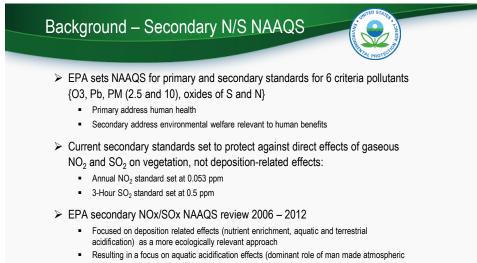
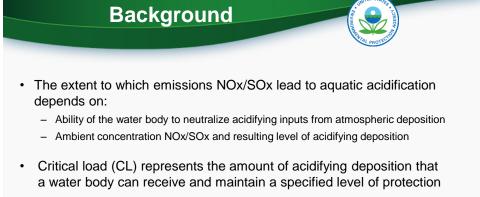


Secondary NOx/SOx Process

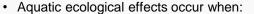
U.S. Environmental Protection Agency


Why a NAAQS?

Clean Air Act Acid Rain Program (Title IV) has reduced emissions of SO₂ and NO_x from utilities, but was not designed to fully address aquatic acidification in sensitive ecoregions across the country

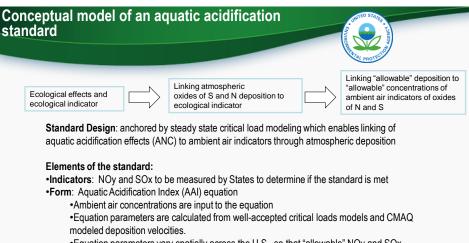

- Basically an emissions-based program lacks a linkage between emissions and effects in contrast to air quality-based standards
- Despite observed improvement, many reports (e.g., NAPAP) find continuing adverse effects exist in many acid sensitive areas
- Sampled lakes exhibit improved water quality trends -- 12% in the Northeast and 56% in the Adirondack mountains
- Recovery significantly lagging in southern Appalachian mountains

12/19/2012


U.S. Environmental Protection Agency

- inputs; strong science base)
- Note: Assume directional benefits for terrestrial acidification indicators (e.g., ↓ Al/BC ratios)

- Level of protection is often link to maintaining a level of Acid-neutralizing Capacity (ANC) in drainage waters
- ANC level is selected to support of healthy aquatic ecosystems
- Steady-state, mass balance biogeochemistry approach



- CL exceeds the acidifying (wet and dry) deposition

5

U.S. Environmental Protection Agency

- •Equation parameters vary spatially across the U.S., so that "allowable" NOy and SOx concentrations also vary across the U.S. (to account for ecosystems variation in
- sensitivity to NOy and SOx) while affording all ecosystems the same amount of protection •Level: the target AAI value that, in combination with the other elements of the standard, is
- judged to provide requisite protection
- Averaging time

Translating a linked atmospheric-biogeochemica construct in NAAQS terminology

AAI derivation

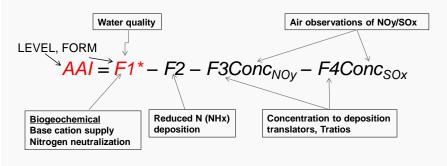
Start with CL expression: Define a potential ANC based on the relative difference between CL and deposition

 $CL_{N+S} = ([BC]_0^* - [ANC_{lim}])Q + Neco$

{modification of SSWC model}

Ambient indicators

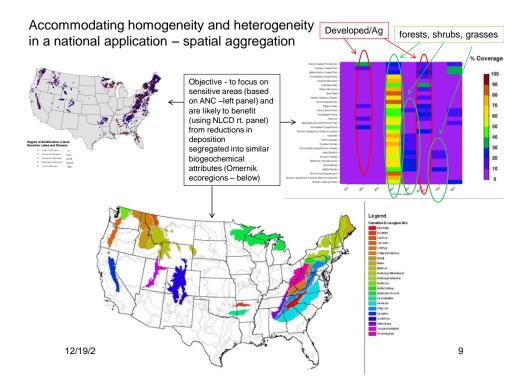
 $[ANCp] = [BC]_0 + Neco/Q - Dep_{NH_2}/Q - T_{NO_2}Conc_{NO_2}$ $Q = = AAI_{WB}$ $Q_T_{SOx} Conc_{SOx}$

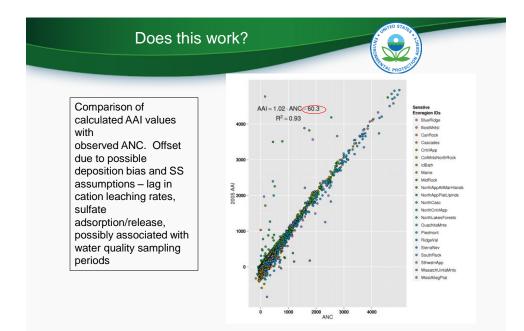

12/19/2012

U.S. Environmental Protection Agency

7

Translating a linked atmospheric-biogeochemical construct in NAAQS terminology

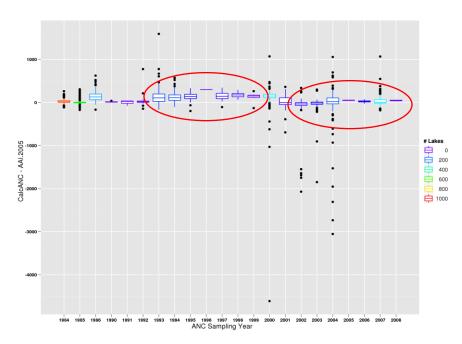

$AAI_{WB} = [BC]_0 + Neco/Q - Dep_{NHx}/Q - T_{NOy}Conc_{NOy}/Q - T_{SOx}Conc_{SOx}/Q$

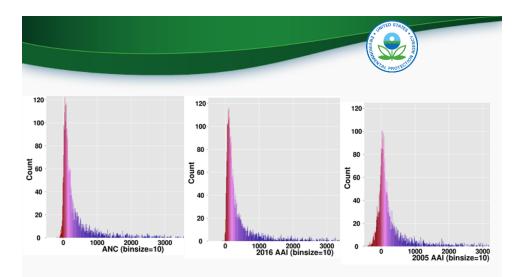


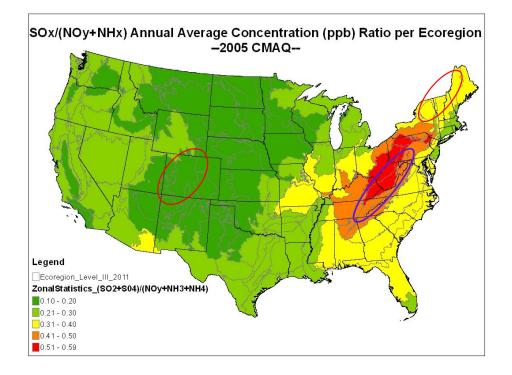
Charge balance between major cations supplied by ecosystem and acidifying anions contributed by deposition: interpreted as the potential ANC water bodies would realize from an atmospheric state.

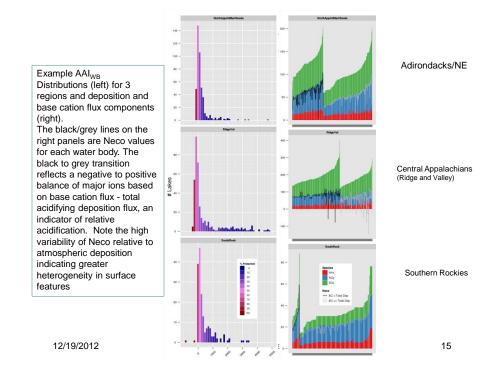
12/19/2012

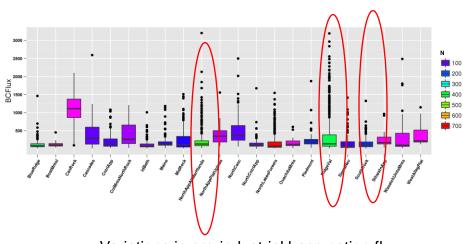
U.S. Environmental Protection Agency

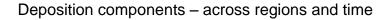


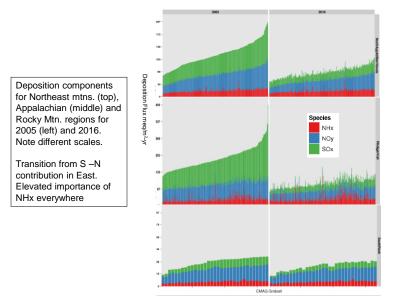

12/19/2012

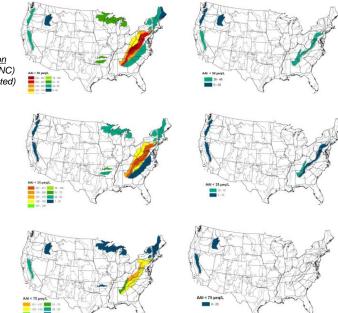




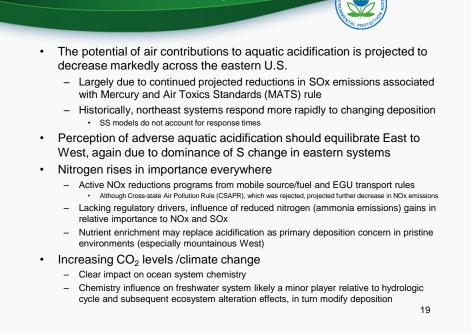

Differences (ANC-AAI) segregated by water quality sampling year


National distributions of observed ANC, 2005 AAI_{WB} and 2016 AAI_{WB} .





Variations in pre-industrial base cation flux



<u>NAAQS relevant application</u> Combining Level (target ANC) and Form (% lakes protected) 2005 (left) and

2005 (left) and 2016 (right) AAI Exceedances for cases 50/90 (top); 35/90 (middle) and (75/70).

Summarize National Future Implications

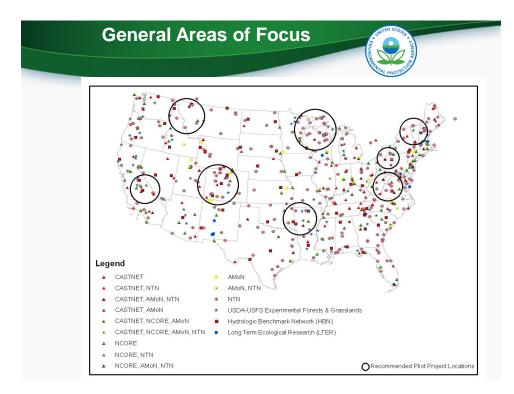
- Current secondary standards afford inadequate protection
- Decision not to move forward with a new standard based on AAI concept
- Conduct a pilot studies field program in 3-5 ecoregions:
 - "to collect and analyze data so as to enhance our understanding of the degree of protectiveness that would likely be afforded by a standard based on the AAI..."

Field Pilot Program

12/19/2012

U.S. Environmental Protection Agency

21


Proof-of-concept for AAI approach

- Use of actual ambient air measurements to define level of protection
 - AAI target and nth % protection
 - examine the extent to which the sample ecoregions would meet a set of alternative AAIbased standards
- · Improve understanding of AAI components, variability, and uncertainty
 - improve characterization of concentration and deposition patterns of $\mathrm{NO}_{\mathrm{y}}\,, \mathrm{SO}_{\mathrm{x}^{\mathrm{t}}}$ reduced forms of nitrogen
 - explore alternative approaches for estimating F1 through F4 factors for the AAI equations
 - expanded critical load data bases
- Enhance atmospheric measurements and models
 - total nitrate measurements as a potential alternative indicator for Nov
 - evaluation of modeled dry deposition algorithms
- Demonstrate implementation
 - Air monitoring network design
 - Spatial aggregation and uncertainty
 - Various SIP requirements
- · Strengthen linkages between atmospheric deposition and water quality

Measurements

- Focus on 3-5 ecoregions
- Existing CASTNET, rural Ncore, NADP NTN infrastructure
 at least 2-3 sites with minimum suite of measurements
- · Atmospheric measurements:
 - Weekly SO2, SO4, NO3 NH4, HN03 (CASTNET)
 - Continuous NOy (Ncore)
 - Passive NH3 (AMoN),
 - Precipitation chemistry SO4, NO3, NH4 (NADP's NTN)
- · Possible Atmospheric measurements enhancements:
 - Continuous SO2, NH3, SO4
 - Speciated NOy (PAN, true NO2), HNO3, NH4,
 - Organic-N
 - Site specific direct measurement of dry deposition flux(coordination between ORD and AmeriFlux/LTER)
- Collaboration with ongoing long-term water quality monitoring
 TIME/LTM, NPS/USFSUSGS/EPA experimental studies
- · Rely on ongoing improvements to FOCUS National Critical Load Data Base

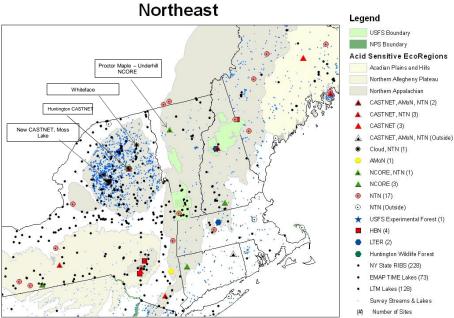
Proctor Maple - Underhill, VT site

- NCore
- Existing NADP NTN
- Addition of CASTNET Filter Pack (CFP) and passive Ammonia

12/19/2012

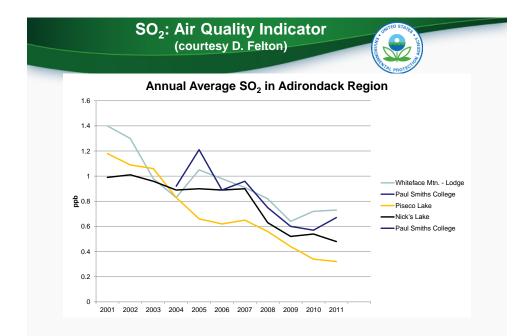
U.S. Environmental Protection Agency

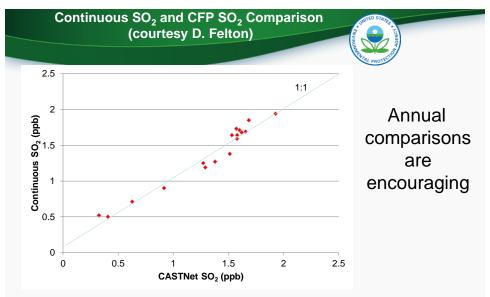
25


• Site selection based on:

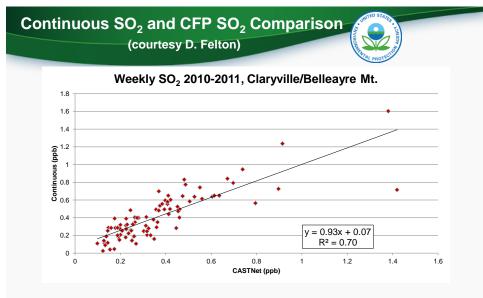
- Building partnerships with other agencies and research groups (including private sector)
- Leverage current and planned aquatic and atmospheric measurement programs
- A mix of different atmospheric characteristics (high/low concentrations; N vs S drivers) and adversity/effects sensitivity (minimal to high impact)
- National representativeness
- Focus on three ecoregions/areas
 - Adirondacks/New England mountains (Northeastern Highlands; 58)
 Moderate acidification impacts; roughly equal N and S loading
 - Mid Appalachian Highlands (Blue Ridge, 66; Ridge and Valley, 67; Central Appalachians, 69; Western Allegheny Plateau, 62; Southwestern Appalachians, 68)
 Severe acidification impacts; relatively greater S loadings
 - Colorado Rockies (Southern Rockies, 21) with NW Wyoming extension (Middle Rockies, 17)
 - Mild acidification impacts; relatively greater N loading

Adirondacks/New England


- · Acidification impacted ecoregions
- Rich database, moderately impacted, observed improvements, Sdominated
- · Existing air monitoring sites
 - NCore at Underhill, VT and Pack Monandack, NH
 - CASTNET sites at Huntington Wildlife, NY and Woodstock, NH
 - Whiteface mtn.
- · Proximity to LTER/AmeriFlux sites
 - Bartlett Forest and Hubbard Brook, NH
 - Harvard Forest, MA
 - Howland, ME
- · Strong partnership with NYDEC and NYSERDA
 - NY DEC is in the process of converting to NADP NTN samplers
 adding CFP samplers
 - Providing direct capital and operational resources
 - NYSERDA supporting related research
 - SU water quality
 - NY ASRC (Whiteface mtn. observatory includes cloud chemistry and deposition measurements)



Monitoring Locations Northeast


Site Name	Lat/long	Elev. (m)	NTN	AMoN	CFP	NOy	Cont. SO2	03	IMPROVE	CSN	Cont PM2.5	Other
Huntington Wildlife Forest CASTNET HWF187; NTN NY20	43.9731 -74.2232	765	NY20	EPA/CAMD - funding from OAR	EPA/CAMD	EPA/CAMD - funding from OAR		EPA/CAMD				Install NOy fall 2012
Akwesasne Mohawk-Fort Covington NTN NY22	44.9226 -74.4806	70	NY22									
Whiteface Mountain NTN NY98	44.3933 -73.8594	610	NY98 – not collocated with CFP	NYDEC/ NYSERDA – funding from R2 to CAMD	NYDEC/ NYSERDA – funding from R2 to CAMD	ASRC NY	NY DEC (base)	NY DEC (base + summit)		NY DEC (base)	NY DEC (base)	Install CFP fall 2012?
Moss Lake NTN NY29	43.7868 -74.8429	566	NY29									Install CFP fall 2012?
Nick's Lake	43.6858 -74.9854	525	NY wet deposition network?	NYDEC/ NYSERDA – funding from R2 to CAMD	NYDEC/ NYSERDA - funding from R2 to CAMD		NY DEC	NY DEC				If NY converts the current wet deposition network to NADP
Bennett Bridge NTN NY52	43.5282 -75.9492	247	NY52									
Paul Smith's	44.4343 -74,2493	560	NY wet deposition network?				NY DEC					If NY converts the current wet deposition network to NADP
Wanakena	44.1500 -74.8998	458	NY wet deposition network?									If NY converts the current wet deposition network to NADP
Piseco Lake	43.4496 -74.5162	519	NY wet deposition network?				NY DEC	NY DEC				If NY converts the current wet deposition network to NADP
Proctor Maple Research Center NCore 50-007-0007 NTN VT99	44.52839 -72.8688	399	VT99	CAMD will add AMoN if additional funds are available	EPA/CAMD - funding from OAR	State of VT	State of VT	State of VT			State of VT	Pending approval from VT for CFP install
Pack Monadnock Summit NCore 33-011-5001	42.86175 -71.8783					State of NH	State of NH	State of NH			State of NH	
Woodstock CASTNET WST109 NTN NH02	43.945 -71.7008	258	NH02	EPA/CAMD - funding from OAR	EPA/CAMD	CAMD will add NOy if additional funds are available		EPA/CAMD				\$80K needed for equipment/install.
Bridgton NTN ME02 Gilead 12/19/	44.1075 -70,7289	222	ME02									
Gilead 12/19/ NTN ME08	200132 -71.0098	212	ME08	0.8	. Environi	nental Pro	tectio	n Agenc	У			29

ADKs/New England – gaps in measurements are highlighted

Annual average SO2 at Belleayre Mountain (NYSDEC continuous) and Claryville (CASTNet integrated), 1995-2011. The monitors are ~14 mi apart in the Catskill Mountains, NY

Weekly comparisons are not as encouraging and have a seasonal bias

Discussion and Questions

12/19/2012

U.S. Environmental Protection Agency