rainstorms between 20 April and 3 November 1997 at the Nettle Brook sites, and during six
summer and fall rainstorms at the Stream 10 site. Table 1 presents ¢oncentrations of Hg, DOC,
color, and pH in these samples. Although some soil water samples were filtered, only the total
Hg and trace metals concentrations are presented here because there are so few filtered samples
and we assumed that the fiberglass wick acted as a filter. Volume-weighted means are not
presented because they were very similar to the simple means.

Concentrations of Hg were significantly higher in Oa horizon soil water than in B
horizon water at all three sites (Table 2). DOC and color were also higher in the Oa horizon soil
water, but significance varied by site (Tables 3 and 4), Mercury, DOC, and color were

significantly lower at the upper Nettle site than the other sites at both depths. Two-way analysis
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concentrations by filter category and site were compared Qsing a Dunn multiple comparison
t-test with a Bonferonni adjustment to control the o level (0.05) across sites. The four stream
sampling sites were considered independent of each other. One value (total Hg 0of 9.2 ng L' at
the Nettle Brook weir) was determined to be an outlier using Grubb’s test and was excluded from
the statistical analysis.

Mean concentrations of Hg, DOC, color, and pH in soil water samples were compared
by depth and site. Soil water concentrations did not have a normal distribution and variances
were unequal. Two-way analysis of variance of ranked data indicated that there was a significant
interaction between depth and site for all four variables. Therefore, separate analyses were
completed to compare mean concentrations across depths and sites. Concentrations by depth (Oa
vs. B) were compared using a non-parametric Wilcoxon analysis of variance test. Ranked soil
water concentrations by site were compared using a Dunn multiple comparison t-test with a
Bonferonni adjustment to control the o level {0.05) across sites. Samples collected at different
depths at the same site were considered independent of each other.

Pearson correlation coefficients were calculated for all variables in stream water and soil
water samples. For the correlation analysis, stream water samples were grouped by filter

category and site; soil water samples were grouped by depth and site.

3. RESULTS

3.1 SOILS

Two soil samples were collected at two depths at each of the three study sites. Results
from two samples (Oa depth at the Upper Nettle and Stream 10 sites) are not available because

of possible contamination in one of the samples and laboratory error in the other. Because of the
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total and dissolved Hg, DOC, color, and pH in the stream water. There were no statistically
significant differences in the total Hg, dissolved Hg, and DOC concentrations between sites.
Color at the upper Nettle location was signiﬁcant:ly higher than at Stream 10 (F = 4.25, p =
0096). The upper Nettle site is directly downstream from a boggy area. Stream pH was
significantly higher at the lowest elevation site (Nettle weir) and significantly lower at the
highest elevation site (Stream 10) (¥ = 335.47, p = .0001).

Total and dissolved Hg were positively correlated with DOC and color at all sites (¢ =
5196, p = .09-.001 for each site) (Figure 5, sites grouped together). Total and dissolved Hg
were also positively correlated with Al, As, Cu, Cr, Ni, Pb, Ty, V, rare earth metals (Ce, La, Nd,
Sm), and stream temperature. Mercury tended to be negatively correlated with Cl, Na, and SO,.
Correlations between a subset of these chemicals are presented in Tables 9 and 10.

Concentrations of most analytes were higher in soil water than in stream water.
Exceptions to this trend occurred at Stream 10 (for Cu, La, Mn, Ce) and at the upper Nettle site
{for As, Ba, Mn), where stream concentrations of these elements exceeded soil water
concentrations by 6-58%. Mercury and V in stream water were roughly equal to that of soil
water at the upper Nettle site. The upper Nettle site is on a wet hillsiope with many seeps.

At the Nettle weir, where flow rate was continually measured, total Hg (particulate +
dissolved) and most other trace metal concentrations increased as flow increased. Dissolved Hg
concentrations, on the other hand, only slightly increased as flow increased. This was also true
for Cu, but dissolved Al, Nd, and Pb increased as flow increased. Concentrations of dissoived
Ca, Mg, Si, and SO, became diluted as flow increased, which is a typical pattern for
groundwater-derived chemicals. At lower flow conditions, Hg had a higher dissolved proportion
than most trace metals but as flow increased, more and more Hg was associated with particles

(Figure 6). Although other trace metals such as Al, Cu, Ce, and Pb also followed this pattern, it is
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of variance of ranked data indicated that there was a signiﬁ-cant Interaction between depth and
site for all four variables, mainly because soil water concentrations are so much lower at the
Upper Nettle site. The upper Nettle site is located on a wet hillslope.

Soil water pH at all sites was lower in the Oa horizon, but the difference was only
statistically significant at the mid Nettle site (Table 3). Soil water pH at the Stream 10 site was
significantly lower than the Nettle sites at both depths, Stream 10 is the site at highest elevation.

Mercury in Oa horizon soil water was positively correlated with DOC and color at all
three sites (7 = .81-.98, p = .03-.0002 at individual sites) (Figure 3, sites grouped together). In B
horizon water, the positive correlation between Hg and DOC or color was not as strong but
sample sizes were smaller. Hg in soil water was most consistently correlated with DOC and color
but also tended to be positively correlated with As, Cu, Pb, Ti, and rare earth metals (Ce, La,
Sm), and negatively correlated with K, Na, Rb, and NO,. Correlations between a subset of these
chemicals are presented in Tables 6 and 7.

Most trace metals followed the pattern of higher concentrations in Oa horizon soil water
than in B horizon water. However, no trace metals were analyzed in B horizon water at the mid
Nettle site because of insufficient sample volumes collected at this depth. At the Stream 10 site,
several trace metals and ions followed the opposite trend and were present in higher
concentrations in B horizon soil waters, including Ca, Cr, Mg, Mn, Na, Si, SO,, and Zn. Figure 4
presents the concentrations of a representative subset of these elements. Table B-3 in Appendix

B includes all soil water data.

3.3 STREAM WATER

Stream samples were collected near the three soil water sampling sites and at the Nettle

Brook weir during rain events when soil water was collected. Table 8 presents concentrations of
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direct environmental threat to the forest ecosystem, they could reach the 0.4-0.5 pg g' Hg
guideline proposed in Switzerland for soil microbiological health (Johansson ef al., 1991} after
another century of atmospheric deposition (Shan]ey et al., in press), provided the current levels
primarily reflect anthropogenic inputs. It is possible that acid deposition may favor accumulation
of Hg and other trace metals that complex with organic matter, as McDoweli and Likens (1988)
have suggested that anthropogenic acidification of precipitation may have slowed the turnover of
DOC in mineral soils by decreasing the mobility of organic anions in soil. In addition, acidic
conditions favor the adsorption of Hg to organic compounds. Maximum adsorption to soils and
soil organic matter has been observed to occur between pH 3 and 5 (Thanabalasingam and

Pickering, 1985; Yin ef al., 1996)
4.2 SOIL WATER

The observed pattern of higher Hg (or other trace metals) and DOC in Qs horizon soil
water than B horizon soil water has been noted in part by others (McDowelt and Wood, 1984
Bergkvist, 1987; Driscoll et al., 1988; Lazerte et al., 1989; David ef al., 1992; Bishop et al.,
1995). These analytes also tended to have higher soil water concentrations than stream water
concentrations, indicating that additional adsorption of these ions and metals occurs as water
percolates downward and discharges into the streams as groundwater. Removal of DOC and
trace metals in the upper part of the B horizon is a part of natural soil formation. Organic
compounds and, by association, trace metals are mobilized in the organic layers of the soil by
biologic activity, and these compounds are removed from solution when organic anions adsorb to
precipitated Fe and Al hydroxides in the B horizon (Bergkvist, 1987; Cantrell, 1989). The export
of Hg to streams is therefore dependent on processes that affect the export of dissolved organic

compounds. At Hubbard Brook in New Hampshire, less than 10% of the DOC leaving the forest
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notable that Hg and Ti (a crustal element) show the strongést decrease with flow. Table B-4 in

Appendix B includes all stream chemical data.

4. DISCUSSION

The chemical composition of soils, soil water, and stream water reflects a combination
of human infiuence and biogeochemical processes. Here we use the behavior of Hg, DOC, and
trace metals in these three media to propose a model for the transport of Hg from soils to streams

at our study sites.

4.1 SOILS

In soils, Hg had higher concentrations in the Ca horizon than in the B horizon, as did As,
Ba, Cd, and Pb. These elements have atmospheric sources, and their prevalence in the Oa
horizon probably reflects accumulation resulting from atmospheric deposition. Mercury and Cd
are byproducts of coal and other fuel combustion, Cd and As come from the non-ferrous metal
industry; and Pb was formerly used as an additive in gasoling (Nriagu and Pacyna, 1988).
Barium has recenily been proposed fo be a good indicator of unleaded gasoline and diesel o1l
emissions (Monaci and Bargagli, 1997}, The elements Al, Ce, Cr, La, Mg, Mn, Ni, and Zn, had
higher concentrations in the B horizon. These ¢lements have a crustal origin, and are likely
present as products of bedrock weathering, although Cr, Mn, Ni, and Zn can also have
atmospheric sources (Driscoll ef al., 1988; Nriagu and Pacyna, 1988).

Soils are a net sink for atmospherically deposited Hg. Using the Hg input—output balance
at Nettle Brook presented by Scherbatskoy ef al. (1998) and a re-volatilization rate of 90 mg ha™!
yr'' (in Sweden; Bishop ef al.,, 1998), we conclude that Hg is accumulating in catchment soils.

Although the current fevels of Hg in soils at Nettle Brook and Stream 10 are not known to pose a
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and second samples, respectively. Corresponding DOC concentrations for these samples did not
reflect a decline, however; both measured at 13.8 mg L

There are two concerns with regard to the soil water results. Increased N mineralization
1s a concern in any study during which soil is disturbed (Johnson et al., 1995; Lawrence and
David, 1996), and our study involved installing lysimeters. Nitrate concentrations in the soil
water samples (0.001-12.285 mg L) indicated a lingering disturbance effect on the soil. If the
NO; levels signify an increase in decomposition and additional release of organic carbon, this
might have caused elevated Hg concentrations in soil water. At most sites and depths, there was
no correlation between Hg and NO,, however, In fact, Hg in Oa horizon soil water at Mid Nettle
and at Stream 10 was negatively correlated with NO, (+° = -,74, p=.0land ¥ =-77, p= 07,
respectively). We also observed no correlation between NO, and DOC. Other potential effects of
nitrification include increased soil acidity and increased loss of calcium and other nutrient
cations. In our soil water samples, NO; was not correlated with soil water pH but was positively
correlated with elements such as Mg, Zn, Sr, Ca, and K. A causal link between NO, and these
cations cannot be established, however.

The other concern is that soil water pH levels at the Nettie Brook sites (4.68-6.97) were
higher than expected. Soil water pH should not be much higher than that of incoming rain (pH
~4.40 in annual average precipitation) or the surrounding soil {4.10-4.40). At the upper Nettle
site, the soil water might have a groundwater influence, which would partially explain a higher
pH. The mid Nettle site is not a wet site and these soils do not have high pH. A possible
explanation for the elevated pH levels we observed in soil water samples is that the fiberglass
wick lysimeters somehow changed the pH of the percolating solution, but we have no direct

evidence that this occurred. Higher pH might cause organic acids and Hg-organic complexes to
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floor in soil sclution is ultimately exported to streams (McDowell and Likens, 1988).
Correspondingly, the relatively high Hg concentrations we found in Oa horizon soil water
represents Hg that will largely be retained in the catchment, attached to soil or re-volatilized to
the atmosphere.

The factors that affect the mobilization of Hg and DOC in soil solution are complex. We
found no correlation between pH and Hg in soil water. DOC and pH were negatively correlated
in B horizon soil water only (Table 7). Johansson et al. (1991) also found no correlation between
acidification of soil and water and Hg concentrations, and McDowell and Likens (1988) cited
several studies which found no correlation between pH and DOC in soil solutions. Some trace
metals that were positively correlated with Hg did have a negative relationship with pH in soil
water, including Al, As, Ba, Pb, Cu Ti, and rare earth elements (Tables 6 and 7). At Stream 10,
where pH in soil water and stream water was significantly lower than at other sites, soil water
and stream concentrations of Al, Cu, Ce, Pb were elevated compared to the Nettle sites,
suggesting increased mobilization of these chemicals by the decreased pH. Trace elements may
also be retained less at Stream 10 because of shallow bedrock at the site, Mercury did not appear
to be affected by the low pH or other factors that contributed to increased export of other trace
metals at Stream 10, although the mechanisms for this are unclear.

There was a slight inverse relationship between both Hg and DOC and the volume of
water collected in soil water samples. This suggests that the contact time between water and soils
may be important, and that simply increasing water flow through the soils will not necessarily
mobilize more Hg and DOC. It is also possible that an initial pulse of Hg is mobilized in soil
water during a rain event and the Hg becomes diluted as additional water percolates through the
soil. We were able to collect two samples during the same rain event only once (from the Oa

horizon at Stream 10). Mercury concentrations of 15.3 and 7.7 ng L' were measured in the first
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the Hg and trace metals measurements. Clay-humic-metal complexes range in size from 0.007
um to 2 pm (Thurman, 1985). This probably accounts for the better association we observed
between DOC and total concentrations of Hg, rather than dissolved concentrations, in our stream
sampies (Figure 5). It might also help explain why we observed an increase in DOC with
increased flow but 3 minimal increase in Hg. On the other hand, dissolved Al, Zn, Cd, and Pb did

increase with flow,

4.4 MECHANISM OF HG TRANSPORT FROM SOILS TO STREAMS

An important question in this research is where is the Hg in streams coming from, and
what rote do soils play in supplying this Hg? The majority of Hg exported from Nettle Brook is
associated with the particulate phase (62 and 74% during two years of study; Scherbatskoy er al.,
1998). Sediment carrying adsorbed Hg and other trace metals may be supplied by re-
mobilization of in-stream sediments, overland flow, and soi} erosion from stream banks. Froded
or fallen leaf matter is also a contributor to particle-associated Hg in streams.

Data on concentrations of DOC and trace metals can be used to develop a possible
scenario for the origin of dissolved Hg. If upper Nettle B horizon seil water is representative of
discharging groundwater (due to its origin in a wet hillsiope with seeps and its 80:1 La:Ce ratio,
which is different than the 2:1 ratio found in all other soil water samples in our study), then DOC
and Hg levels in Nettle Brook stream water are higher than groundwater even during base flow.
Under low flow conditions, DOC is supplied to streams not only by groundwater but also by
litterfall (25% and 44% of DOC, respectively; Thurman, 1985). Mercury associated with humic
substances is therefore supplied to streams by both decomposed allochthonous organic material

and discharging groundwater.
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become more soluble, thus artificially increasing the Hg concentrations in soil water samples.

However, as mentioned earlier, we did not find a correlation between pH and Hg in soil water.

4.3 STREAM WATER

At the Nettie Brook weir, flow-related increases in total stream water concentrations of
Hg and aiso Li, Al, Ti, Mn, Co, Cu, Zn, Cd, La, Ce, Nd, Sm, and Pb were observed during our
study. The majority of Hg fransport occurs during the highest flow events, particularly during
years of significant and rapid snowmelt (Scherbatskoy ez al., 1998). Release of Hg in rivers and
stream water during increased flow events has been shown to be related to sediment transport
(Balogh et al., 1997, Scherbatskoy et al., 1998).

Dissolved stream water concentrations at the Nettle Brook weir were not as sensitive to
stream flow rate as the total (dissolved + particulate) concentrations were. As observed in
previous years of study (Scherbatskoy e al.,, 1998), dissolved Hg concentrations only slightly
increased with increased flow. In this study we can compare Hg concentrations with DOC and
trace metal concentrations for the first time. The elements that did exhibit an increase in
dissolved concentrations with increased flow rate were Li, Al, Zn, Cd, Ce, Pb, and K. DOC and
color also increased with flow, but the relationship was weaker. Copper and Ti had minimal
increases, similar to the behavior of Hg. The pattern of Hg as a function of stream flow points
towards stream flow rates and the amount of suspended sediment as being critical to the behavior
of Hg.

Differing laboratory protocol for filtering trace metal sampies (0.22 pm) and DOC
samples (0.7 pm) must be considered when comparing results of dissolved and total
concentrations. Complexes that passed through the 0.7 um filter but were excluded by the 0.22

um filter were counted as dissolved in the DOC measurement but considered particulate phase in
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suspended sediment more favorable for Hg-organic complexes than for complexes with other
metals in uncontaminated waters.

(riven that Hg is primarily exported in éssociation with particulate matter in forest
streams, land use practices that minimize soil erosion into streams (such as during logging) will
also serve to limit transport of Hg to surface waters and ultimately to Lake Champlain. The fate
of this Hg as it travels downstream towards Lake Champlain through agricultural and developed
lands has not yet been explored. Much of the particulate phase Hg in upland watersheds may be

’ re-deposited further downstream. Ultimately the Hg present in dissolved form may be enough to
account for the Hg entering the food web in Lake Champlain, but no research has yet been done

to look at the cycling of Hg in this lake and its watershed.

5. CONCLUSIONS

This study shows that dissolved Hg is associated with dissolved organic compounds, and
that Hg in streams during storm flow may be in part influenced by Hg in soil water. Most
dissolved Hg in Oa horizon soil water is probably removed from solution before reaching
streams, however, by adsorption onto soil solids. Although Hg was positively correlated with
elements such as Al, As, Cr, Cu, Ce, and Pb, it did not show increased export at higher elevation
and lower pH as did other elements (Al, Cu, Ce, and Pb}. During base stream flow, Hg was
present in the dissolved form. Under high flow conditions, Hg was present primarily in
association with suspended particulate matter. Dissolved Hg increased only slightly with
increased stream flow, whereas other elements such as Al, Cd, and Pb did increase. Some of the
dissolved Hg mobilized during a storm from the soil water may adsorb to suspended particles in

the stream upon entry. Transport of Hg from soils to streams will be positively influenced by
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During periods of increased flow, dissolved Hg mus.t have additional sources otherwise
we would observe a decrease in concentration from dilution, Sources of dissolved Hg during
high flow events must therefore include mputs of Hg from soil water, Hg in rainfali or
throughfall directly deposited into the stream, and Hg mobilized in newly inundated arcas of the
stream channel and banks (Lindberg and Turner, 1988; McDoweH and Likens, 1988). Macropore
flow and groundwater ridging during high runoff periods, especially in riparian areas, aids in the
delivery of water from soils to streams (McCarthy and Zachara, 1989; Buttle, 1994; Bishop er
al., 1995). Mercury and other solutes will be similarly transported. At our sites, dissolved Hg
concentrations in streams during high flow were somewhat similar to Hg concentrations in B
horizon soil water samples.

Based on the concentrations of Hg we observed in Oa soils and soil water, an event that
causes a rise in the water table high enough to direct flow from the upper soil horizons to streams
should cause more Hg and DOC to be exported to streams. However, we have never observed a
dramatic increase in dissolved Hg at Nettle Brook. Instead, dissolved Hg represents a small but
steady input to Nettle Brook. Why doesn’t dissolved Hg seem to behave like DOC or dissolved
Al, Zn, Cd, or Pb at Nettle Brook, which do increase with increased flow? It 18 possible that
dissolved Hg coming from soil water or other sources during storms is quickly adsorbed by
suspended organic particulate matter upon entry into the stream. Adsorption could occur
immediately or in the sample bottle before analysis. The order of affinity to organic compounds
(Hg" > Cu™ > Pb* > Zn* > Ni¥* > Co® = Cd?" > Mn*" (Cheam and Gamble, 1974; Férstner and
Wittman, 1981; Takamatsu e al., 1983)) might support these hypotheses, especially because
dissolved Cu also did not increase much with flow. Mercury’s relationship with reduced $

functional groups on organic compounds (Xia e al., 1999) might make adsorption onto
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factors that increase the mobilization of organic acids, which might include global warming

(through increased decomposition and increased precipitation).
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Table 2. Analysis of variance tables for me trati : il water Table 1. Summary statistics for soil water concentrations from three sites in Underhill Center,
: y 1 €8 lormereury concentrations in soil water. VT collected 20 April to 3 November 1997. Qa and B refer to soil horizon.

Two-way analysis of variance table for differences in mean ranked soil water concentrations Site
: Y b neentraions. Analyte Parameter Mid Nettle Upper Nettle Stream 10
Source (ranked Hg) df F P o B Oa B Oa B
site 2 3932 0.0001 :
Hg Ave, 20.1 3.0 3.5 1.1 16.6 6.0
depth I 5774 0.0001
: ' ' Range 93-349  19-45 1177 0156 77294  2.5-102
R 13 4 9 10 6 4
Wilcoxon one-way analysis qf variance table for differences in mean soil water concentrations DOC Ave. 227 24 25 0.6 18.8 11.3
by depth (Oa vs. B) at each site. (mg L") Std. Dev 77 0.4 1.0 0.2 51 55
HebySie  n(Qa) n®) 2 P Range 95-361  21-27  10-45  03-12 138261 5.6-16.7
Mid Nettle 13 4 2.887 0.0039 ; 12 o 8 g 6 3
Upper Nettle 10 9 2.901 0.0037
Stream 10 6 3 2025 00428 Color Ave. 376 20 15 6.0 181 57
{mg L Std. Dev. 92 - 8.3 2.7 68 28
' - - : PtCo) Range 263-502 - 9.2-33 2.6-9.2 119-265 37-88
Analysis of variance table for differences in mean ranked concentrations by site at each depth. " 10 1 7 9 6 3
Ranked Hg df. F p Bonferroni (Dunn) t-testt |
Oa sot] water 2 37.44 0.0001 MN=ST>UN pH Ave. 5.55 6.65 5.98 6.06 4.71 4.90 |
B soil water 2 1079 0.0012  ST>UN Std. Dev. 0.65 0.51 0.43 0.52 0.48 0.34
t site names have been abbreviated as follows: Range 4.68-6.58 6.06-697 547-670 5.45-686 422-549 457-524
MN = Mid Nettle, UN=Upper Nettle, ST=Stream 10. n 12 3 8 9 6 3
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Table 4. Analysis of variance tables for color concentrations in soil water.

Two-way analysis of variance table for differences in mean ranked soil water concentrations.

Source {ranked color) d.f F p

site 2 70.82 0.0001
depth 1 51.47 0.0001
site x depth 2 4.21 0.0245

Wilcoxon one-way analysis of variance table for differences in mean soil water concentrations
by depth (Oa vs. B) at each site.

Color by Site n {Oa) n(B) Z p

Mid Neftle 10 1 1.423 0.1547
Upper Nettle 7 9 3.155 0.0016
Stream 10 6 3 2.195 0.0282

Analysis of variance table for differences in mean ranked concentrations by site at each depth,

Ranked color df F p Bonferroni (Dunn) t-testt
Qa soil water 2 79.35 0.0001 MN>ST>UN
B soil water 2 34.59 (.0001 MN=ST>UN

t site names have been abbreviated as follows:
MN = Mid Nettle, UN=Upper Nettle, ST=Stream 10.
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Table 3. Analysis of variance tables for DOC concentrations in soil water.

Two-way analysis of variance table for differences in mean ranked soil water concentrations.

Source (ranked DOC) df. F p

site 2 39.53 0.0001
depth 1 37.41 (.0001
site x depth 2 3.95 0.0290

Wilcoxon one-way analysis of variance table for differences in mean soil water concentrations
by depth (Oa vs. B) at each site,

DOC by Site n (Oa) n{B) Z P

Mid Nettle- 12 2 2.100 0.0358
Upper Nettie 8 8 3.213 0.0013
Stream 10 6 3 1.420 0.1556

Analysis of variance table for differences in mean ranked concentrations by site at each depth.

Ranked DOC df. F p Bonferroni {(Dunn) t-test}
Qa soi] water 2 29.82 0.0001 MN=ST>UN
B soil water 2 38.96 0.0001 ST>MN>UN

1 site na_rr{es have been abbreviated as follows:
MN = Mid Nettle, UN=Upper Nettle, ST=Stream 10.
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Table 6. Pearson correlation coefficients for Oa horizon soil water samples. A subset of chemicals is shown. Vol. indicates sample volume
collected. Only significant correlations are shown (r* > | .5 |, p-value indicated with asterisks defined at the bottom of the table).

Cu Za As Ph NO, Ca Mg Si

DOC Hg Al Ti Mn

pH

Vol.

Variable

Vol.

28
- 712%%% n

=20

pH

n=206
920%F*k
- .842%%%  [OGF

DOC
Hg

=28

11

n=

S61*

Al

n=11

Q0 FEE Go4HxE

- 799%*
-.523%

Ti

856%%% n =11

BTS%HE GISHEE 612%

n=11

Mn

n=11

910***

TETH*

BO3¥H* BAREEE §75%

-.587*%

Cu

n=11

in

n=1}

B2o%*
675*

G39%%* 574%

.549*%

T44%%

J18%* 661

S73*

824+
.568*

As

n=11

-.607*

.689*

-.609*

Ph

n=23

BT3EER
T62%*

T2THRE
IS

NO,
Ca

=23

B24%** n

=23

Bl4HR* 956%**

.826%*

T66%*
584%

Mg

=723

BT9HEER QOREF® RIRFFE

602*

-530%*
p< 001

i

KAk

Table 5. Analysis of variance tables for pH in soil water.

Two-way analysis of variance table for differences in mean ranked soil water concentrations.

Source (ranked pH) d.f. F p

site 2 16.46 0.0001
depth 1 512 0.0299
site X depth 2 3.46 0.0425

Wilcoxon one-way analysis of variance table for differences in mean soil water concentrations
by depth (Oa vs. B) at cach site.

pH by Site n (Oa) n{B) Z p

Mid Nettle 12 3 2.093 0.0364
Upper Nettle 8 9 0.048 0.9616
Stream 10 6 3 0.645 0.5186

Analysis of variance table for differences in mean ranked concentrations by site at each depth.

Ranked pH df. F P Bonferroni (Dunn) t-testt
Oa soil water 2 8.34 0.0019 MN=UN>ST
B soil water 2 11.08 0.0019 MN=UN>ST

t site names have been abbreviated as follows:
MN = Mid Nettle, UN=Upper Nettle, ST=Stream 10.

72



Table 8. Summary statistics for stream water concentrations from four sites in Underhill Center,

VT collected 20 April to 3 November 1997,

Site
Analyte Parameter Nettle Mid Nettle  Upper Nettle Stream 10
Weir
Total Hg Ave. 31 3.2 35 4.0
(ng L") Std. Dev. 1.4 1.2 1.3 1.0
Range 1.0-5.9% 0.9-5.0 1.5-5.5 2.2-6.2
n 12 13 13 13
Dissolved Ave, 2.2 22 24 3.0
Hg Std. Dev. 0.8 0.8 0.9 0.7
(ngL™") Range 1.0-3.5 0.9-33 1.0-3.6 1.5-4.1
1 13 i3 13 12
DOC Ave, 3.9 4.1 4.8 44
(mg L") Std. Dev, 1.5 1.6 1.9 1.0
Range 1.5-6.2 1.7-6.6 1.6-7.1 2.1-5.8
n 13 13 13 13
Color Ave. 44 42 54 29
(mgL"' Std. Dev. 19. 20 21 9
PtCo) Range 12-70 11-80 15-81 14-45
n 13 13 13 13
pH Ave. 6.13 5.54 5.57 443
Std. Dev. 0.15 0.19 0.14 0.04
Range 5.88-6.31 5.10-5.80 535579 437449
n 13 13 13 13

t A value of 9.2 ng I."' was determined to be an outlier and was excluded from analysis. Table

B-4 includes the full data set for this sample collected on 15 July 1997.
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Table 7. Pearson correlation coefficients for B horizon soil water samples. A subset of chemicals is shown. Vol. indicates sample volume
collected. Only significant correlations are shown (r* >| .5 |, p-value indicated with asterisks defined at the bottom of the table).

Si

Cu Zn As Pb NOs Ca

$OoC  Heg Al H Mn

pH

Vol.

Variable

Vol.

N=18

~T11*%* n=135

pH

n=13

~.647*

DOC
Hg

790** n=18§
OBI**

=35

O93***

-.924%

Al

.884* n=>5

930*

Ti

=5

.B18*  983** n

881

5

I

n

927

.863*

Mn

952%%  951**  921*  842*

.886*

-914%

Cu

.833%

919*
910*

zn

n=35

958%%  Q65**  898*  311* 996%%*
.835%

-.944*
-912%

As

5

it

867 n

957**

O52%%

990*** 919*

Pb

11

BTZHEE QSQFFF =11

n=11
_BR4x%% p
B2

So1**
869*

8006*

735%
.686*

NO,
Ca
Mg
Si

74

Q72%%% gIG¥*FE =11

Bo1*

Jir*

_548*
p< 001

p= .01

ko
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Figure 2. Mean concentrations (dry weight basis) of selected trace metals in Oa and B horizon
soils (microwave digestion with 10% HNO,) coliected in December 1997 at Underhill Center,

VT.
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Figure 3. Scatter plots showing the relationship between Hg and dissolved organic carbon (DOC)
B B and Hg and color in Oa and B horizon soil water grouped across all sites. Linear regression line is
! plotted. Correlation coefficients at each site are mentioned in the text.
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Figure 4. Mean concentrations of selected solutes in Oa and B horizon soil water and filtered
stream water collected 20 April to 3 November 1997 at Underhill Center, VT. Most mean total
concentrations were > 95% dissolved; only dissolved concentrations are shown here.
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Figure 6. Flow rate vs. percent of total concentration in the dissolved phase at Nettle Brook

weir for 13 stream samples collected from 20 April to 3 Novermber 1997.
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Table A-1. Worksheet for measuring flow in a culvert.

Stream 10
0.024 = constant for corrugated metal culvert
0.01 = slope (modified to fit measured numbers) Appendix A
35 inches = culvert diameter

Water Hydraulic Manning's Measured Stream Flow Graphs and Calculations
deptht  Theta  Area radius  discharge discharge]

in radians ft? ft cfs cfs
0.25 0.34  0.0068 0.0138 0.002
0.50 0.48 0.0193 0.0276 0.011

0.75 0.59  0.0354  0.0412 0.020 0.03
1.00 0.68  0.0543 0.0548 0.049
1.25 0.76  0.0757 0.0683 0.079 0.071

1.50 0.83  0.0993 0.0817 0.116
1.75 0.90 0.1249 0.0949 0.161
2.00 097 0.1523 0.1081 0.215
2.25 1.03  0.1813 0.1212 0.276
2.50 1.08  0.2118 0.1342 0.345 0.246
2.75 1.14  0.2438 0.1471 0.422
3.00 119 0.2772  0.1599 0.507
3.25 1.24 03119  0.1726 0.600
3.50 1.29  0.3477  0.1853 0.702
3.75 1.33 0.3848  0.1978 0.811
4.00 138 04229 0.2102 0.928
4.25 142 04621 0.2225 1.053
4,50 1.47  0.5023 0.2348 1,187~
4.75 151 05434 0.2469 1.328
5.00 155 0.5855  0.2590 1.477
5.25 1.59  0.6284  0.2709 1.633
5.50 1.63  0.6723  0.2827 1.798
5.75 1L.67  0.7169  0.2945 1.970
6.00 171 0.7623  0.3061 2.150

T Average depth of water in culvert on west side of CCC Road.
I Determined in the field by measuring the time it took to fili a
bucket of known volume.
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Appendix B : 1.6

1.4 —— Discharge eguation
12 | —&—Measured in field

Data Tables

Flow rate (cfs)

Depth of water at culvert (in)

Figure A-7. Flow rate at Stream 10 as calculated using Manning’s
discharge equation (diamonds) and actual field measurements (squares).
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Table B-5. Summary statistics for each analyte by media and site.

Al

Aluminum Units are in (pg/L)
N Mean Std Dev  Minimum Maximum
Soil Water _
Mid Nettle shallow  roat| 5 899.67 24740 48923 1142.92 Y I O O = O R
dissolved | 3 870.12 359.05 470.81 1166.36 £
deep total| 0 . : . . 258 | BIRIS ] ERE | ERE | RER
Upper Nettle shallow total | 3 90.93 30.40 56.89 115.38 g E
dissolved | 3 68.59 26.54 51.98 99.20 R RREE R RE R = = R e
deep total | 3 61.00 38.07 2435 100.35 | “E
dissolved | 3 59.79 40.75 20.83 102.11 S =50 | BEE ] EEE | BEE | BIER
Stream 10 shaliow total| 3 1220.54 578.92 554,05 1598.41 2"k
dissolved | 2 1515.53 13514 1419.97 1611.09 BoloLol | BER D BEE | BEE | EEE
deep  iowal| 2 650.10 186.17 518.46 781.75 £ ¢
dissolved | 2 618.71 236.84 451.24 786.18 T a2l TEER [ BER | ERE | BEE
2 S - o
Stream Water £ ia sRiE | [BIBEl | BI3E EEE
Nettle Weir total | 12 104.61 56.95 49.08 233.51 gl 7S REREENEpENES
) dissolved | 13 64.33 21.38 37.86 101.14 g 3 2R 1 ERE | EEE | ERE
Mid Nettle total | 13 114.10 31.84 64.82 168.51 g Es L L P L]
dissolved | 12 100.46 2522 58.36 137.27 Sl o2l | ERE L BEE D BEE | R
Upper Nettle oral| 13 11748 3531 61.65 159.49 = % [ I A O A O
dissolved | 13 108.65 31.59 62.18 150.07 820 1 SI5E] | BREI FIERR| 1BlF)ElR
Stream 10 total | 13 44451 5700 34041 541,16 E S L L bk sl
dissotved | 13 443.87 55.99 354.10 517.19 £lzesl | BIEE| | EEE| BEEE 1BEER
Jeffersonville total| 3 117.13 30.27 92.80 151.04 Z: -° f L =lsts| relele] [Ele
dissolved| 4 26.67 2.47 23.94 29.90 o g é %?g 3 g % 3lg
Browns River total| 3 169.79 165.25 24.91 349,78 » = . S b Ll
dissolved | 3 93,06 126.84 11.40 239.19 S g | BRI | PEE| FREE| BEFE
Milton total | 4 11827 78.61 34.88 19399 NCAL RN NN EER RN
dissolved | 4 17.92 6.00 12.87 26.33 £e5) | BIER| | RRE BRER 528
AR
EhOEERE RERE RERE| BERE
el BEEE BEEE| BEEE| BEEE
§§&§§§§E§55§EEEE§EEEE
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+ Shaded values are total concentrations. Filtered value was discarded because filtered > total,



Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for each analyte by media and site.

Sh
Antimony Units are in {ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.062 0.041 0.001 0.107
dissolved| 3 0.039 0.050 0.001 0.088
deep total] 0 . . . .
Upper Nettle shallow toral| 3 0.009 0.008 0.000 0.014
dissolved| 3 0.020 0.017 0.000 0.031
deep total| 3 0.000 0.000 0.000 0.000
dissolved| 3 0.040 0.046 0.000 0.091
Stream 10 shallow total | 3 0.052 0.025 0.024 0.070
dissolved | 2 0.129 0.068 0.081 0.177
deep total | 2 0.008 0.011 0.000 0.016
dissolved | 2 0.046 0.031 0.025 0.068
Stream Water
Nettle Weir total| 12 0.003 0.005 0.000 0.016
dissolved{ 13 0.021 0.033 6.000 0.120
Mid Nettle total| 13 0.004 0.007 0.000 0.018
o dissolved | 12 0.022 0.040 0.000 0.144
~ Upper Nettle total| 13 0.007 0.010 0.000 0.033
dissolved| 13 0.013 0.013 0.000 0.040
Stream 10 total| 13 0,029 0.026 0.000 0.072
dissolved | 13 0.043 0.036., 0.000 0.123
Jeffersonville total| 4 0.010 0.011 0.000 0.021
dissolved | 4 0.017 0.021 0.000 0.042
Browns River total | 3 0.012 0.020 0.000 0.035
dissolved| 3 0.019 0.023 6.000 0.044
Milton total| 4 0.013 0.015 0.000 0.030
dissolved| 4 0.021 0.023 0.000 0.042

125

NH,-N
Ammonium Units are in {mg/L)
N Mean Std Dev  Minimum  Maximam
Soil Water
Mid Nettle shallow dissolved| 10 0.018 0.010 0.001 0.038
deep dissolved| O . . . .
Upper Nettle shallow  dissolved| 7 0.015 0.023 0.001 0.064
deep dissolved| 8 ¢.010 0.015 0.001 0.042
Stream 10 shallow dissofved| 6 0.097 0.099 0.019 0.286
deep dissolved| 3 06.011 0.001 0.010 0.011
Stream Water
Nettle Weir dissolved| 13 0.012 0.014 0.001 0.053
Mid Nettle dissolved} 13 0.008 0.008 0.001 0.024
Upper Nettle dissolved| 13 0.006 0.006 0.001 0.020
Stream 10 dissolved| 13 0.012 0.021 0.001 0.062
Jeffersonville dissolved]{ 3 0.001 0.000 0.001 0.001
Browns River dissolved | 3 0.006 0.004 0.001 0.009
Milton dissolved | 3 0.001 0.000 0.001 0.001
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Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for each analyte Sy media and site.

Ba
Barium Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shailow total| 5 33.91] 25,65 4,06 68.68
dissolved| 3 39.86 26,30 13.64 6623
deep foral] 0 . . . .
Upper Nettle shallow total{ 3 11.88 1.58 10.94 13.71
dissolved| 3 11.71 1.95 10.32 13.95
deep roral | 3 9.71 8.10 0.43 15.36
dissolved] 3 9.70 8.09 0.46 15.54
Stream 10 shallow total] 3 9.31 4.46 6.33 14.43
dissolved| 2 11.04 5,28 7.31 14.77
deep total | 2 5.38 0.86 4.78 5.99
dissolved | 2 5.39 1.06 4.64 6.14
Stream Water
Nettle Weir total| 12 11.88 1.64 10.05 15.54
dissolved | 13 10.86 1.10 9.51 13.39
Mid Nettle total| 13 12.62 1.65 10.64 16.34
dissolved | 12 12.23 1.61 10.46 15.81
Upper Nettle total | 13 13.25 1.68 10.95 16.15
dissolved| 13 12.98 1.48 10.99 15.39
Stream 10 total | 13 348 0.15 3.27 3.73
dissolved | 13 3.49 0.19 3.24 3.88
Jeffersonville tatal| 4 6.41 1.86 5.06 9.13
dissolved| 4 4,51 0.56 3.75 5.10
Browns River total ] 3 9.57 344 5.74 12.40
dissolved| 3 1.39 2.02 5,20 0.18
Milton total| 4 6.75 1.25 579 8.58
dissolved| 4 541 0.89 4.49 6.62
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As
Arsenic Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 5 0.278 0.049 0.214 0.350
dissolved | 3 0.247 0.045 0.196 0.280
deep total| 0 . . . .
Upper Nettle shallow totalt 3 0.068 0.024 0.049 0.094
dissolved{ 3 0.067 0.033 0.033 0.098
deep total{ 3 0.053 0.029 0.020 0.074
dissolved| 3 0.058 0.030 0.026 0.085
Stream 10 shallow total| 3 0.209 0.023 0.182 0.224
dissolved| 2 0.236 6.008 0.230 0.242
deep total| 2 0.170 0.020 0.155 0.184
dissolved | 2 0.165 0.011 0.158 0.173
Stream Water
Nettle Weir total | 12 0.098 0.040 0.033 0.184
dissolved| 13 0.081 0.027 0.037 i 6.120
Mid Nettle tofal | 13 0.091 0.030 0.045 0.146
dissolved | 12 0.0%90 0.026 0.049 0.130
Upper Nettle fotal | 13 0.107 0.040 0.035 0.148
dissolved | 13 0.108 0.042 0.045 0.174
Stream 10 total | 13 0.200 0.041 0.117 0.266
dissolved] 13 0.198 0.035 0.139 0.258
Jeffersonville total | 4 0.837 0.414 0.525 1.445
dissolved| 4 0.489 0.203 0.286 0.732
Browns River total| 3 (0.326 0.098 0.237 0.432
dissolved| 3 0.257 0.117 0.163 0.387
Milton total| 4 0.854 0.392 0.465 1.335
dissolvedt 4 0.685 0314 0.350 0.976
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Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for each analyte by media and site.

Cd
Cadmium Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 5 0.373 0.284 0.1i4 0.778
dissoived | 3 0.422 0314 0.140 0.760
deep total | 0 . . . .
Upper Nettle shallow total| 3 0.162 0.055 0.103 0.211
dissolved | 3 0.168 0.049 0,117 0.215
deep total | 3 0.113 0.002 0.112 0.115
dissolved | 3 0.127 0.007 0,120 0.133
Stream 10 shallow total | 3 0.155 0.064 0.105 0.228
dissolved| 2 0.178 0.070 0.129 0.228
deep total| 2 0.118 0.032 0.095 0.141
dissolved | 2 0.121 0.037 0.095 0.147
Stream Water
Nettle Weir total| 12 0.042 0.016 0.022 0.078
dissolved | 13 0.031 0.006 0.023 0.049
Mid Nettle total| 13 0.060 0.015 0.043 0.092
dissolved | 12 0.053 0.01t 0.040 0.072
Upper Nettle total| 13 0.060 0.014 0.039 0.082
dissolved| 13 0.054 0.010 0.040 0.076
Stream 10 total] 13 0.144 0.015 0.119 0.175
dissolved| 13 0.1438 0.017, 0.125 0.172
Jeffersonville total| 4 0.022 0.006 0.016 0.030
dissolved | 4 0.0607 0.008 0.000 0.018
Browns River toral| 3 0.025 0.027 0.007 0.056
dissolved | 3 0.009 0.012 0.002 0.023
Mitton total| 4 0.007 0.003 0.004 0.011
dissolved | 4 0.002 0.002 0.001 0.005
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Be
Beryllium Units are in (pg/L)
N Mean ‘Std Dev Minimum  Maximum
Soil Water
Mid Nettle shallow total! 5 0.054 0.029 0.025 0.090
dissolved} 3 0.060 0.033 0.021 0.081
deep total| 0 . . . .
Upper Nettle shallow total| 3 0.082 0.022 0.060 0.104
dissolved | 3 0.073 0.031 0.037 0.092
deep total | 3 0.132 0.070 0.054 0.188
dissotved| 3 0.146 0.085 0.056 0.225
Stream 10 shallow total| 3 0.046 0.030 0.023 0.080
dissolved | 2 0.073 0.002 0.072 0.074
deep total| 2 0.035 0.020 0.020 0.049
dissolved| 2 0.041 0.009 0.035 0.048
Stream Water
Nettle Weir total b 12 0.033 0.012 0.010 0.047
dissolved | 13 0.021 0.007 0.011 0.033
Mid Nettle total| 13 0.042 0.018 0.013 0.073
dissolved | 12 0.038 0.014 0.022 0.063
Upper Nettle total| 13 0.045 0.012 0.030 0.064
dissolved| 13 0.039 0.015 6.021 0.068
Stream 10 total | 13 0.031 0.014 0.008 0.053
dissolved| 13 0.031 0.009 0.015 0.044
Jeffersonvilie total| 4 0.009 0.015 0.000 0.031
dissoived| 4 0.011 0.012 0.000 0.027
Browns River total | 3 0.022 0.018 0.002 0.037
dissolved| 3 0.017 0.029 0.000 0.051
Milton total{ 4 0.013 0.015 0.001 0.033
dissolved| 4 0.010 0.013 0.000 0.029
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Table B-5. Summary statistics for cach analyte by media and site.

Table B-5. Summary statistics for each analyte by media and site.

Ce
Cerium Units are in (pg/L)
N Mean Std Dev Minimum  Maximum
Soil Water
Mid Neftie shailow foral| 5 0.94 0.16 0.80 1.16
dissolved| 3 0.79 0.05 0.75 0.84
deep total | 0 . . . .
Upper Nettle shailow total | 3 0.84 0.49 0.39 1.37
dissolved| 3 0.56 0.56 0.11 1.16
deep total | 3 0.25 0.20 0.05 0.45
dissolved| 3 0.25 0.20 0.04 0.45
Stream 10 shallow total| 3 3.06 1.G6 2.08 4,19
dissolved | 2 3.38 0.75 2.86 3.9%
deep total | 2 1.50 0.47 1.37 2.24
dissolved| 2 1.80 0.61 1.36 2.23
Stream Water ,
Nettle Weir total | 12 0.67 0.51 0.20 1.90
dissolved | 13 0.29 0.12 0.10 0.45
Mid Nettle total| 13 0.51 0.21 0.19 0.84
dissolved | 12 0.41 0.15 U}? o 967
Upper Nettle fotal| 13 0.56 0.22 019 0.88
dissolved| 13 0.49 0.18 0.18 0.70
Stream 10 total| 13 3.51 0.43 2.60 432
dissotved| 13 3.44 0.33 2.73 3,95
Jeffersonville total} 4 1.44 0.84 0.98 2.70
dissolved} 4 0.21 0.03 0.18 0.24
Browns River total | 3 2.20 2.50 0.28 5.03
dissolved| 3 0.90 1.21 0.08 2.29
Milton total | 4 0.72 0.35 0.27 1.03
dissolved| 4 0.13 0.04 0.10 0.19
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Ca
Calcium Units are in (mg/L)
N Mean ~ Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow dissofved| 10 8.49 4.53 3.52 18.32
deep dissolved| 0 . . . .
" Upper Nettle shallow  dissolved | 7 478 2.99 1.87 10.40
deep dissolved| 8 3.21 2.98 1.16 9.51
Stream 10 shallow  dissolved] 6 2.21 1.16 0.46 3.95
deep dissolved| 3 2.37 1.57 0.80 393
Stream Water
Nettle Weir dissolved} 13 241 0.41 1.83 3.29
Mid Nettle dissolved| 13 1.71 0.19 1.47 2.09
Upper Nettle dissolved | 13 1.85 0.22 1.46 2.31
Stream 10 dissolved| 13 0.38 0.07 0.27 0.46
Jeffersonville dissolved] 3 10.92 2.43 8.00 13.65
Browns River dissolved]| 3 10,93 5.10 712 16.72
Milton dissolved| 3 14.04 1.69 12.77 15.96
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Table B-5. Summary statistics for each analyte by media and site,

Table B-5. Summary statistics for each analyte by media and site.

Cr
Chromium Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.607 0.261 0.370 1.021
dissolved| 3 0413 0.069 0.366 0.492
deep total | 0 . . . .
Upper Nettle shallow total | 3 0.137 0.052 0.079 0.179
dissolved | 3 0.132 0.097 0.025 0.213
deep total| 3 0.050 0.029 0.017 0.074
dissolved | 3 0.062 0.014 0.053 0.078
Stream 10 shallow total | 3 0318 0.077 0.261 0.406
dissolved | 2 0.290 0.077 0.235 0.345
deep total{ 2 0.438 0.062 0.394 0.481
dissolved{ 2 0.414 0.032 0.392 0.437
Stream Water
Nettle Weir toral{ 12 0.103 0.063 0.008 0.255
dissolved | 13 0.063 0.036 0.001 0.099
Mid Nettle fotal | 13 0.090 0.047 0.010 0.181
dissolved| 12 0.083 0.036 0.000 0.141
Upper Nettle total | 13 0.102 0.044 0.023 0.161
) dissolved} 13 0.093 0.048 0.000 0.158
Stream 10 total | 13 0.294 0.051 0.177 0.382
dissolved} 13 0.290 0.030 0.209 0.389
Jeffersonville total| 4 0.566 0.311 0.358 1.022
dissolved| 4 0.261 0.053 0218 0.336
Browns River fotal{ 3 0.376 0.145 0.209 0.466
dissolved| 3 0.263 0.163 0.125 0.443
Milton totalj 4 0.488 0.177 0.304 0.686
dissolved| 4 0.287 0.035 0.260 0.335
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Cl-
Chloride Units are in {mg/L}
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow dissolved| 10 0.34 0.24 0.14 0.95
deep dissolved| 0 . . . .
Upper Nettle shallow dissolved| 7 0.27 0.09 0.18 0.36
deep dissolved| 8 0.34 0.05 0.25 0.43
Stream 10 shallow dissolved| 6 0.85 0.54 0.33 1.71
deep dissolved| 3 0.48 0.05 0.44 0.54
Stream Water
Nettle Weir dissolved{ 13 0.25 0.09 0.14 0.41
Mid Nettle dissolved] 13 0.26 0.09 G.18 0.46
Upper Nettle dissolved | 13 0.26 0.07 0.14 6.39
Stream 10 dissolved| 13 0.26 0.07 0.14 0.36
Jeffersonville dissolved| 3 6.56 0.82 5.67 7.27
Browns River dissolved| 3 9.57 6.81 4.79 17.37
Milton dissolved| 3 9.69 1.75 8.51 11.70
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Table B-5. Summary statistics for each analyte by media and site,

Table B-5. Summary statistics for each analyte by media and site.

Color
Ugits are in (mg/L. PtCo)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettie shallow dissolved] 10 376.26 92.40 262.57 502.49
deep dissolved| | 19.61 19.61 19.61
Upper Nettle shallow dissolved] 7 14.82 §.34 9.16 32.67
deep dissolved| 9 5.97 2.69 2.62 9.16
Stream 10 shallow dissoived| 6 181.44 67.58 119.32 264,75
deep dissolved| 3 56.62 27.72 37.46 88.41
Stream Water
Nettle Weir dissolved | 13 43.86 18.61 1221 70,12
Mid Nettle dissolved| 13 42.25 19.61 10.90 79,70
Upper Nettle dissolved| 13 53.54 21.12 14.82 80.57
Stream 10 dissolved | 13 28.92 8.78 14.39 44.86
Jeffersonville dissolved} 3 49.80 11.76 37.90 61.41
Browns River dissolved} 3 42.69 15.68 2571 56.62
Milton dissolved| 3 35.28 9.37 20.14 44,86
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Co
Cobalt Units are in (ug/L)
N Mean “Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shaliow total}] S 0.565 0.333 0.221 0.967
dissolved | 3 0.396 0.358 0.259 0.971
deep total| 0 . . . .
Upper Nettle shaliow total| 3 0.076 0.028 0.058 0.108
dissolved| 3 0.058 0.003 0.055 0.062
deep tofal| 3 0.046 0.006 0.041 0.053
dissolved| 3 0.044 0.007 0.039 0.051
Stream 10 shallow total| 3 0.467 0.181 0.359 0.675
dissolved| 2 0.538 0.2490 0.368 0.707
deep total | 2 0.547 0.231 0.384 0.711
dissolved| 2 0.544 0.239 0.375 0.713
Stream Water .
Nettle Weir total | 12 0.148 0.116 0.046 0.433
dissolved| 13 0.046 0.013 0.024 0.062
Mid Nettle total | 13 0.117 0.065 0.054 0.301
dissolved | 12 0.067 0.020 0.045 0.115
Upper Nettle total| 13 0.348 0.150 0.122 0.581
dissolved | 13 0.300 0.119 0.118 0.477
Stream 10 toral| 13 0.735 0.101 0.615 (.949
dissolved| 13 0.753 0.105 0.607 0.975
Jeffersonvilie total | 4 0.432 0.282 0.254 0.854
dissolved| 4 0.036 0.010 0.041 0.063
Browns River total| 3 0.447 0.463 0.057 0.958
dissolved | 3 0.184 0219 0.051 0.437
Miiton total | 4 0.209 0.089 0.088 0.283
dissolved| 4 0.055 0.009 0.048 0.008
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Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for each analyte bﬂz media and site.

Cu
Copper Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| S 1.76 0.43 1.44 2.36
dissolved| 3 1.45 0.14 1.34 1.60
deep rotal | 0 . . . .
Upper Nettle shallow total | 3 0.64 0.20 0.45 0.85
dissolved} 3 0.57 0.21 0.33 0.75
deep total] 3 0.47 0.20 0.25 0.60
dissolved| 3 0.47 0.20 0.24 0.62
Stream 10 shallow fotal{ 3 1.84 0.13 1.70 1.96
dissolved| 2 1.70 0.07 1.65 1.75
deep total ] 2 1.26 0.07 1.21 1.31
dissolved| 2 1.20 0.12 1.12 1.28
Stream Water
Nettle Weir total{ 12 0.52 0.17 0.26 0.87
dissolved] 13 0.42 0.12 0.21 0.61
Mid Nettie total{ 13 0.49 0.14 0.26 0.73
dissolved| 12 0.47 0.12 0.29 0.64
Upper Nettle fotal{ 13 0.48 0.15 0.26 0.69
dissolved| 13 0.47 0.14 0.22 0.64
Stream 10 total{ 13 2.89 0.30 2.20 343
dissolved] 13 2.82 0.26 2.21 3.14
Jeffersonville total| 4 1.25 0.40 0.92 ;.84
dissolved] 4 0.83 0.17 0.58 0.94
Browns River total{ 3 1.36 0.72 0.94 2.18
dissolved| 3 1.00 0.49 0.57 1.53
Milton fotal] 4 1.02 0.23 0.77 1.32
dissalved| 4 0.82 0.26 0.57 1.11
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Conductivity
Units are in (4 mho)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 9 56.0 22.0 29.0 94.3
deep total| 3 22.5 12.5 11.6 36.1
Upper Nettle shallow total | 7 359 21.5 19.6 74.4
deep total | 8 25.7 153 13.9 53.8
Stream 10 shaliow total| 5 32.7 9.9 22.6 46.2
deep total | 2 24.1 1.8 22.8 254
Stream Water
Neitle Weir total ] 9 19.4 3.5 154 25.6
Mid Nettle total | 9 14.2 2.3 11.9 194
Upper Nettle total| 9 15.0 1.3 13.3 17.3
Stream 10 total| 10 25.5 2.2 23.4 29.6
Jeffersonville total | 3 84.7 13.7 75.0 100.4
Browns River total| 3 93.3 42.6 63.3 142.0
Milton total | 3 117.6 16.0 107.9 136.1
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Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for cach analyte by media and site.

In
Indium Units are in {pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.0013 0.0017 0.0000 0.0042
dissolved | 3 0.0030 0.0038 0.0007 0.0073
deep total ] Q . . . .
Upper Nettle shallow total | 3 0.0000 0.0000 0.0000 0.0000
dissolved| 3 0.002t 0.0014 0.0006 0.0033
deep total | 3 0.0001 0.0001 0.0000 0.0002
dissolved| 3 0.0114 0.0147 (.0000 0.0279
Stream 10 shallow total| 3 0.0018 0.0015 0.0002 0.0031
dissolved | 2 0.0131 0.0141 0.0031 0.0230
deep total| 2 0.0009 0.0010 0.0002 0.0016
dissolved| 2 0.0064 0.0042 0.0034 0.0094
Stream Water
Nettle Weir total] 12 0.0004 0.0007 0.0000 0.0025
N dissolved | 13 0.0049 0.0059 0.0000 0.0216
Mid Nettle total | 13 0.0002 0.0004 0.0000 0.0012
dissolved | 12 0.0033 0.0059 0.0000 00213
" Upper Nettle total | 13 0.0002 0.0004 0.0000 0.0011
dissolved | 13 0.0015 0.0016 0.0000 0.0047
Stream 10 total] 13 0.0002 0.0003 0.0000 0.0010
dissoived| 13 0.0033 0.0034 0.0000 0.0112!
Jeffersonville total| 4 0.0003 0.0006 0.0000 0.0012
dissolved | 4 0.0009 0.0011 0.0000 0.0026
Browns River total | 3 0.0000 0.0000 0.0000 0.0000
dissolved | 3 0.0019 0.0016 0.0000 0.0031
Milton total | 4 0.0001 0.0002 0.0000 0.0003
dissolved | 4 0.0019 0.0009 0.0009 0.0029
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DOC
Dissolved Organie Carbon Units are in (mg/L.)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettie shallow dissolved| 12 22.73 7.73 9.47 36.08
deep dissolved| 2 2.39 0.40 2.10 2.67
" Upper Nettle shallow  dissolved | 8 2.53 1.02 1.00 4.51
deep dissolved{ 8 (.55 0.34 0.30 1.19
Stream 10 shallow dissolved| 6 18.77 5.06 13.78 26.11
deep dissolved| 3 11.25 5.52 3.63 16.67
Stream Water
Nettle Weir dissolved | 13 3.89 1.52 1.50 6.18
Mid Nettie dissolved | 13 4.11 1.59 1.68 6.64
Upper Nettle dissalved| 13 4.77 1.87 1.63 7.10
Stream 10 dissolved| 13 4.40 1.02 2.10 5.7%
Jeffersonville dissolved| 3 5.10 0.97 3.99 5.71
Browns River dissolved| 3 4.44 1.15 3.14 532
Milton dissolved| 3 4.49 1.03 3.37 5.40
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Table B-5. Summary statistics for each analyte by media and site.

Pb
Lead Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 8 1.072 0.296 0.705 1.511
dissolved| 3 (.882 0.217 0.668 1.102
deep total| 0 . . . .
Upper Nettle shallow total | 3 0.106 0.113 0.009 0.230
dissolved | 3 0.029 0.029 0.009 0.062
deep total| 3 0.009 0.006 0.005 0.015
dissolved| 3 0.008 0.003 0.005 0.011
Stream 10 shallow total| 3 1.891 1.242 1.019 3.314
dissolved| 2 1.977 1.415 0.976 2.977
deep total | 2 0.507 0.355 0.255 0.758
dissolved | 2 0.420 0.374 0.155 0.684
Stream Water ‘
Nettle Weir total | 12 0.280 0.299 0.035 1.087
dissolved | 13 0.045 0.022 0.014 0.080
Mid Nettle total | 13 0.149 0.099 0.046 0429
o dissolved | 12 0.067 0.027 0.030 0.114
Upper Nettle total | 13 0.224 0.116 0.074 0.488
dissolved| 13 0.135 0.051 0.064 0.223
Stream 10 total| 13 0.377 0.101 0.234 0.615
dissolved| 13 0,338 0.064- 0.247 0.494
Jeffersonviile tofal | 4 0.608 0.364 0.413 1.153
dissolved| 4 0.087 0.024 0.052 0.104
Browns River total| 3 0.812 0.935 0.092 1.868
dissolved| 3 0.301 0.427 0.045 0.794
Milton total| 4 0.290 0.121 0.134 0421
dissolved| 4 0.059 0.007 0.049 0.065
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ia
Lanthanum Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total{ 5 0.51 0.10 0.44 0.66
dissolved| 3 0.43 0.02 0.42 0.44
deep fotal{ O . . . .
Upper Nettle shallow total | 3 2.08 1.24 0.65 2.89
' dissolved | 3 1.56 (.84 (.63 2,28
deep total| 3 19.75 13.74 3.89 27.93
dissolved| 3 19.57 13.81 3.62 27.61
Stream 10 shallow total| 3 1.59 (.49 1.i4 2.12
dissolved| 2 1.70 0.32 1.48 1.93
deep total| 2 0.97 0.29 0.77 1.18
dissolved| 2 0.93 0.32 0.70 1.i6
Stream Water
Nettle Weir total | 12 1.01 0.54 0.37 1.96
dissolved | 13 0.63 0.27 0.25 1.05
Mid Nettle total} 13 1.32 0.55 0.49 231
dissolved | 12 1.18 0.43 0.54 1.95
Upper Nettle total | 13 1.51 0.59 0.51 2.36
dissolved) 13 1.35 0.51 0.48 1.98
Stream 10 total{ 13 2.36 0.27 1.80 2.88
dissolved{ 13 2.29 0.22 1.84 2,61
Jeffersonville total | 4 0.85 0.34 0.59 1.33
dissolved | 4 0.22 0.06 0.16 (.29
Browns River total | 3 1.35 1.52 .27 3.09
dissolved | 3 0.61 0.71 0.07 1.42
Milton total | 4 0.40 0.17 0.19 0.59
dissolved| 4 0.11 0.04 0.08 G.17
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Mg
Magnesium (UMAQL) Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shaliow total | 5 550.57 22980 222.55 832.04
dissolved | 3 52364 289.98 220.85 798.84
deep total| 0 . . . .
Upper Nettle shallow total| 3 370.58 211.92 217.15 612.38
dissolved| 3 375.12 230.00 209.06 637.64
deep total | 3 185.29 15.40 174.94 202.98
dissolved} 3 188.32 16.36 175.68 206.81
Stream 10 shallow total{ 3 131.66 71.19 52.10 189.37
dissolved| 2 122.72 99,15 52.61 192.83
deep total | 2 196.60 152.62 88.69 304.52
dissolved| 2 199.77 156.36 89.20 310.33
Stream Water
Nettle Weir total | 12 282.79 44,77 238.24 391.30
dissolved| 13 279.07 i 50.12 222.21 409.12
Mid Nettle total | 13 198.73 - 25.02 153.34 249.52
dissolved | 12 193.29 22.85 149.62 241.15
~ Upper Nettle rotal | 13 196.23 27.64 163.88 267.59
dissolved| 13 198.90 25.61 169.05 267.29
Stream 10 total] 13 129.27 17.28 109.75 166.01
dissolved | 13 131.66 20.50 105.34 172.24
Jeffersonville total | 4 1599.31 379.59 1269.14 2136.08
dissolved| 4 1576.43 368.83 1230.94 2088.06
Browns River tofal| 3 1935.65 1020.51 1219.50 3104.15
dissolved| 3 1967.74 1008.88 1245.76 3120.50
Milton total| 4 223762 572.52 1532.31 292545
dissolved] 4 2204.39 557.55 1498.54 2839.32
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Li
Lithium Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 3.48 1.61 1,32 5.22
dissolved| 3 2.38 0.93 1.34 3.12
deep total] O . . . .
Upper Nettle shallow total | 3 1.87 0.82 1.10 2.74
dissoived} 3 1.89 0.89 1.08 2.84
deep total| 3 0.92 0.38 0.50 1.23
dissolved| 3 0.91 0.40 .47 1.26
Stream 10 shallow total| 3 1.28 1.15 0.34 2.56
dissolved| 2 0.63 0.48 0.30 0.97
deep total| 2 3.62 2.92 1.56 5.68
dissolved| 2 3.59 2.85 1.58 5.61
Stream Water
Nettle Weir total{ 12 0.36 0.07 0.27 0.52
dissolved| 13 0.32 0.04 0.27 0.40
Mid Nettle total| 13 0.42 0.06 0.33 0.54
dissolved | 12 0.42 0.05 0.33 0.50
Upper Nettle total | 13 0.40 0.05 0.30 0.46
dissolved| 13 (.40 0.06 0.30 0.48
Stream 10 total | 13 1.04 0.16 0.79 1.29
dissolved| 13 1.05 0.17 0.80 1.34
Jeffersonville total| 4 0.55 0.14 0.40 0.74
dissolved| 4 0.37 0.07 0.29 0.45
Browns River tofal| 3 0.35 0.09 0.24 0.42
dissolved| 3 0.29 0.11 0.21 0.42
Miiton total| 4 0.48 0.10 0.40 0.64
dissolved| 4 0.38 0.09 0.28 0.49
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Mn
Manganese Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 133.42 93.76 23.29 248.97
dissolved| 3 149.13 91.83 55.79 239.37
deep fotal| 0 . . . .
Upper Nettle shallow total| 3 3230 8.52 24.44 41.35
dissolved| 3 28.38 4.46 23,71 32.60
deep total| 3 13.05 4.17 8.85 17.20
dissolved | 3 13.06 4.02 9.08 17.12
Stream (0 shallow fotalt 3 26.08 10.15 14.86 34.62
dissolved| 2 25.59 14.06 15.65 35.53
deep total | 2 31.65 16.30 20,12 43.17
dissolved{ 2 3244 16.07 21.07 43.80
Stream Water
Nettle Weir total | 12 13.79 11.92 343 43.70
dissolved | 13 3.14 1.04 1.91 5.49
Mid Nettle total| 13 14.61 8.99 4.35 39.07
dissolved| 12 8.48 4.02 3.17 18.20
~ Upper Nettle total| 13 49.47 25.89 14.17 106.39
dissolved| 13 46.27 23.84 13.74 97.67
Stream 10 total | 13 33.50 8.96 25.51 54,63
dissolved| 13 33.96 932 25.18 55.32
Jeffersonville total} 4 62.18 50.28 2543 135.55
dissolved| 4 1.87 0.94 1.24 3.26
Browns River total] 3 106.12 108.31 1.09 217.43
dissclved| 3 28.66 48.13 0.52 84.24
Milton total | 4 42,95 21.94 21.53 69.13
dissolved| 4 2.86 2.51 0.90 6.25
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Mg2
Magnesium (UVM Env. Test. Lab) Units are in {(mg/L)
N Mean - Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow dissotved| 10 0.64 0.31 0.16 1.17
deep dissolved| 0 . . . .
Upper Nettle shallow dissolved] 7 0.39 0.20 0.24 0.68
deep dissolved| 8 0.24 0.08 0.17 0.42
Stream 10 shaliow dissolved| 6 0.12 0.03 0.07 0.15
deep dissolved| 3 0.21 0.08 0.13 0.29
Stream Water
Nettle Weir dissolved| 13 0.28 0.06 0.19 0.38
Mid Nettle dissolved| 13 0.19 0.03 0.14 0.26
Upper Nettle dissolved{ 13 0.19 0.03 0.13 0.26
Stream 10 dissolved| 13 0.13 0.05 0.06 0.21
Jeffersonville dissolved| 3 1.96 0.40 1.64 2.40
Browns River dissolved| 3 2.09 0.98 1.38 3.21
Milton dissolved| 3 2,70 0.33 2.47 3.07
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Mo
Molybdenum Units are in {(pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.025 0.006 0.018 0.032
dissolved | 3 0.036 0.017 0.025 0.056
deep total| 0 . . . .
~ Upper Nettle shallow total | 3 0.004 0.003 0.001 0.007
dissolved | 3 0.011 0.002 0.008 0.012
deep total | 3 0.002 0.001 0.000 0.003
dissolved} 3 0.033 0.036 0.000 0.072
Stream 10 shallow total | 3 0.028 0.003 0.026 0.031
dissoived| 2 0.042 0.024 0.026 0.059
deep total | 2 0.010 0.010 0.002 0.017
dissolved} 2 0.019 0.017 0.006 0.031
Stream Water
Nettle Weir total } 12 0.008 0.006 0.000 0.016
dissolved| 13 0.017 0.015 0.000 0.048
Mid Nettle total | 13 0.005 0.004 0.000 0.011
dissolved | 12 0.013 0.019 0.000 0.066
Upper Nettle total | 13 0.008 0.007 0.000 0.023
dissolved{ 13 0.012 0.010 0.000 0.032
Stream 10 total | 13 0.002 0.003 0.000 0.009
dissolved | 13 0.009 0.013 0.000 0.037
Jeffersonviile total| 4 0.061 0.027 0.026 0.090
dissolved | 4 0.097 0.049 0.041 0.158
Browns River toial| 3 0.067 0.037 0.024 0.092
dissolved | 3 0.086 0.043 0.052 0.135
Milton toial| 4 0.130 0.071 0.052 0.197
dissolved| 4 0,158 0.093 0.055 0.266
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Hg
Mercury Units are in (ng/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 13 20.1 7.2 9.3 34.9
dissolved| 5§ 14.6 2.7 11.4 17.5
deep total| 4 30 1.1 1.9 4.5
Upper Nettle shallow rotal| 9 3.5 1.8 1.1 7.7
dissolved | 3 2.3 1.0 1.1 2.9
deep total| 10 1.1 1.7 01 3.6
dissolved| 3 0.3 0.4 0.1 0.8
Stream 10 shallow total| 6 16.6 7.4 7.7 29.4
dissolved| 4 9.5 1.9 7.7 11.7
deep tofel| 4 6.6 3.3 2.5 10.2
dissolved| 2 5.2 1.7 4.0 6.4
Stream Water
Nettle Weir total| 12 3.1 1.4 1.0 5.9
dissolved| 13 2.2 0.8 1.0 3.5
Mid Nettle tofal| 13 32 1.2 0.9 5.0
dissolved| 13 2.2 0.8 0.9 3.3
Upper Nettle tofal| 13 3.5 1.3 1.5 5.5
dissolved | 13 2.4 0.9 1.0 3.6
Streamn 10 total| 13 4,0 1.0 2.2 6.2
dissolved| 12 3.0 0.7 1.5 4.1
Jeffersonviile total | 4 4.9 1.7 3.5 7.4
dissolved | 4 2.1 I.1 1.3 37
Browns River total| 4 5.6 5.7 0.9 13.7
dissolved | 4 2.2 2.0 0.9 5.1
Milton total | 4 2.9 0.4 2.6 34
dissolved | 4 1.3 0.3 1.0 1.7

T A value of 9.2 ng/L. was determined to be an outlier and was excluded from analysis. See

Table B-4 for full data set.
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Ni
Nickel Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 2.79 1.29 1.34 4.49
dissolved} 3 2.72 1.48 1.37 4.30
deep total{ 0 . . . .
Upper Nettle shailow total| 3 2.71 1.36 1.55 4.24
dissolved | 3 2.74 1.51 1.40 4,38
deep total | 3 1.56 0.23 1.40 1.83
dissolved| 3 1.58 0.29 1.41 1.91
Stream 10 shallow total | 3 1.63 0.66 1.18 2.39
dissolved| 2 1.86 0.80 1.29 2.43
deep total | 2 1.06 0.48 0.72 1.40
dissolved| 2 1.10 0.41 0.81 1.39
Stream Water
Nettle Weir total | 12 0.98 0.20 0.75 1.38
dissolved | 13 0.88 0.i6 0.70 1.22
Mid Nettle total | 13 1.17 0.21 0.92 1.60
dissolved| 12 1.15 0.18 0.88 1.47
Upper Nettle total { 13 1.22 0.23 0.89 1.60
dissolved] 13 1.21 0.21 0.91 i.51
Stream 10 tofal | 13 1.09 0.08 0.94 1.23
dissolved| 13 1.10 0.07 0.94 1.19
Jeffersonville total | 4 2.50 0.90 1.98 3.84
dissolved | 4 1.58 0.25 1.27 1.87
Browns River total| 3 1.67 0.31 0.72 1.31
dissolved} 3 0.90 0.26 0.64 1.17
Milton total | 4 1.81 0.28 1.59 2.21
dissolved| 4 1.40 0.17 1.21 1.58
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Nd
Neodymium Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow fofal| 5 0.41 0.09 0,51 0.53
dissolved | 3 0.36 0.04 0.31 0.38
deep total | 0 . . . .
Upper Netile shaliow total} 3 1.51 0.88 0.30 2.13
dissolved| 3 1.11 0.60 0.50 1.69
deep total| 3 10.36 8.33 0.97 16.82
dissolved | 3 10.27 8.42 0.80 16.91
Stream 10 shallow tetal| 3 1.45 0.52 0.94 1.98
dissolved| 2 1.66 0.32 1.44 1.89
deep total{ 2 1.00 0.32 0.78 1.23
dissolved| 2 0.97 0.34 0.73 1.22
Stream Water
Nettle Weir total | 12 0.99 0.51 0.40 1.90
dissolved{ 13 0.64 0.25 .28 1054_
Mid Nettle total| 13 1.27 0.47 0.51 2.04
dissolved | 12 1.15 0.37 0.53 1.70
Upper Nettle tofal | 13 142 0.54 0.50 2.16
dissolved | 13 1.28 0.46 0.50 181
Stream 10 total] 13 2.14 0.25 1.60 2.62
dissolved| 13 2.10 0.20 1.66 241
" Jeffersonville total| 4 0.82 0.35 0.57 1.34
dissolved} 4 0.21 0.06 0.17 0.28
" Browns River total| 3 1.44 1.58 0.30 3.24
dissolved| 3 0.66 0.78 0.08 1.54
Milton total| 4 0.42 0.18 0.20 0.62
dissolved | 4 0.11 0.04 0.08 0.17
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Peak Absorption
Measured on a spectrophotometer,
N Mean Std Dev  Minimam  Maximum
Soil Water
Mid Nettle shallow dissolved| 10 0.409 0.120 0.271 0.563
deep dissolved| 1 0.017 . 0.017 0.017
Upper Nettle shallow dissofved| 7 0.019 0.012 0.010 0.044
deep dissolved{ 9 0.028 0.046 0.005 0.147
Stream 10 shailow dissolved| 6 0.220 0.073 0.142 0.328
deep dissolved| 3 0.065 0.029 0.046 0.098
Stream Water
Nettle Weir dissolved | 13 0.041 0.018 0.012 0.067
Mid Nettie dissolved | 13 0.041 0.018 0.010 0.071
Upper Nettle dissolved| 13 0.056 0.028 0.016 0.114
Stream 10 dissolved] 13 0.035 0.009 0.016 0.050
Jeffersonvitle dissolved] 3 0.063 0.033 0.037 0.100
Browns River dissolved | 3 0.025 0.019 0.011 0.046
Miiton dissolved | 3 0.033 0.007 0.026 0.040
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NO;-N
Nitrate Uniis are in (mg/L.)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow dissolved| 10 4,286 3.830 0.133 12.285
deep dissolved| 0 . . . .
Upper Nettle shallow dissolved | 7 1.626 1.717 0.270 5.261
deep dissoived| 8 0.94] 1.484 0.001 3,927
Stream 10 shallow dissolved} 6 1.359 1.444 0.041 3.116
deep dissolved| 3 1.240 1.982 0.063 3.528
Stream Water
Nettle Weir dissolved| 13 0.040 0.065 0.001 0.176
Mid Nettle dissolved | 13 0.084 0.120 0.001 0.389
Upper Nettle dissolved] 13 0.062 0.091 0.001 0.237
Stream 10 dissolved| 13 0.112 0.176 0.001 0.642
Jeffersonville dissolved| 3 0.135 0.038 0.100 0.175
Browns River dissolved| 3 0.202 0.103 0.083 0.267
Milton dissoived| 3 0.281 0.131 0.186 0.430
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pH
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 12 5.55 0.65 4,68 6.58
_ deep total| 3 6.65 0.51 6.06 6.97
Upper Nettle shallow total{ 8 5.98 0.43 5.47 6.70
deep total | 9 6.06 0.52 5.45 6.86
Stream 10 shallow total | 6 4.71 0.48 422 5.49
deep total| 3 4.90 0.34 4.57 524
Stream Water
Nettle Weir total{ 13 6.13 0.15 5.88 6.31
Mid Nettle wotal{ 13 5.54 0.19 5.10 5.80
Upper Nettle total{ 13 5.57 0.14 5.35 5.79
Stream 10 total{ 13 4.43 0.04 437 4,49
Jeffersonville total{| 3 7.13 0.26 6.91 7.41
Browns River fotal{ 3 7.20 0.26 7.02 7.50
Milton fotal | 3 7.29 0.10 7.21 7.41
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Peak Wavelength
Measured on a spectrophotometer.
N Mean - Std Dev  Minimum  Maximam
Soil Water
Mid Nettle shallow dissolved| 10 326.2 37 321.0 330.5
deep dissoived| 1 360.0 . 360.0 360.0
Upper Nettle shallow dissolved| 7 363.1 17.5 350.5 400.0
deep dissolved] 9 395.3 254 348.5 427.0
Stream 10 shallow dissolved| 6 334.4 8.0 326.0 348.5
deep dissolved| 3 348.8 3.8 344.5 351.0
Stream Water
Nettle Weir dissolved| 13 348.6 5.1 340.0 360.0
Mid Nettle dissolved | 13 349.8 6.0 340.0 360.0
Upper Nettle dissolved | 13 348.4 5.0 340.0 360.0
Stream 0 dissolved | 13 350.3 3.8 344.0 360.0
Jeffersonviile dissolved| 3 347.5 33 344.0 350.3
Browns River dissolved| 3 387.8 56.6 350.5 453.0
Milton dissolved| 3 350.7 0.3 350.5 351.0
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Rb
Rubidiuzm Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total | 3 5.78 4.16 1.85 11.58
dissolved| 3 5.99 4.60 2.92 11.28
deep total] 0 . . . .
Upper Nettle shallow fotal | 3 4.13 3.53 0.88 7.88
dissolved | 3 4.15 3.61 0.84 8.00
deep total{ 3 0.48 0.31 0.16 0.77
dissolved| 3 0.48 0.30 0.16 0.76
Stream 10 shallow total| 3 8.31 6.14 1.48 13.35
dissolved]| 2 592 6.22 1.53 10.32
deep totat] 2 1.97 0.26 1.79 2.16
dissolved| 2 1.96 0.24 1.79 2.13
Stream Water
Nettle Weir total | 12 6,73 0.21 0.49 1.24
dissolved| 13 0.67 0.20 0.48 1.22
Mid Netile total | 13 0.61 0.22 0.25 1.18
dissolved | 12 0.59 0.21 0.24 1.10
" Upper Nettle total | 13 0.58 0.24 0.30 1.25
N dissolved| 13 0.56 0.22 0.30 1.18
~ Stream 10 total] 13 0.16 0.08 0.09 0.35
dissolved | 13 0.15 0.08 0.08 0.35
~ Jeffersonville total | 4 1.22 0:37 0.91 1.74
dissolved | 4 1.06 0.31 0.73 1.47
Browns River total| 3 0.87 0.19 0.65 1.01
dissolved| 3 0.83 0.09 0.72 0.90
Milton toralt 4 1.40 0.45 1.00 2.01
dissolved| 4 1.26 0.43 0.79 1.80
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Table B-5. Summary statistics for each analyte by media and site.

K+
Potassium Units are in (mg/lL)
N Mean Std Dev  Minimum Maximum
Soil Water
Mid Nettle shallow dissolved] 10 1.98 0.82 091 3.09
deep dissolved| 0 . . . .
Upper Nettie  shallow  dissofved| 7 1.10 0.48 0.65 2.04
deep dissolved| 8 0.65 0.19 0.39 1.05
Stream 10 shallow dissolved] 6 1.91 1.25 0.75 3.10
deep dissolved} 3 1.06 0.13 0.97 1.20
Stream Water
Nettle Weir dissolved| 13 0.55 0.31 0.36 1.45
Mid Nettle dissolved| 13 0.44 0.07 0.37 0.65
Upper Nettle dissolved | 13 0.44 0.08 0.38 0.67
Stream 10 dissolved| 13 0.45 0.08 0.30 0.54
Jeffersonville dissolved | 3 1.02 0.07 0.94 1.08
Browns River dissolved| 3 1.32 0.26 1.04 .35
Milton dissolved| 3 1.58 0.17 1.39 1.69

154



Table B-5. Summary statistics for each analyte by media and site.

Table B-5. Summary statistics for each analyte by media and site.

Si
Silica Units are in {mg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow dissolved| 10 3.32 2.18 (.94 7.67
deep dissolved| 0 . . . .
Upper Nettle shallow  dissolved| 7 1.72 1.03 0.85 3.84
deep dissolved| 8 1.57 1.19 0.44 3.91
Stream 10 shallow dissolved| 6 0.90 0.92 0.13 2,70
deep dissolved| 3 1.26 0.68 0.48 1.71
Stream Water
Nettle Weir dissolved | 13 0.94 0.24 0.65 1.41
Mid Nettle dissolved | 13 0.67 0.12 0.51 0.92
Upper Nettle dissolved | 13 0.76 0.15 0.55 1.04
Stream 10 dissolved | 13 0.51 0.11 0.33 0.78
Jeffersonville dissolved| 3 1.13 0.29 0.85 1.42
Browns River dissolved| 3 1.17 0.32 0.83 1.47
Milton dissolved} 3 1.11 0.14 0.95 1.21
157

Sm
Samarium Units are in (ug/L.)
N Mean “Std Dev Minimum  Maximum
Soil Water
Mid Nettle shailow total| 5 0.088 0.022 0.059 0.113
dissolved| 3 0.072 0.010 0.060 0.079
deep rotall 0 . . . .
Upper Nettle shatlow total| 3 0.283 0.168 0.096 0.420
dissolved | 3 0.203 0.111 0.090 0.313
deep total | 3 1.418 1.206 0.099 2.465
dissolved| 3 1.418 1.237 0.073 2.507
Stream 10 shallow total | 3 0.280 0.103 0.182 0.388
dissolved | 2 0.31¢% 0.0355 0.281 0.358
deep total| 2 0.205 0.062 0.161 0.248
dissolved| 2 0.188 0.061 0.145 0.231
Stream Water
Nettle Weir total | 12 0.195 0.095 0.079 0.368
dissolved | 13 0.125 0.044 0.057 0.195
Mid Nettle total | 13 0.241 0.089 0.096 0.379
dissolved | 12 0.220 0.074 0.108 0.344
Upper Nettle total| 13 0.274 0.099 0.108 0.408
dissolved| 13 0.245 0.084 0.105 0.342
Stream 10 total | 13 0.399 0.045 0291 0.467
dissolved{ 13 0.389 0.037 0.300 0.439
Jeffersonville total | 4 0.154 0.075 0.108 0,266
dissolved| 4 0.040 0.012 0.030 0.055
Browns River total{ 3 0.300 0.327 0.060 0.672
dissolved{ 3 0.129 0.151 0.017 0.301
Milton total| 4 0.084 0.038 0.038 0.127
dissolved | 4 0.024 0.008 0.019 0.036
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Na"
Sodium Units are in (mg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettie shallow dissolved| 10 0.43 0.25 0.16 1.04
deep dissolved| 0 . . . .
Upper Nettle shallow dissofved| 7 0.33 0.22 0.14 0.76
deep dissolved| 8 0.44 0.23 0.24 0.96
Stream 10 shallow  dissolved| 6 0.44 0.14 0.28 0.67
deep dissolved| 3 0.48 0.14 (.35 0.63
Stream Water
Nettle Weir dissolved| 13 0.50 0.14 0.33 0.78
Mid Nettle dissolved | 13 0.39 0.09 0.28 0.55
Upper Nettle dissolved | 13 0.39 0.11 0.27 0.53
Stream 10 dissotved | 13 0.32 0.07 0.20 0.38
Jeffersonville dissolved | 3- 3.18 0.7¢ 2.39 3.74
Browns River disselved| 3 4,45 3.05 2.05 7.88
Milton dissolved| 3 5.29 1.19 4.19 6.55
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Ag
Silver Units are in {ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.0045 0.0019 0.0027 0.0069
dissolved{ 3 0.0015 0.0005 0.001 0.0019
deep total| O . . . .
Upper Nettle shallow total | 3 0.0029 0.0051 G 0.0088
dissolved| 3 0.0020 0.0028 0 0.0052
deep total | 3 0.0000 0.0001 0 0.0001
dissolved| 3 0.0020 0.0021 0 0.0041
Stream 10 shallow total| 3 0.0034 0.0014 0.0017 (.0043
dissolved | 2 (0.0012 0.0016 0 0.0023
deep total | 2 0.0018 0.0004 0.0015 0.0021
dissolved| 2 0.0016 0.0014 0.0006 0.0026
Stream Water
Nettle Weir total} 12 0.0006 0.0007 0 0.0022
dissolved| 13 0.0009 0.0007 0 0.0019
Mid Nettle total | 13 0.0002 0.0005 0 0.0017
dissolved| 12 0.0005 0.0012 0 0.0042
Upper Nettle total{ 13 0.0002 0.0004 0 0.0011
dissolved| 13 0.0000 0.0001 0 0.0002
Stream 10 total{ 13 0.0000 0.0000 0 0.0001
dissolved{ 13 0.0003 0.0005 0 0.0016
Jeffersonville total ] 4 0.0008 0.0013 0 0.0027
dissolved | 4 0.0004 0.0005 0 0.0011
Browns River total] 3 0.0016 0.0014 0 0.0627
dissolved | 3 0.0005 0.0005 0 0.0009
Milton total| 4 0.0009 0.0008 0 0.0017
dissolved| 4 0.0002 0.0002 0 0.0004
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SO,-S
Sulfate Units are in {mg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettie shallow dissolved] 10 1.26 0.47 0.42 1.95
deep dissolved] 0 . . . .
Upper Nettle shallow dissobved] 7 1.57 0.51 0.58 2.08
deep dissoived| 8 1.35 0.30 0.73 1.63
Streamn 10 shallow  dissolved} 6 1.29 0.26 0.92 1.54
deep dissofved} 3 1.77 (.55 1.25 2.34
Stream Water
Nettle Weir total | 13 1.43 0.22 1.06 1.70
Mid Nettle total] 13 1.32 0.20 0.99 1.72
Upper Nettie total} 13 1.34 .17 1.06 .65
Stream 10 total} 13 1.46 (.15 1.22 1.63
Jeffersonville total| 3 1.95 0.15 1.79 2.08
Browns River total} 3 2.12 0.23 1.92 2.37
Milton total | 3 2.43 0.16 2.24 2.53
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Sr
Strontium Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow rotal | 5 40.26 19.66 16.53 63.93
dissolved| 3 36.92 23.07 16.45 61.93
deep total| O . . . .
Upper Nettle shallow total| 3 32.15 22.14 12.10 55.91
dissolved| 3 32.48 2329 11.62 57.63
deep total | 3 11.66 5.71 7.43 18.i6
dissolved| 3 11.66 5.63 7.57 18.08
Stream 10 shaliow total{ 3 9.06 5.01 3.34 12,70
dissolved| 2 7.48 5.69 3.46 11.51
deep total{ 2 i3.48 11.49 5.36 21.61
dissolved | 2 13.63 11.06 5.81 21.45
Stream Water
Nettle Weir total | 12 14.33 2.16 11.43 18.90
dissolved| 13 13.95 2.34 10.83 19.54
Mid Nettle total} 13 11.16 1.28 9.56 14.13
dissolved| 12 11.060 1.32 9.30 13.81
Upper Nettle foral| 13 i1.99 1.67 9.36 16.15
dissolved| 13 11.99 1.51 9.78 15.83
Stream 10 total | 13 2.17 0.10 2.07 2.41
dissolved| 13 2.19 0.13 201 2.50
Jeffersonville rotal| 4 5448 12.73 41.34 71.78
dissolved| 4 54.43 13.06 41.01 72.17
""" Browns River total | 3 49 83 2429 31.65 77.42
dissolved| 3 50.36 24.23 31.92 77.80
Milton fotal] 4 66.90 18.16 43.08 87.03
dissolved | 4 66.47 17.25 43,51 85.24
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Ti
Titanium Units are in (pg/L)
N Mean Std Dev Minimum  Maximum
Soil Water
Mid Nettle shallow total| 3 16.50 5.81 10.33 25.74
dissolved| 3 11.62 2.39 9.50 14.21
deep toial | 0 . . . .
Upper Nettle shallow total| 3 2.63 1.82 0.82 4.45
dissolved| 3 1.13 0.73 0.61 1.96
deep total | 3 0.42 0.09 0.33 0.49
dissolved| 3 0.33 0.06 0.28 0.40
Stream 10 shallow total] 3 7.66 1.36 6.17 8.84
dissolved| 2 5.62 0.56 522 6.01
deep total | 2 5.19 1.07 4.44 5.95
dissolved| 2 3.32 0.09 3.26 3.39
Stream Water
Nettle Weir total | 12 326 291 1.09 11.14
- dissolved| 13 0.82 0.30 0.42 1.41
Mid Nettle total | 13 1.24 0.48 0.72 2.38
dissolved | 12 0.67 0.18 0.39 0.96
Upper Nettle totai| 13 1.24 0.38 0.54 1.83
dissolved| 13 0.85 0.22 0.50 127
Stream 10 total | 13 0.57 0.21 0.39 1.03
dissolved | 13 0.47 0.12 0.27 0.64
Jeffersonville total | 4 5.20 3.03 2.82 9.44
____ dissolved] 4 0.76 0.04 0.71 0.81
Browns River total | 3 7.84 7.43 0.72 15.56
dissolved| 3 3.58 4.89 0.65 9.22
Milton toral| 4 4.23 2.34 1.47 6.51
dissolved| 4 0.69 6.07 0.60 0.76
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Tl
Thallitm Units are in (pg/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow fotal| 3 0.026 0.015 0.010 0.046
dissolved| 3 0.028 0.016 0.018 0.046
deep total| O . . . .
Upper Nettle shallow toral| 3 0.003 0.001 0.002 6.003
dissolved| 3 0.004 0,001 0.003 0.005
deep total{ 3 0.001 0.001 0.000 0.002
dissolved| 3 0.003 0.003 0.90 1 0.006
Stream 10 shallow total| 3 0.041 0.017 0.025 0.058
dissolved} 2 0.033 0.017 0.021 0.045
deep total } 2 0.016 0.000 0.016 0.017
dissolved | 2 0.020 0.001 0.019 0.020
Stream Water .
Nettle Weir toral | 12 0.003 0.001 0.001 0.006
dissoived | 13 0.004 0.002 0.001 0.008
Mid Nettle total | 13 0.003 0.002 0.001 0.006
dissolved| 12 Q.004 0.001 0.002 0.007
Upper Nettle total | 13 0.005 0.002 0.002 0.008
dissolved| 13 0.005 0.002 0.002 0.009
Stream 10 total} 13 0.010 0.002 0.008 0.015
dissolved| 13 0.011 0.602 0.008 0.016
Jeffersonville total | 4 0.008 0.002 0.006 0.010
dissolved| 4 0.007 0.002 0.005 0.010
~ Browns River total| 3 0.012 0.006 0.008 0.018
dissolved| 3 0.010 0.004 0.006 0.014
Milton fotal { 4 0.009 0.004 0.005 0.014
dissolved{ 4 (.009 0.005 0.004 0.016
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V
Vanadium Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow total| 5 0.944 0.168 0.771 1.129
dissolved| 3 0.784 0.082 6,724 0.877
deep toral| 0 . . . .
" Upper Nettle shallow total | 3 0.132 0.017 0.114 0.148
dissolved | 3 0.107 0.043 0.063 0.149
deep total| 3 0.050 0.033 0018 0.084
dissolved | 3 0.051 0.034 0.019 0.087
Stream 10 shallow total | 3 0.731 0.048 0.690 0.784
dissolved | 2 0.708 0.014 0.698 0.719
deep total{ 2 0.350 0.100 0.280 0.421
dissolved| 2 0.315 0.084 0.256 0.375
Stream Water
Nettle Weir total| 12 0.201 0.142 0.078 (.569
dissolved| 13 0.102 0.039 0.038 0.158
Mid Nettle total| 13 0.105 0.041 0.045 0.198
dissolved | 12 0.085 0.027 0.046 0.124
Upper Nettle roral| 13 0.118 0.045 0.050 0.185
dissolved | 13 0.101 0.035 0.042 0.152
Stream 10 toral | 13 0.090 0.044 0.037 0.185
dissolved | 13 0.087 0.039 0.046 0.179
Jeffersonville total| 4 0.474 0.297 0.287 0.913
dissolved | 4 0.145 0.034 0.109 0.1 84
Browns River total{ 3 0.535 0.368 0.192 0.924
dissolved| 3 0.338 0.316 0.128 0.702
Milton total| 4 0.367 0.139 0.252 0.535
dissolved| 4 0.165 0.038 0.132 0.201
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W
Tungsten Units are in {(ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shallow toral] 5 0.0009 0.0012 0.0000 0.0024
dissolved] 3 0.0128 0.0209 0.0000 0.0369
deep tofal} 0 . . . .
Upper Nettle shailow total| 3 0.0000 0.0000 0.0000 0.0000
dissofved | 3 0.0122 0.0087 0.0045 0.0217
deep total| 3 0.0017 0.0029 0.0000 0.0051
dissolved| 3 0.0627 0.0653 0.0000 0.1304
Stream 10 shallow total | 3 0.0075 0.0038 0.0034 0.0109
dissolved| 2 0.0535 0.0537 0.0155 0.0914
deep total{ 2 0.0008 0.0011 0.0000 0.0013
dissolved| 2 0.0307 0.0257 0.0125 0.0488
Stream Water
Nettle Weir total| 12 0.0005 0.0009 0.0000 0.0024
dissolved| 13 0.0183 0.0296 0.0000 0.0878
Mid Nettle toral } 13 0.0014 0.0027 0.0000 4.0079
dissolved | 12 0.0154 0.0317 0.0000 0.1132
Upper Nettle total | 13 0.0003 0.0011 0.0000 0.0039
dissolved| 13 0.0069 0.0098 0.0000 0.0263
Stream 10 total{ 13 0.0000 0.0001 0.0000 0.0003
dissolved] 13 0.0107 0.0183 0.0000 0.0507
Jeffersonville total | 4 0.0000 0.0000 0.0000 0.0000
dissolved| 4 0.0060 0.0063 0.0000 0.0140
Browns River fotal | 3 0.0000 0.0000 0.0000 0.0000
dissolved | 3 0.0038 0.0066 0.0000 0.0114
Milton total| 4 0.0002 0.0003 0.0000 0.0006
dissolved | 4 0.0086 0.0059 0.0000 0.0129
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Table B-5. Summary statistics for each analyte by media and site.

Zn
Zinc Units are in (ug/L)
N Mean Std Dev  Minimum  Maximum
Soil Water
Mid Nettle shaliow total | 5 27.36 15.89 11.67 48.92
dissolved| 3 29.61 17.10 13.08 47.22
deep total} 0 . . . .
Upper Neftle shallow total } 3 32.81 19.57 14.78 53.62
dissolved} 3 32.99 2045 13.87 54.55
deep total } 3 17.91 5.35 14.72 24.09
dissolved} 3 17.97 5.53 14.52 24.34
Stream 10 shallow total {3 927 4.63 5.04 14.22
dissolved] 2 10.13 6.30 5.67 14.58
deep toral b 2 40.70 25.69 22.53 58.86
dissolved| 2 43.56 24.82 26.01 61.11
Stream Water
Nettle Weir total] 12 451 0.95 3.01 6.26
dissolved{ 13 4.07 0.77 2.96 5.39
Mid Nettle total{ 13 6.17 0.88 4.66 7.68
dissolved{ 12 5.88 0.76 5.01 7.28
Upper Nettle total { 13 5.86 0.79 4.21 7.15
dissolved | 13 5.98 0.67 5.01 7.13
Stream 10 toral| 13 12.86 1.57 10.59 15.69
dissolved| 13 13,31 2.19 11.07 18.63
Jeffersonville total{ 4 11.21 17.74 1.40 37.78
dissolved| 4 26.69 52.56 0.24 105.54
Browns River total| 3 2,75 2.97 0,45 6.10
dissolved | 3 1.16 1.55 0.20 2.94
Milton toral | 4 1.i0 0.60 0.35 1.81
dissolved | 4 0.33 0.21 0.16 0.62
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