

Mapping Climate Change Exposure for Northeastern Tree Species

^{1,2} Lukas Kopacki and ¹Jen Pontius

UVM, Rubenstein School of Environment and Natural Resources, ²ArborVox, LLC

Adaptation and Restoration of Northern Forests

Collaborative Management of Forests at Risk Across the Urban to Rural Gradient

- Co-development of forest restoration and adaptation approaches with key stakeholders, and assessments of broader perceptions of these approaches by natural resource managers;
- 2. Proactive application of forest restoration, adaptation and transition approaches in a variety of field trials; and
- Aggregation of historical and projected forest change data layers into a spatial forest exposure and targeted adaptation and restoration mapping tool.

Climate Change Exposure

Stein et al. (2014). Climate-Smart Conservation: Putting Adaptation Principles into Practice.

Approach:

Identify existing data layers to capture the spatial variability in key exposure metrics

Develop updated data layers to capture projected deviation from climate norms

Aggregate these into a spatial model that synthesizes relative exposure across the landscape

- By species
- Stand level (ecosystem aggregate)

TerraClimate

https://www.climatologylab.org/terraclimate.html

Primary Monthly Climate Variables:

Maximum temperature Minimum temperature Precipitation

Derived Monthly Climate Variables:

Actual Evapotranspiration Potential Evapotranspiration Climate Water Deficit Soil Moisture Snow Water Equivalent

TerraClimate

Historical Norms (1981 – 2010)

Projected Global Mean +2° C

Projected Global Mean +4° C

https://www.climatologylab.org/terraclimate.html

Relative Climate Deviation (+2°C and +4°C)

- Relative Climate Deviation (+2°C and +4°C)
- Unit-less, aggregate metric
- quantifies relative deviation from climate norms
- Captures > 50% of the total variability in climate deviation across the region
- Dominated by deviations in SWE, AET, PET, Soil and PPT variables in the shoulder seasons

1 PCA Layer

NEW Data Layers

- Metric: Climate deviation from 30 year normal under +2° C and +4° C global mean temperature change
- Scale: 4km
- Source:TerraClimate PCA

Statistic	Value
Mean	55.0
Std. Dev	22.9
Range	[0, 100]
Median	60.0

Existing Data Layers

ABUNDANCE

ABND New England's 14 Most Common Tree Species

- Metric: Percent of total basal area (0-100) – by species
- Scale: 30m
- Source: Gudex-Cross (2018) and FIA abundance

Statistic	Value
Mean	13.7
Std. Dev	16
Range	[0, 100]
Median	9.0

Existing Data Layers

No Disturbance Climate Disturbance All Disturbance

- Source: FEMC NE Forest Health Atlas
- Metric: Mapped count 1997-2020 (rescaled 0-100)
- Scale: 30 m

DIST

- Climate related only (Includes wind, flooding, drought, frost, and snow/ice events)
- All Disturbances (Includes all recorded disturbances (pests, pathogens, fire, etc.))

Derived Data Layers

PROJECTED CHANGE IN SUITABLE HABITAT

PCSH GCM 4.5 Scenario GCM 8.5 Scenario For each species

- Source: CCTA SHIFT maps via Matthew Peters (USFS)
- Metric: Change in Relative Importance Values (RIV) between current and GCM 4.5 and 8.5 scenarios – by species
- Scale: 100 m

Statistic	Value
Mean	54.52
Std. Dev	26.75
Range	[-100, 100]

Aggregate Exposure – Species Level

Simple Additive Calculation

Relative Climate Exposure

Scenarios Run

Repeat for Scenarios:

Climate:

- Low Emissions
- High Emissions

Disturbance

- None
- Climate Related
- All

Low Emissions Scenario

High Emissions Scenario

FAO, NOAA USSS, EBA

Sugar Maple

- Average exposure value: 123
 - 2nd highest among modeled species
- No significant difference between low and high scenarios
- High Exposure Regions: Mohawk, Hudson, & Susquehanna Valleys; eastern Catskills & White Mountains
- Low Exposure Regions: northern VT and NH, western Catskills

Distribution of Mean Exposure Value by Species

Species	Code		
Balsam Fir	ABBA		
Red Maple	ACRU		
Sugar Maple	ACSA		
Yellow Birch	BEAL		
Black Birch	BELE		
Paper Birch	BEPA		
American Beech	FAGR		
White Ash	FRAM		
Red Spruce	PIRU		
Eastern White Pine	PIST		
White Oak	QUAL		
Chestnut Oak	QUPR		
Northern Red Oak	QURU		
Eastern Hemlock	TSCA		

Exposure high but stable	= climate "limbo"	
Exposure increases with increasing emissions	= climate "losers"	
Exposure decreases with increasing emissions	= climate "winners"	

Aggregate Exposure – Stand Level (Ecosystem Aggregate)

Repeat for all species, sum weighted exposure scores

Stand Level Exposure

-100 Low Exposure

-100 Low Exposure

Low Emissions, All Disturbance

 Average Exposure across all species present in any given pixel

•

- High stand-level Exposure : •Catskills, •Eastern Adirondacks, •Southern Green/ Berkshire Mountains, •White Mountains, •Mohawk River valley
- Low stand-level Exposure :
 - Coastal Massachusetts (excluding Cape Cod),
 Northern Maine/ New Hampshire,
 Hudson Highlands

High Emissions, All Disturbance

- A ~4% increase in exposure was observed between 2c and 4c scenarios across the region.
- Driven primarily by increases at the low end of exposure values
 - High stand-level Exposure :
 - High elevation regions (Catskills, Adirondacks, Greens, Berkshires, Whites)
 - Mohawk River valley
 - Downeast Maine
- Low stand-level Exposure :
 - Major river valleys
 - Southern New York
 - Coastal Massachusetts
 - Northern Maine
 - Hudson Highlands

Climate Change Exposure – Conclusions

•Across the region forested ecosystems will be exposed to changing climate conditions, with potential impacts on forest health, disturbance patterns and competition dynamics.

 In our region, exposure is driven primarily by changes in shoulder season climate metrics and projected changes in suitable habitat

Climate Change Exposure – Conclusions

•Exposure differs across species

•Potential exposure "winners": QUAL, QUPR, BELE

Potential exposure "losers": PIRU, ABBA
Exposure stable/high: ACSA, PIST

•Exposure differs across the region

•<u>High Exposure</u>: Northeastern Highlands, Acadian Plains and Hills

•<u>Low Exposure</u>: Southern NE and NY, NE Coastal Zone

Oak dominant – Mixed Hardwood systems

Spruce-Fir systems

Northern Hardwood systems

Climate Change Exposure – Next Steps

- •Exposure model validation vs forest inventory data
- Interpretation guide
- •Stakeholder engagement:
- How is this data useful?
- Guidelines for integrating with targeted adaptive management efforts?

•Data access and application support

Climate Change Exposure – Data Access

		Search					٩
Res.							ADVANCED SEARCH
FEMC		I	DATA	MONITORING	G COOPERATIVE	PRODUCTS & SERVICES	ABOUT
PROJECT Mappi	ng Clima	te Change	Expos	ure for N	Iortheastern	Tree Species	
OVERVIEW	DATASETS	CONTRIBUTORS	DOCUMI	ENTS/IMAGES	MANAGE		

Туре

Research project

PROJECT OVERVIEW

Principal Investigator

Lukas Kopacki -Jennifer Pontius -

Contributing Organizations

Forest Ecosystem Monitoring Cooperative (FEMC) +

See all contributors

Project Citation

Lukas Kopacki, Jennifer Pontius (2022) Mapping Climate Change Exposure for Northeastern Tree Species. FEMC. Available online at: https://www.uvm.edu/femc/data/a rchive/project/mapping-ccexposure-4-ne-trees The uncertainty around the impacts of changing climate poses a significant challenge to sustaining forest ecosystems in the northeast. Important work has been done downscaling projected changes in climate conditions, modeling shifts in suitable habitat, and mapping disturbance patterns across the region. The goal of this project is to aggregate these valuable but disparate spatial data sets to quantify relative exposure to climate change impacts at the species, and community level. The resulting climate exposure maps provide insight to how the degree of potential risk exposure vary across the landscape an across species. Results indicate that at the stand level,

highest overall exposure to climate, disturbance, and limitations in suitable habitat for current species distributions occurs in mountainous regions throughout the region and southeastern Maine. Across the region relative exposure increases by 4 percent between low and high emission scenarios. Much of our current management is guided by the outcomes of decades of silviculture research, yet many of the conditions under which those results were generated are rapidly changing. These relative exposure maps can inform where climate adaptation management applications may be most necessary over time.

Objectives

https://www.uvm.edu/femc/data/archive/project/mapping-cc-exposure-4-ne-trees

#