Relative effects of functional diversity and structural complexity
on late-successional, northeastern mixed hardwood forest carbon

Samantha Myers

Applied Forest Ecology lab
UMass Amherst

Forest Ecosystem Monitoring Cooperative (FEMC) Conference, December |5, 2022



BACKGROUND

* Forests serve as a key climate mitigation tool due to
their ability to sequester and store carbon




BACKGROUND

* Forests serve as a key climate mitigation tool due to
their ability to sequester and store carbon

* However, forests face a variety of compounding threats
which could fundamentally shift Northeastern forest
dynamics and impact their ability to sequester and
store carbon




BACKGROUND

* Forests serve as a key climate mitigation tool due to
their ability to sequester and store carbon

* However, forests face a variety of compounding threats
which could fundamentally shift Northeastern forest
dynamics and impact their ability to sequester and
store carbon

* Adaptive forest management can help improve
forest resilience to these stressors and protect carbon
stores (D’Amato et al. 201 I, Ontl et al. 2020)
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ADAPTIVE FOREST MANAGEMENT

Goal: Prepare the forest to withstand increasingly severe
disturbances (Millar et al. 2007)

Traditional benchmarks include:
* Species diversity

* Structural complexity (diversity of tree sizes, canopy strata,
forest gaps, standing and downed deadwood)

Are these the best stand-level guidelines for maximizing
forest carbon benefits?
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FUNCTIONAL TRAIT DIVERSITY

* Functional traits are measurable traits that contribute to
the fitness (potential growth, fecundity, and mortality risk) of
an individual and impact ecosystem function (Reich et al. 2003)

¢ Can be examined at the individual level, aggregated to species
scale (species-level means), and scaled up to ecosystem level

* Functional diversity is linked to species diversity and structure,
but not commonly considered in the context of adaptive
management (Thom et al. 2020)

Image credit: New Phytologist



Functional diversity could be considered along with
other benchmarks to improve forest carbon management

Functional diversity relates to
ecosystem productivity and stability
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Functional diversity could be considered along with
other benchmarks to improve forest carbon management

Functional diversity relates to A number of studies have found that
ecosystem productivity and stability functional traits drive forest productivity
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examine forest carbon dynamics
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* Correlation among traits due to functional trade-offs (Reich 2014)
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Few studies have integrated functional diversity to
examine forest carbon dynamics

* Need to account for:

 Trait variability within species to make connections between traits and
demographic processes (Laughlin and Messier 2015)

* Correlation among traits due to functional trade-offs (Reich 2014)

* However, there are sparse datasets with both long-term demographic
data and local individual functional trait information
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RESEARCH AIM

Apply both Massachusetts continuous forest inventory (CFl) data and
local, individual functional trait observations to predict AGB in
response to functional diversity.

Objective:

Quantify the effects of functional diversity, species diversity, and
structural complexity as drivers of live aboveground biomass (AGB) in
late-successional forests.
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CARBON DYNAMICS IN LATE-
SUCCESSIONAL FORESTS

* Model study systems for forest carbon storage

* High carbon stores, high structural complexity, lower species
diversity (Franklin et al. 2002, Gravel et al 2010)

* Assumed to have lower carbon sequestration rates

Total Biomass (living and dead )—

%

Time ——= Bormann and Likens (1979)
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MODEL BACKGROUND

Obstacle: Integrate individual * Our model updates database species mean trait values using information from

functional trait observations with local, individual trait observations
stand-level structure and AGB

* Explicitly modeled dependence among traits (inherent trait syndromes)

* Use updated mean trait values to calculate functional diversity at each CFl plot

Functional diversity + Structural complexity +

Live aboveground biomass ~ Density (BA/ac) + Proportion softwood + error

* Compared 3 models:
* Functional diversity with local trait update
* Functional diversity with database species means only

* Species diversity



RESULTS

* Integrating local, individual functional trait information yielded the best
predictions of live AGB



There were strong effects of density, proportion of softwood species, and
diameter diversity on live AGB
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Functional diversity had a negative effect on live AGB
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Plots with low functional diversity were dominated by mid
to high shade-tolerant hardwood species
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Plots with high functional diversity had more shade-
intolerant and mid-tolerant species and softwoods
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CONCLUSIONS

* Forest successional dynamics shift the effects of functional diversity on
AGB productivity

* Strong positive diversity-productivity effects in early-to-mid-successional

forests can decrease in mid- to late-successional forests (Urgoiti Otazua et al. 2022,
Fahey et al 2015, Hardiman et al. 201 |)

* Example of the classical model of a “dynamic steady-state” equilibrium of
AGB (carbon stores) in late-successional mixed hardwood forests

* Disturbance-mediated tradeoffs between slight increases in functional
diversity and decreases in AGB stores
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SO, WHAT DOES THIS MEAN FOR FOREST
CARBON MANAGEMENT ?

* Adaptive forest carbon management should focus on emulating a “shifting gap
mosaic” at a landscape scale (Bormann and Likens 1979):

* Preserving late-successional stands of relatively stable, high aboveground carbon stores

* Active management in early-mid successional stands where diversity-productivity
relationships are stronger and biomass accrual rates are higher
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Probability density
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