A Survey of the Army Corps of Engineers' Union Village Dam Project Area for Vernal Pools and
 Rare or Protected Reptiles and Amphibians

Prepared for

The Vermont Field Office of The Nature Conservancy

Prepared by
Jim Andrews
Biology Department Middlebury College Middlebury Vermont
05753

January 2000

Contents

Introduction 1
Methods 1
Herp survey 1
Vernal pool survey 2
Results: reptiles and amphibians located, basic ecology, relative abundance, and ranks 3
Vernal pools 6
Conservation (herps) 7
Conservation (vernal pools) 10
Other species of interest 11
Technical literature cited or useful 11
Other useful sources of information on New England reptiles and amphibians 12
Tables
Table 1. Reptiles and amphibians found on or near the US Army Corps of Engineers' property at Union Village Dam in Thetford, VT. 4
Table 2. Reptiles in the Vermont Herp Database that are reported from surrounding towns but not found during the survey in the project area. 4
Table 3. Descriptive information on selected pools found in the project area. 8
Figures
Figure 1. Maps of pool locations. 13
Appendices
All herptiles found during the 1999 survey of Union Village Dam Appendix A
Records of additional species documented from adjacent towns Appendix B
Records of additional species from Orange and Windsor Counties Appendix C
Identification and natural history notes on VT amphibians Appendix D
VT herptiles with state heritage ranks and explanations Appendix E
Forest management practices for herptiles Appendix F
Aerial photos taken on the low-elevation flyover, April 1999 Appendix G

Introduction

The purpose of this contract was to generate a thorough survey of the US Army Corps of Engineers' property at Union Village Dam in Thetford, Vermont for rare or protected reptiles and amphibians and to locate and briefly describe any significant vernal pools. I will here report on all reptiles and amphibians (herptiles) located in the study paying particular attention to those with a Vermont State Heritage rank of S3 or lower and/or a global rank of G4 or lower. All vernal pools which appeared to be important amphibian breeding locations are shown on maps (Figure 1) and briefly described (Table 3).

The definition of a vernal pool which I will use is: a temporary or semipermanent pool which has no permanent inlet or outlet and is filled by local surface water in the spring. At this particular site there are also pools which are filled by water backing up from the dams during floods. When the bulk of the water recedes, some of these pools retain shallow water much like a vernal pool. Some of these pools along the margins of the high water line apparently act as vernal pools in supporting amphibian breeding if they are not flooded during the breeding period of a particular species. In addition to the true vernal pools, I will also report on these and other types of pools which showed evidence of or potentiial for supporting spring-breeding amphibians.

Methods

No one method will inventory the complete range of reptiles and amphibians occurring in an area. A combination of methods must be employed over a variety of seasons. I used eight herp-survey methods starting fieldwork with a flyover of the site on April 4, 1999 and finishing in the field on September 29, 1999. As much as possible, visits were timed to be during the optimal window of opportunity to locate all potential reptile and amphibian species in the area. A total of 15 days were spent at the site: four days in April, five in May, three in June, and three in September. All work was performed by the author working alone or supervising volunteers or interns. Almost all of the USAC land surrounding Union Village Dam was visited during some point in the survey.

The eight herp-survey methods used in this inventory are described below.
An active search is a concentrated effort in a predetermined area to locate reptiles and amphibians by raking leaf litter, looking under rocks and logs, looking within rotten logs or under any items, natural or unnatural, that provide moist and shady retreats during the day. Since this method can be used under almost any conditions during the field season, it is the method that I used most frequently. Active searches for reptiles were also performed under conditions in which they would be basking (cool sunny days in early spring or early fall).

A site check is a less localized form of active search that includes time spent searching for and traveling between the best micro-habitats. Site checks were frequently used while traveling to vernal pools or other target locations.

A night-time road search consists of driving roads at a speed of $10-15 \mathrm{mph}$ with the vehicle window open to hear calling anurans, and with eyes on the road and road margins to see herptiles crossing the route. Road searches were performed when the surface of the road was wet or the night was relatively warm and humid. When herptiles were heard or spotted, the car was stopped, the organisms identified and counted, and their locations noted. The many small roads in and surrounding this property made this a useful survey method. All roads enclosed by Rte. 113 on the west, Tucker Hill Road on the north, Rte. 113 on the northeast, and Academy Road on the southeast were driven during periods of reptile and amphibian activity.

Salamander trapping involves the use of a series of unbaited minnow traps placed at selected locations in shallow water around the margin of potential breeding pools and swamps. It was used to locate caudates (salamanders) that bred in pools in the spring. It is a very effective method for locating amphibians but is only useful during a narrow window of time (April-May). I used these traps in most of the potential breeding sites that were located during the flyover.

Day-time road searches were performed in the fall on sunny days after cold nights. On these days many snakes can be found on the roads (alive and dead) that are otherwise difficult to locate. Snakes move to denning areas in the fall. If their movement causes them to cross roads they often hesitate on the roads to bring up their body temperatures. Unfortunately this often results in road kills but it also alerts the researcher to the presence of a species in an area. All roads near the dams were driven in the fall and road kills and live specimens were identified.

Turtle trapping was performed in the large beaver pond area, in the larger floodplain pools and along the main branch of the Ompompanoosic River above and below its confluence with the West Branch. Large 30 inch hoop traps with 1 inch mesh were baited with sardines and left for approximately 24 hours.

Interviews are useful in gathering important leads on areas where unusual or rare herptiles may be located now or were historically. I interviewed USAC employees at the site and the USAC naturalist by phone. I also talked to local landowners, hunters, fisherman, walkers, and state biologists.

Herp Atlas records As coordinator of the Herp Atlas Project all known records of Vermont herptiles current or historic are on a database on my computer. These records were accessed to locate all other records from the area (Appendix C).

Accidental discoveries are often made while employing a method not intended to locate that specific species or scouting or working at a site. Individuals located accidentally are identified as such in the data base printout.

Four methods were used to locate vernal pools.
A low-elevation flyover prior to leaf emergenge if timed properly can provide a very efficient survey of amphibian breeding locations (including vernal pools). Some of these locations are mapped on National Wetland Inventory Maps but many are too small or temporary to have been mapped. The timing and flight conditions of the April 4 flyover combined to provide excellent visibility. All but one very small vernal pool were located using this method and much of the area did not need to be surveyed on foot for vernal pools. Pools were photographed to aid in relocation from the ground. The original photographs are included with this report (Appendix G).

Interviews Vernal pools are frequently unobtrusive and/or remote and sometimes can be obscured from the air by softwoods. I asked for locations of wet areas when interviewing local residents and staff.

Maps USGS topo maps and National Wetland Inventory maps were used to locate spots that have the potential to have vernal pools. They also indicated some semipermanent and permanent breeding locations.

Ground surveys consisted of hiking those portions of the Union Village Dam property which were not visible from the air and visiting on foot those pools seen from the plane or mentioned in interviews.

Some of the vernal pools located in the spring contained direct evidence of breeding (egg masses or adults). The one additional vernal pool located in the fall was dry. Hence species usage can only be inferred. Since vernal pools diminish in size over the course of
the year, the three measurements included in this report are an estimate of the extent of the water in the pool if it was at mean spring levels (early May). The three measurements are a rough estimate of the greatest length, greatest width, and depth at the deepest point.

Some of the vernal or ephemeral pools located were filling a man-made or enhanced depression or were filled by some alteration of drainage. A few of these sites were mapped. Those that fit the strict definition of a vernal pool and supported amphibian breeding are clearly labeled (Figure 1).

Results: reptiles and amphibians located, basic ecology, relative abundance, and ranks

Twenty one species of herptile were located in or near the project area: six species of salamander, seven species of frog (\& toad), three species of turtle, and five species of snake. All of these sightings, with dates, documentation status, state heritage ranks, and author of the field reports are listed in Appendix A. No state or federally listed species were located. All herptiles located or reported, their relative abundance, and status are summarized in Table 1.

Amphibians as a group were not particularly abundant in the project area. Some such as Plethodon cinereus (Redback salamander) are sensitive to flooding. Many amphibians require a deep litter layer and well-shaded, moist, mature, hardwoods for part of their life cycle. Others are sensitive to fragmentation. Many of the woodlands surrounding breeding sites in this area were highly fragmented by roads, old fields, lawn, or recreational areas. Large areas of well drained soil were also less than ideal for amphibian moisture requirements.

Six caudate (salamander) species were located in the project area. Ambystoma maculatum (Spotted Salamander) adults and egg masses were located thirteen times. This species breeds in some of the vernal pools, and beaver dams of the area as well as some of the pools along the edge of the floodplain. Euirycea bislineata (Northern Twolined Salamander) was also located 13 times. This species' habitat is along the margins of small streams and in or near seepage areas. Notophthalmus viridescens (Eastern Newt) were located eleven times. Adults were occasionally seen in still water and the Red eft stage was occasionally located in the woods. Desmognathus fuscus (Dusky Salamander) was located five times with a maximum number of three at one site. It was sometimes found with E. bislineata but it was also found in shaded seepage areas in the woods. Plethodon cinereus (Redback Salamander) was located only four times. This is the only salamander species in Vermont that does not require standing or running water. Hence it can be dispersed widely in woods well away from pools, ponds, and streams. Very few of this normally abundant species were located. They are intolerant of flooding. Yet they were missing even above the usual high-water line. It may be a result of the highly fragmented woods, shallow leaf litter, substrate type, or relative youth of the second-growth hardwoods. Gyrinophilus porphyriticus (Spring Salamander) is a stream salamander that requires well oxygenated, cold, clear, clean water. I was able to locate a single specimen of this species in the small brook draining into the large beaver dam complex along the west bank of the Main Branch of the Ompompanoosic.

None of these salamanders are rare in Vermont or the US. Dusky salamander and Spring salamander are ranked as S4 species. The other four (Spotted, Eastern newt, Redback, and Northern two-lined) are all S5 species in Vermont and G5 globally. Appendix E contains the 1999 list of all Vermont herptile species and their heritage ranks.

Seven species of anurans (frogs and toads) were located in the project areas. Rana sylvatica (Wood Frog) was located 32 times as egg masses, tadpoles, or adults and sometimes in good numbers. Like the spotted salamander, it breeds in vernal pools, beaver dams, and in a couple of the pools along the margin of the floodplain. After breeding, adults return to the woods. Rana clamitans (Green Frog) was located 13 times

Table 1. Reptiles and amphibians found on or near the US Army Corps of Engineers' Property at Union Village Dam in Thetford, VT during 1999.

Species	Common name	$\begin{gathered} \text { \# of } \\ \text { reports } \end{gathered}$	State rank	Global rank
Caudates	Salamanders			
Ambystoma maculatum	Spotted Salamander	13	S5	G5
Eurycea bislineata	N. Two-lined Salamander	13	S5	G5
Notophthalmus viridescens	Eastern Newt	11	S5	G5
Desmognathus fuscus	Dusky Salamander	5	S4	G5
Plethodon cinereus	N. Redback Salamander	4	S5	G5
Gyrinophilus porphyriticus	Spring Salamander	1	S4	G5
Anurans	Frogs and toads			
Rana sylvatica	Wood Frog	32	S5	G5
Rana clamitans	Green Frog	13	S5	G5
Pseudacris crucifer	Spring Peeper	10	S5	G5
Bufo americanus	American Toad	6	S5	G5
Hyla versicolor	Gray Tree Frog	6	S5	G5
Rana catesbeiana	Bullfrog	5	S5	G5
Rana palustris	Pickerel Frog	4	S4	G5
Testudines	Turtles			
Chrysemys picta	Painted Turtle	7	S5	G5
Chelydra serpentina	Snapping Turtle	4	S5	G5
Clemmys insculpta	Wood Turtle	2	SC-S3	G5
Serpentes	Snakes			
Thamnophis sirtalis	Common Garter Snake	8	S5	G5
Lampropeltis triangulum	Milk Snake	2	S5	G5
Storeria occipitomaculata	Redbelly snake	1	S5	G5
Diadophis punctatus	Ringneck Snake	- 1	S4	G5
Liochlorophis vernalis	Smooth Green Snake	1	S4	G5

Table 2. Reptiles in the Vermont Herp Database that are reported from surrounding towns but were not found during the survey in the project areas.

Species	Common name	Towns	Likelihood
Ambystoma jeffersonianum	Jefferson Salamander	Norwich	Unlikely
		Strafford	
Rana pipiens	N. Leopard Frog	Norwich	Unlikely
		Strafford	
Storeria dekayi	Brown Snake	Strafford	Possible

in generally small numbers primarily in beaver ponds and isolated floodplain pools but also in a couple of the vernal pools. It breeds in still permanent water with surrounding vegetation but travels widely as long as it can stay moist. Pseudacris crucifer (Spring Peeper) was recorded 10 times. This species is more often heard then seen. Some reports of this species are of choruses which may include scores of individuals. It breeds in a variety of still waters from ditches to beaver dams. Total numbers were not impressive. Bufo americanus (American Toad) was also located 6 times. Sometimes calling or occasionally two or three adults in a search area. At other Army Corps sites, this is one of the few species that I have seen breed in the floodplain after the spring flood water subsided. Hyla crucifer (Gray Treefrog) was located six times. It is an arboreal species and hence it is very difficult to find. It is most easily located by call during hot humid June and July nights. It is probably under-reported here as a result. It breeds in permanent water containing standing vegetation. Rana catesbeiana (Bullfrog) was heard or seen five times. This species requires permanent still water with vegetated margins. Rana palustris (Pickerel Frog) was located four times. There appears to be appropriate habitat for this species, yet relatively few were found. This species likes dense annual vegetation near clean permanent water. The Pickerel Frog state rank was recently changed (January 1997) to an S4. All other anuran (frog) species located are listed as S5 species in Vermont and G5 globally.

Reptiles are very rarely as abundant as amphibians in Vermont. As expected they were located much less frequently. Two species of turtle were found in the project area. Chrysemys picta (Painted Turtle) was seen seven times. Despite trapping efforts elsewhere, they were found only in the beaver pond area mentioned previously. This species prefers still permanent water bodies with soft bottoms. Chelydra serpentina (Snapping Turtle) was located four times in the Beaver ponds and in floodplain pools. Since this species is almost entirely aquatic, they are probably underreported. This turtle is rugged and adaptable. It inhabits all types of permanent water. Both of these are S5 species in Vermont and G5 globally. Clemmys insculpta (Wood turtle) was well described by a resident who walks on the Army Corps property regularly. She caught one and had it identified over the phone by the staff at the Vermont Institute of Natural Science. I was unable to find any of the species myself on the property but did manage to locate a single small specimen upstream from the dam property. It was crossing Rte. 132 where Abbott Brook enters the West Branch of the Ompompanoosic River near Miller Pond Rd. The Wood turtle is an S3 species in Vermont. It has been collected near this dam from along the Ompompanoosic River. That specimen is in the American Museum of Natural History in NYC. It has been reported as recently as 1985 from Norwich and 1990 from West Fairlee. Wood turtles are known to travel over a mile to reach good nesting locations. It seems probable that small numbers continue to use this Army Corps property.

Five species of snake were confirmed in the project area. Thamnophis sirtalis (Common Garter Snake) was located eight times. This species is by far the most abundant and adaptable snake species in Vermont and hence has a state rank of S5. Two Lampropeltis triangulum (Milk Snake) were found on the property. This species is also ranked as an S 5 but is no where near as widespread and abundant as the Common Garter Snake. A single Diadophis punctatis (Ringneck Snake) was located at the base of the rock slope at the eastern edge of the top of the dam. This is a secretive S 4 species. A single Liochlorophis vernalis (Smooth Green Snake) was located along Rte. 132 on the western border of the property. This S 4 species is quite unusual in the state. It prefers upland pastures and overgrown fields. A single adult Storeria occipitomaculata (Redbelly snake - S5) was found near the open fields along the east side of the main branch of the river. Two additional skins of the same genus were located but they may have been from either this or a different closely related species. This is a secretive mixed woodland snake.

Species reliably reported from surrounding towns but not located during the survey
Reliable reports of three additional species are found in the Vermont Herp Database for the towns immediately surrounding Thetford (Table 2 \& Appendix B): Jefferson Salamander (Ambystoma jeffersonianum - S2), Northern Leopard Frog (Rana pipiens - S4), and Brown Snake (Storeria dekayi - S4). None of these species were located during the survey. If a significant population of Jefferson Salamanders were within the confines of the property I should have seen their egg-masses. I think it unlikely that they are breeding on the property. Still, since they are an S2 species, staff should be on the lookout for them. They are a large (6-7 inch) heavy-bodied, solid-color, grayish brown, salamander that might be encountered crossing a road on some rainy spring evening. If it were located, an effort should be made to locate its breeding site and protect and manage the breeding site along with the surrounding woodlands. Northern Leopard Frogs are explosive breeders. The best potential overwintering habitat for them would seem to be the beaver pond area. They should have been easily located if in the area. I think it is unlikely that they are. It is possible however that a small population of Northern Brown Snakes could be on the property. I found two shed skins from this genus. However, I also found an adult Redbelly Snake which is in the same genus and may have been the source of the skins.

A list of all species ever reported from either Orange or Windsor Counties but not found during this survey (including unverified records), is included in Appendix C. Three of them are S1 species in Vermont. There is no evidence that they use the Army Corps lands surveyed now or that they have in the past but local staff should be aware of their significance if they ever were sighted. Timber rattlesnake, (Crotalus horridus) has been reliably reported from both Springfield and Windsor with a couple unverified reports from as nearby as Sharon. Fowler's Toad (Bufo fowleri) was reported from White River Junction in 1983. It is the only record of this species from Windsor County. I suspect its distribution is limited to the Connecticut River Floodplain. The Black Racer (Coluber constrictor) is Vermont's rarest snake. One historic record (not well documented) exists from Royalton in 1911 and plausible but unverified reports come from Hartland, Royalton and Corinth. If it continues to exist in this state at all it would most likely be found in overgrown fields and along warm rocky ridges adjacent to the southern Connecticut River Valley.

It is not possible to prove the absence of rare species. It is still possible that other species exist in low numbers within the project area. However, given the distribution and amount of field effort combined with interviews of individuals who have spent a great deal of time in the area it is very unlikely that species not listed here have viable populations within the project areas.

Additional information on the field marks, habitat, and natural history of all
Vermont amphibians is contained in Appendix D.

Vernal Pools

Six temporary pools showed evidence of amphibian spring-breeding and fit the definition of vernal pools. In addition amphibian breeding was seen in the beaver ponds and some of the large floodplain pools. Sixteen locations are shown in Figure 1. Not all of them are classic vernal pools nor did they all show evidence of amphibian use. Table 3 gives a brief description of pool type, significance, size, origin, and includes notes on the amphibians which were found using the pools. The numbers are keyed to those on my map (Figure 1). No evidence of rare, threatened, or endangered amphibians was found in any of the pools.

The floodplains of Union Village Dam contain some low areas that trap and hold water after flooding. The largest and most permanent of these are clearly shown on USGS topographical maps or National Wetlands Inventory maps. However, none of the
vernal pools I identified on my maps are on either of the above two map types. In addition, some of the smaller pools in the floodplains are not shown. If the floodplain was filled at the normal time of spring breeding for amphibians (April), these depressions would not be available to them. Those that are located well out in the floodplain would only rarely be available to spring breeders, although they could be breeding sites for summer breeders (the ones that do not use vernal pools). Some of the pools along the margins of the floodplain would be available more frequently. However, even if the flood water withdraws early enough for amphibians to reach some of these sites, the flooding distributes predators such as fish into some of these little pools. These predators would have a negative impact on the breeding success of vernal pool breeders at these sites. I located spring breeding amphibians in even some of the larger depressions along the margin of the floodplains perhaps due to the relatively low water level this spring.

Although not vernal pools, beaver dams are also important amphibian breeding sites. The vernal-pool breeding species found in this project area also breed in beaver ponds with adequate sub-aquatic cover for the tadpoles, and adequate surrounding woodlands for the adults. As beaver ponds age and break, vernal pools may be left.

A few of the pools mapped were too ephemeral this year to support amphibian breeding. However, in wetter springs they may be able to support limited breeding, hence they were shown in Figure 1.

Pools VP1,2,3,4,5, and VP11 fit the definition of vernal pool and showed evidence of spring amphibian breeding. They are marked with an asterisk in Table 3, were the only pools marked on the composite aerial photos, and are circled on the topo map (Figure 1). Pools VP6,7,8 and EP9 \& 10 were not productive this year but may be lightly to moderately productive in a wet year. In any year they are not as significant as the first six. VP12 is tiny but deep enough to support very limited breeding. I discovered it too late in the year to know if it did. Floodplain pools FP 13 \& 14 did support amphibian breeding this year (but are not typical vernal pools). I suspect they were used since there was not significant flooding this spring and they had access to the site in early spring. The oxbow FP15 may also support breeding in wet years and could fit the definition of a vernal pool now that it is largely isolated from the river but it was entirely dry by the time of my visit in June. One of the most productive areas for all reptiles and amphibians was the beaver pond complex (BD16). The margins of these ponds will support species typical of vernal pools while the deeper water sections support the late and permanent water breeders.

Conservation (herps)

The only S 3 species that is known to use the area is C. insculpta (Wood turtle). This species is far more terrestrial than the other two local turtle species. It wanders territories that extend along river valleys and up to a few hundred meters away from the river. It was not located by me on the Army Corps property but it was reliable reported on the property and I found it this summer just upstream. Other older records from the area support both these records. All of the project area should be considered potential habitat. In a large area such as this with an apparently small population of C. insculpta it would be necessary to attach radio transmitters to the adults and monitor their activities in order to locate significant feeding, overwintering, and nesting areas.
C. insculpta are excellent climbers but must find the dams a serious obstacle (although not insurmountable as evidenced by M. Toni's observation of a Wood turtle on top of Townshend Dam). The large gaps between the rocks used in the construction of sections of the dam may act as traps. The wooded, or grassy areas should not be a barrier. Heavily traveled roads are a serious threat to this species. Many of my reports from around the state are of specimens killed in roads. Commercial and personal collection are also a threat. Mowing could also cause mortality depending on the timing of the cut and the height of the mower blade. If mowing were done only after the ground

EP9.10 . $5 / 6 / 99$

. $3 \mathrm{~m} . \mathrm{x} .5 \mathrm{~m} . \mathrm{x} .10 . \mathrm{cm}$

.W.et.brushy...area.on.opposite.side.of.the.r.oad.was.too.shallow.to.warrant.trapping,
Nothing found, but may provide breeding in wetter years.
.Vernal..pool. \qquad Union.Village. Dam..............Vernal.P.ool...4/15/9.9.-.-11.on.field.map.
VP11* 4/16/99........Im.x.4m.x.25.cm.
In.floadplain.shrubs.roughly. 30.m.west.of.the.Main.Branch.access.road,..east.of.the.Main.Branch, nor.th.of.the.confluence.of.the.two.river. branches,
Surprisingly productive.for.such.a.small.and..open..pool.
A. maculatum, R. sylvatica
.Vernal. pool. Union.V:Illage..Dam...............Vernal.Pool....2/28/99.-......on.field.map.
VP1 2 .9/28/.99........ $2 \mathrm{~m} \times \mathrm{x} .2 \mathrm{~m} \times .40 . . \mathrm{cm}$
In.pine.and.hemlock,.w.w.thin.flood.plain.just.east..of..snowmobile.trail.west.of...the..West. Branch.
Nor.thwrest.of.the..access.raad.hridge.across.the..West.Branch.in.the next.small.wooded.floodplain
 Too late in the season to observe signs of breeding.

Floondplain..pools. \qquad Union.Millage.Dam. .Fload.Plain.Pool...5/6/9.9.....2\&z.on.field.map.
FP13.14 .5/6/99..........\#2.not.estimated.hut.much.smaller..and.shallow.er..than.\#3,...\#3..100m.x.7.0m.x. 2 m
Mucky_hottomed.floodplain.poals.in.shrubs.east.of.the.main.branch.below...the.confluence.and..west.of.the.access.road. \qquad

FP15 6/23/.99........Roughly. $100 \mathrm{~m} . \mathrm{x} .5 \mathrm{~m} . x .40 . \mathrm{cm}$.
.Old..oxhow..filled.with.sedges.....Visible.on.bath.UUSGS.tapa.and.NWI._maps..
Raughly...100.m..west..of.Rte...1.1.,..and. north.of..the..Tucker.Hill.Road.junction.

Too late in the season to evaluate spring breeding.

Beaver..ponds.
Union.Village.Dam..............Beaver.D.D.ams..4/15/99-BD..on.field.map.
BD16 4/15/99.
Large..complex.of.heaver.ponds.west.of.the.Main.Branch,_north.of.the.foatbridge....Very. .productive.for.a.wide.variety..of.species

freezes in the fall, mortality would be minimized. The higher the mower blades the better. A minimum height of six inches should be maintained. Increased recreational use of the project areas would also provide an increased threat to this species. Studies have shown a decrease in populations of this species with increased recreational pressure (Garber and Burger, 1995). Other than mortality as a result of increased traffic and recreational vehicles, the implication is that the increased occurrence of accidental meetings of terrestrial turtle (very cute) and human often results in a kidnapped turtle which is permanently removed from the breeding population. This turtle does not breed until it reaches an age of ~ 14 years (Ernst et al, 1994). It is a long lived, low reproductive capacity species which can not tolerate the removal of those few adults that have managed to make it to breeding age. Increased egg predation from raccoons and skunks also may be limiting populations. If nests are found, covering the nest with wire mesh so that they can not be dug up can prevent egg mortality but these coverings need to be checked regularly or designed so that small turtles can escape. Public and camper education, keeping roads and traffic to a minimum, maintaining sections without trails, and the use of underpasses when necessary could all help this species survive.

Most of the woodland species of reptiles and amphibians were located above the high water line of the dams, suggesting that they are intolerant of flooding. More recent high water lines could be determined by the flotsam deposited in the woods. I have seen this intolerance to flooding before, particularly with P. cinereus (Redback salamander). However other species such as E. bislineata (N. two-lined salamander) and D. fuscus (Dusky salamander) were not located below the high water line in the project areas. Frogs and spring breeding salamanders did migrate into the margins of the floodplain to breed and C. serpentina (Snapping turtle) and C. picta (Painted turtle) were found in the floodplains also.

General recommendations for the maintenance of reptile and amphibian habitat is included in the handout Forest Management Practices to Minimize the Negative Impacts on Vermont Reptiles and Amphibians. I have included a copy (Appendix F).

Conservation (vernal pools)

Vernal pools are the result of a fine balance between the amount of water received and the rate at which it is lost. If they are exposed to more sunlight than they normally receive, they may evaporate too fast to provide habitat through metamorphosis in June or July. Hence it is important that these pools remain shaded and that the drainage is not altered in such a way as to prevent them from receiving and/or holding as much run-off. A minimum 30 m buffer of uncut trees should be left to conserve shade. However, it should be kept in mind that the amphibians breeding in these pools may be coming from as far away as 400 meters. deMaynadier and Hunter (1995) recommend that no more than 25% of the basal area should be cut in a 100 m 2nd-tier buffer that extends beyond the no-cut zone. Heavy equipment should be kept out of the pools and they should not be filled with debris. If possible they should not be flooded by backwater from the dams. This could introduce predators, or prevent access to the breeding adults.

Access to the pools is a concern, if heavily traveled roads are built or already exist between wintering areas and breeding pools, scores of amphibians will be killed on warm rainy nights in the spring as they migrate to the pools to breed. If roads can be closed during these periods (April-May nights) it will minimize road kills of breeding adults. Although young will still need to leave the ponds in June through August. Properly designed amphibian tunnels built under roads can guide young and adult amphibians, reptiles, and small mammals under roads. These are used heavily in Europe but have only begun to be used in the US (Langton, 1989). They are a worthwhile investment in wildlife.

Amphibian breeding traps can result when pools are created in gravel pits or road beds that hold water long enough to entice amphibians to breed but not long enough for
the young to metamorphose. Even if these pools hold water through the time of metamorphosis, some of them are too frequently disturbed by vehicles to produce metamorphs. The drainage of man-made pools that are frequently disturbed (road beds) should be altered so that they do not gather any water in the spring. They could also be relocated to areas that are not disturbed. If so, care should be taken to make sure they are deep enough to hold water through July of most years ($>50 \mathrm{~cm}$).

Amphibians absorb water and any substance that is dissolved in it directly through their skin. The long-term affects of many chemicals (herbicides, pesticides, fungicides, etc.) have not been tested on amphibians. Many others have been shown to be toxic (Power et al, 1989). Alternatives to chemicals should be sought to protect amphibian species.

Other species of interest

Other species (not reptiles or amphibians) identified while in the field are written in the copies of my field notes. Those that were most unusual are listed here.

Rusty blackbird Beaver pond complex 5/13
Black-billed cuckoo
Burnt-over fields east of Main Branch access road 6/24

Technical literature cited or useful

Brown, W.S. 1993. Biology, status, and management of the timber rattlesnake (Crotalus horridus): a guide for conservation, Herpetological Circular No. 22. Society for the Study of Reptiles and Amphibians 78 pp.
deMaynadier, P. and M. Hunter. 1995. The relationship between forest management and amphibian ecology: a review of the North American literature. Environmental Reviews 3:230-261.

Ernst, C.H., R.W. Barbour, and J.E. Lovich. 1994. Turtles of the United States and Canada. Smithsonian Institution Press, Washington D.C. 578 pp.

Garber, S.D. and J. Burger. 1995. A $20-\mathrm{yr}$ study documenting the relationship between turtle decline and human recreation. Ecological Applications, 5(4) pp. 1151-1162.

Power, T., Clark, K.L., Harfenist, A., and D.B. Peakall. 1989. A review and evaluation of the amphibian toxicological literature, Technical Report No. 61, Canadian Wildlife Service, Headquarters 222 pp.

Langton, T.E., 1989. Amphibians and Roads. Proceedings of the Toad Tunnel Conference, Rendsburg, Federal Republic of Germany, 7-8 January, 1989. ACO Polymer Products, Ltd. Shefford U.K. 202 pp.

Other Useful Sources of Information on New England Reptiles and Amphibians

Identification. A few good field guides to reptiles and amphibians exist. These help you identify herptiles but do not give you life history information. One that is easy to find, and up to date is:

Conant, R., and J.T. Collins. 1998. A field guide to reptiles and amphibians of Eastern and Central North America. Third Edition, expanded, Houghton Mifflin Company, Boston Massachusetts 616 pp.

Natural History. These guides focus less on identification and more on natural history, local distribution, and conservation.

DeGraaf, R.M., and D.D. Rudis. 1983. Amphibians and reptiles of New England. The University of Massachusetts Press, Amherst, Massachusetts 85 pp .

Harding, J.H. 1997. Amphibians and reptiles of the Great Lakes Region. The University of Michigan Press, Ann Arbor, Michigan 378 pp. (Lake Champlain is part of the Great Lakes Drainage so we share most of the same species.)

Hunter, M.L., A. Calhoun, and M. McCullough (eds.). 1999. Maine amphibians and reptiles. The University of Maine Press, Orono, Maine 272 pp . (This edition includes a CD of local frog calls. Call 207-581-1408 to order.)

Klemens, M.K. 1993. Amphibians and reptiles of Connecticut and adjacent regions. State Geological and Natural History Survey of Connecticut, Bulletin No. 112 318 pp .
(call 203-566-7719 to order)
Tyning, T.F. 1990. A guide to amphibians and reptiles. Little, Brown and Company. Boston Massachusetts 400 pp .

Calls. A very useful tape to help you learn the calls of frogs and toads is:
Eliot, L. 1992. The calls of frogs and toads; Eastern and Central North America. Nature Sound Studio. Ithaca New York.
(call 1-800-336-5666 to order)
Websites. Many useful sites exist. Some provide more reliable information than others. A few reliable sites to get you started:

North American Amphibian Monitoring Program (NAAMP). http://www.im.nbs.gov/amphibs.html

North American Reporting Center for Amphibian Malformations (NARCAM). http://www.npsc.nbs.gov/narcam/

Society for the Study of Amphibians and Reptiles (SSAR). http://falcon.cc.ukans.edu/~gpisani/SSAR.html

The Snakes of Massachusetts (a useful identification key). http://klaatu.oit.umass.edu/umext/snake/

Figure 1. Locations of vernal pools within the Union Village Dam project area.

Appendix A

All Records of Reptiles and Amphibians Found During the 1999 Survey of Union Village Dam

Sorted by Class, Order, and Common Name

Eastern newt	S5	Thetford	4/16/99	Photo	J. Andrews
Eastern newt	S5	Thetford	4/16/99	Sight	J. Andrews
Eastern newt	S5	Thetford	5/6/99	Sight	J. Andrews
Eastern newt	S5	Thetford	5/7/99	Photo	J. Andrews
Eastern newt	S5	Thetford	5/12/99	Sight	J. Andrews
Eastern newt	S5	Thetford	5/12/99	Sight	J. Andrews
Eastern newt	S5	Thetford	5/13/99	Sight	J. Andrews
Eastern newt	S5	Thetford	6/23/99	Sight	J. Andrews
Eastern newt	S5	Thetford	6/24/99	Sight	J. Andrews
Eastern newt	S5	Thetford	9/27/99	Sight	J. Andrews
Northern dusky salamander	S4	Thetford	5/6/99	Photo	J. Andrews
Northern dusky salamander	S4	Thetford	5/13/99	Sight	J. Andrews
Northern dusky salamander	S4	Thetford	5/13/99	Sight	J. Andrews
Northern dusky salamander	S4	Thetford	6/23/99	Sight	J. Andrews
Northern dusky salamander	S4	Thetford	6/23/99	Sight	J. Andrews
Northern redback salamander	S5	Thetford	5/13/99	Photo	J. Andrews
Northern redhack salamander	S5	Thetford	5/13/99	Photo	J. Andrews
Northern redback salamander	S5	Thetford	6/23/99	Sight	J. Andrews
Northern redback salamander	S5	Thetford	9/29/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/6/99	Photo	J. Andrews
Northern two-lined salamander	S5	Thetford	5/7/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/7/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/7/99	Sight	J. Andrews
Northern two-lined salamander.	S5	Thetford	5/7/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/12/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/12/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/12/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/13/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/13/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	5/13/99	Sight	J. Andrews
Northern two-lined_salamander	S5	Thetford	5/13/99	Sight	J. Andrews
Northern two-lined salamander	S5	Thetford	9/28/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	4/15/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	4/16/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	4/16/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	4/17199	Sight	J. Andrews
Spotted salamander	S5	Thetford	4/17/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/6/99	Sight	J. Andrews
Spotted salamander	S5	Thetford	5/7/99	Sight	J. Andrews
Spetted salamander	S5	Thetford	5/13/99	Sight	J. Andrews
Spring_salamander	S4	Thetford	5/13/99	Sight	J. Andrews

American toad	S5	Thetford	5/6/99	Heard	rew
American toad	S5	Thetford	5/7/99	Phato	J. Andrews
American toad	S5	Thetford	6/22/99	Sight	J. Andrews
American toad	S5	Thetford	6/22/99	Heard	J. Andrews
American toad	S5	Thetford	6/23/99	Sight	J. Andrews
American toad	S5	Thetford	6/23/99	Sight	J. Andrews
Bullfrog	S5	Thetford	5/6/99	Heard	J. Andrews
Bullfrog	S5	Thetford	5/13/99	Heard	J. Andrews
Bullfrog	S5	Thetford	6/22/99	Heard	J. Andrews
Bullfrog	S5	Thetford	6/23/99	Heard	J. Andrews
Bullfrog	S5	Thetford	9/27/99	Sight	J. Andrews
Gray tree frog	S5	Thetford	5/6/99	Heard	J. Andrews
Gray tree frog	S5	Thetford	5/7/99	Heard	J. Andrews
Gray tree frog	S5	Thetford	6/22/99	Heard	J. Andrews
Gray tree frog	S5	Thetford	6/23/99	Heard	J. Andrews
Gray tree frog	S5	Thetford	6/23/99	Heard	J. Andrews
Green frog	S5	Thetford	4/15/99	Sight	J. Andrews
Green frog	S5	Thetford	4/15/99	Sight	J. Andrews
Green frog	S5	Thetford	4/16/99	Sight	J. Andrews
Green frog	S5	Thetford	5/6199	Sight	J. Andrews
Green frog	S5	Thetford	5/7199	Sight	J. Andrews
Green frog	S5	Thetford	5/7199	Photo	J. Andrews
Green frog	S5	Thetford	6/22/99	Heard	J. Andrews
Green frog	S5	Thetford	6/22/99	Sight	J. Andrews
Green frog	S5	Thetford	6/23/99	Sight	J. Andrews
Green frog	S5	Thetford	6/23/99	Heard	J. Andrews
Green frog	S5	Thetford	9/27199	Sight	J. Andrews
Green frog	S5	Thetford	9/28/99	Sight	J. Andrews
Green frog	S5	Thetford	9/28/99	Sight	J. Andrews
Pickerel frog	S4	Thetford	5/6/99	Sight	J. Andrews
Pickerel frog	S4	Thetford	5/7/99	Heard	J. Andrews
Pickerel frog	S4	Thetford	6/23/99	Sight	J. Andrews
Pickerel frog	S4	Thetford	6/24/99	Sight	J. Andrews
Spring peeper	S5	Thetford	4/15/99	Heard	J. Andrews
Spring peeper	S5	Thetford	4/15/99	Sight	J. Andrews
Spring peeper	S5	Thetford	4/16/99	Heard	J. Andrews
Spring peeper	S5	Thetford	4/16/99	Photo	J. Andrews
Spring peeper	S5	Thetford	4/17/99	Heard	J. Andrews
Spring peeper	S5	Thetford	5/6/99	Heard	J. Andrews
Springpeeper	S5	Thetford	5/6/99	Heard	J. Andrews
Springpeeper	S5	Thetford	5/7/99	Heard	J. Andrews
Spring peeper	S5	Thetford	5/13/99	Heard	J. Andrews
Wood frog	S5	Thetford	4/15/99	Sight	J. Andrews
Wood frog	S5	Thetford	4/15/99	Sight	J. Andrews
Wood frog	S5	Thetford	4/15/99	Heard	J. Andrews
Wood frog	S5	Thetford	4/15/99	Sight.	J. Andrews

Wood frog.
Wood frog
Wood frog.
Wood frog
Wood frag
Wood frog.
Wood frog
Wood frog
Whod frog
Wood frog
Wrod frog
Wood frog
Storeria sp.
Storeriasp.
Commongarter snake.
Commongarter snake
Commongarter snake
Commongarter snake
Common garter snake
Commongarter snake
Commongarter snake
Commongarter snake
Milk snake
Milk snake
Redbelly snake
Ringneck snake
Smooth green snake
Common snapping turtle
Common snapping twrtle
Common snapping turtle

S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Heard	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/15/99	Sight	J. Andrews
S5	Thetford	4/16/99	Sight	J. Andrews
S5	Thetford	4/16/99	Photo	J. Andrews
S5	Thetford	4/16/99	Photo	J. Andrews
S5	Thetford	4/16/99	Sight	J. Andrews
S5	Thetford	4/16/99	Sight	J. Andrews
S5	Thetford	4/16/99	Heard	J. Andrews
S5	Thetford	4/16/99	Sight	J. Andrews
S5	Thetford	4/17199	Heard	J. Andrews
S5	Thetford	4/17/99	Heard	J. Andrews
S5	Thetford	4/17/99	Sight	J. Andrews
S5	Thetford	4/17/99	Sight	J. Andrews
S5	Thetford	5/6/99	Sight	J. Andrews
S5	Thetford	5/6/99	Sight	J. Andrews
S5	Thetford	5/6/99	Sight	J. Andrews
S5	Thetford	5/6/99	Sight	J. Andrews
S5	Thetford	5/6/99	Sight	J. Andrews
S5	Thetford	6/22/99	Sight	J. Andrews
S5	Thetford	6/23/99	Photo	J. Andrews
S5	Thetford	6/23/99	Sight	J. Andrews
	Thetford	6/24/99	Sight	J. Andrews
	Thetford	9/28/99	Sight	J. Andrews
S5	Thetford	5/6/99	Photo	J. Andrews
S5	Thetford	5/13/99	Sight	J. Andrews
S5	Thetford	6/23/99	Sight	J. Andrews
S5	Thetford	6/24/99	Sight	J. Andrews
S5	Thetford	6/24/99	Sight	J. Andrews
S5	Thetford	9/28/99	Sight	J. Andrews
S5	Thetford	9/28/99	Sight	J. Andrews
S5	Thetford	9/29/99	Sight	J. Andrews
S5	Thetford	6/23/99	Photo	J. Andrews
S5	Thetford	9/28/99	Sight	J. Andrews
S5	Thetford	9/27/99	Photo	J. Andrews
S4	Thetford	6/24/99	Photo	J. Andrews
S4	Thetford	9/29/89	Photo	J. Andrews
S5	Thetford	$5 / 7199$	Photo	J. Andrews
S5	Thetford	517899	Photo	J. Andrews
S5	Thetford	6/23/99	Sight	J. Andrews

Painted turtle	S5	Thetford	5/7/99	Photo	J. Andrews
Painted turtle	S5	Thetford	5/7/99	Photo	J. Andrews
Painted turtle	S5	Thetford	6/23/99	Sight	J. Andrews
Painted turtle	S5	Thetford	6/23/99	Sight	J. Andrews
Painted turtle	S5	Thetford	6/23/99	Sight	J. Andrews
Painted turtle	S5	Thetford	6/23/99	Sight	J. Andrews
Painted turtle	S5	Thetford	6/23/99	Sight	J. Andrews
Wood turtle	S3	Thetford	4/15/99	Sight	J. Andrews
Wood turtle.	S3	Thetford	9/29/99	Photo	J. Andrews

Appendix B

Records of Species Documented from Adjacent Towns but not Located During the 1999 Survey of Union Village Dam

Sorted by Class, Order, and Common Name

Jefferson salamander group	S2	Norwich.	4/24/1975 specimen.	Frey
Jefferson salamander group	S2	Norwich	4/24/1975 specimen	Frey
Jefferson salamander group	S2	Norwich	7/9/1975 specimen	W.W. Ballard
Jefferson salamander group	S2	Norwich	01/01/1980 photo	Ted Levin
Jefferson salamander group	S2	Norwich	01/01/1981 Photo	Ted Levin
Jefferson salamander group	S2	Norwich	01/01/1883 sight	Ted Levin
Jefferson salamander group	S2	Norwich	01/01/1989 sight	M. Desmeules
Jefferson salamander group	S2	Strafford	4/24/94 photo	S. Faccio
Northern leopard frog	S4	Norwich	01/01/1993 sight	W. W. Ballard
Northern leopard frog	S4	Strafford	7/22/95 _ sight	Steve Faccio, VINS
Brown snake	S4	Strafford	5/15/94 sight	S. Faccio

Appendix C

Records of Reptiles and Amphibians
 Documented from Orange and Windsor Counties That Were Not Located During the 1999 Survey of Union Village Dam

Allegheny dusky salamander	SR	Stockbridge	4/21/1962	specimen	J. Lazell
Common mudpuppy	S2			Unverified	Gary Pelton
Common mudpuppy	S2	Hartford	4/29/1982	specimen	
Common mudpuppy	S2	Springfield	12/30/82	sight	Mike Kazak
Common mudpuppy	S2	Hartford	1/1/97	Sight	Derek
Common mudpuppy	S2	Hartland	4/1/97	Sight	J. DiStefano Jr.
Common mudpuppy	S2	Hartford	4/1/98	Sight	P. Bartlett
Fowler's toad	S1	Hartford	4/22/1983	phato	M. Caduto
Mink frog	S4	Randolph	01/01/1983	sight	M. Desmeules
Mink frog	S4	Braintree	01/01/1983	sight	M. Desmeules
Mink frog	S4	Brookfield	122/1983	specimen	William Barnard
Mink frog	S4	Brookfield	9/22/1988	specimen	William Barnard
Northern leopard frog	S4	Bradford		sight	Daphne Sanborn
Northern leopard frog	S4	Royalton		Unverified.	Dave Grant
Northern leopard frog	S4	Pomfret		Unverified	Dave Grant
Northern leopard frog	S4	Weathersfield		Unverified	Gary Pelton
Northern leopard frog	S4	Bridgewater	1/1/1822	Sight	Z. Thompson (author)
Northern leopard frog	S4		01/01/1981	specimen	William Barnard
Northern leopard frog	S4	Bradford	7/01/1986	photo	Ted Levin
Northern leopard frog	S4	Bradford	07/01/1986	photo	Ted Levin
Northern leopard frog	S4	Norwich	01/01/1993	sight	W. W. Ballard
Northern leopard frog	S4	Strafford	7122/95	sight	Steve Faccio, VINS
Northern leopard frog	S4	Plymouth	$7131 / 98$	Unverified.	G. Hellyer
Brown snake	S4	Strafford	5/15/94	sight	S. Faccio
Copperhead	unk	Strafford	1/1/1960	Unver.	T. Southworth
Copperhead	unk	Norwich	1/1/1960	Unver.	T. Southworth
Eastern racer	S1	Corinth		Sight	E. F. Dunbar (contribt
Eastern racer	S1	Royalton	12/31/1911	Unverified	E. M. Wood Lovejoy (a
Eastern racer	S1	Newbury	9/17197	Unverified	J. Andrews
Eastern racer.	S1	Hartland	4/15/99	Unverified	J. Andrews
Eastern ribbon snake	S2	Tumbridge	6/1/79	Unverified.	Dave Grant
Eastern ribbon snake	S2	Sharon	6/12/79	Unverified	Dave Grant
Timber rattlesnake	S1	Windsor		sight	Gus Aldrich
Timber rattlesnake.	S1	Ascutney		Unver.	M. Romano (Author)
Timber rattlesnake	S1	Ludlow		Unver.	M. Romano (Author)
Timber rattlesnake	S1	South Royalton		Unver.	M. Romano (Author)
Timber rattlesnake	S1	Sharon		Unver.	M. Romano (Author)
Timber rattlesnake	S1	West Hartford		Unver.	M. Romano (Author)
Timber rattlesnake	S1	Springfield	10/9/1891	Sight	A. F. Rice
Timber rattlesnake	S1	Springfield	10/9/1891	Sight	A. F. Rice
Timber rattlesnake	S1	Springfield	10/9/1891	Sight	A. F. Rice
Timber rattlesnake.	S1	Springfield	1/1/1902	Unverified	Miss Luthers Whitney
Timber rattlesnake	S1	Weathersfield	1/1/1923	Unverified	as told to G. Neilson
Timber rattlesnake	S1	Windsor	1-1-35	sight	Blood family
Timber rattlesnake	S1	Springfield	3/15/41	Field	Harold Trapido
Timber rattlesnake	S1	Windsor	1-1-50	sight	Blood family

Timber rattlesnake
Timber rattlesnake
Timber rattlesnake
Timber rattlesnake.
Timber rattlesnake
Timber rattlesnake.
Timber rattlesnake
Timber rattlesnake

S1 Ludlow
S1 Ludlow
S1 Sharon
S1 Windsor
S1 Norwich
S1 Springfield
S1 Randolph
S1 Newbury

1-1-50 Unverified 1/1/1960 Unver. 1-1-60 Unverified 1-1-64 sight Walt Cabell 6/14/90_ Unver. P. Nothnagle 8/15/94 Sight Dan Magoon 6/5/97 Unverified Nathan Webb 9/17/97 Unverified. J. Andrews

Desmognathus ochrophaeus	SR	Stockbridge	4/21/1962 specimen	J. Lazell
Necturus maculosus	S2		Unverified	Gary Pelton
Necturus maculosus	S2	Hartford	4/29/1982 specimen	
Necturus maculosus	S2	Springfield	1230/82 sight	Mike Kazak
Necturus maculosus	S2	Hartford	1/1/97 Sight	Derek
Necturus maculosus	S2	Hartland	4/1/97 Sight	J. DiStefano Jr.
Necturus maculosus	S2	Hartford	4/1/98 - Sight	P. Bartlett
Bufo fowleri	S1	Hartford	4/22/1983. photo	M. Caduta
Rana septentrionalis	S4	Randolph	01/01/1983 sight	M. Desmeules
Rana septentrionalis	S4	Braintree	01/01/1883 sight	M. Desmeules
Rana septentrionalis	S4	Brookfield	12121983 specimen	William Barnard
Rana septentrionalis	S4	Brookfield	9/22/1988 specimen	William Barnard
Rana pipiens	S4	Bradford	sight	Daphne Sanborn
Rana pipiens	S4	Royalton	Unverified	Dave Grant
Rana pipiens	S4	Pomfret	Unverified	Dave Grant
Rana pipiens	S4	Weathersfield	Unverified	Gary Pelton
Rana pipiens	S4	Bridgewater	1/1/1822 Sight	Z. Thompson (author)
Rana pipiens	S4		01/01/1981 specimen	William Barnard
Rana pipiens	S4	Bradford	7/01/1986 photo	Ted Levin
Rana pipiens	S4	Bradford	07/01/1986 photo	Ted Levin
Rana pipiens	S4	Norwich	01/01/1993 sight	W. W. Ballard
Rana pipiens	S4	Strafford	7/22/95 sight	Steve Faccio, VINS
Rana pipiens	S4	Plymouth	7/31/98 Unverified	G. Hellyer
Storeria dekayi	S4	Strafford	5/15/94 sight	S. Faccio
Agkistrodon contortrix	unk	Strafford	1/1/1960 Unver.	T. Southworth
Agkistrodon contortrix	unk	Norwich	1/1/1960 Unver.	T. Southworth
Coluber constrictor	S1	Corinth	Sight	E. F. Dunbar (contr
Coluber constrictor	S1	Royalton	12/31/1911 Unverified	E. M. Wood Lovejo
Coluber constrictor	S1	Newbury	9/17197 Unverified	J. Andrews
Coluber constrictor	S1	Hartland	4/15/99 Unverified	J. Andrews
Thamnophis sauritus	S2	Tumbridge	6/1/79 Unverified	Dave Grant
Thamnophis sauritus	S2	Sharon	6/12/79 Unverified	Dave Grant
Crotalus horridus	S1	Windsor	sight	Gus Aldrich
Crotalus horridus	S1	Ascutney	Unver.	M. Romano (Author)
Crotalus horridus	S1	Ludlow	Unver.	M. Romano (Author)
Crotalus horridus	S1	South Royalton	Unver	M. Romano (Author)
Crotalus horridus	S1	Sharon	Unver.	M. Romano (Author)
Crotalus horridus	S1	West-Hartford	Unver.	M. Romano (Author)
Crotalus horridus	S1	Springfield	10/9/1891. Sight	A. F. Rice
Crotalus horridus	S1	Springfield	1099/1891 Sight	A. F. Rice
Crotalus horridus	S1	Springfield	109/1891 Sight	A. F. Rice
Crotalus horridus	S1	Springfield	1/1/1902 Unverified	Miss Luthers Wh
Crotalus horridus	S1	Weathersfield	1/1/1923 Unverified	- as told to G. Neilson
Crotalus horridus	S1	Windsor	1-1-35 sight	Blood family
Crotalus horridus	S1	Springfield	3/15/41 Field	Harold Trapido
Crotalus horridus	S1	Windsor	1-1-50 sight	Blood family

Crotalus horridus

S1	Ludlow	$1-1-50$	Unverified	
S1	Ludlow	$1 / 1 / 1960$	Unver.	
S1	Sharon	$1-1-60$	Unverified	
S1	Windsor	$1-1-64$	sight	Walt Cabell
S1	Norwich	$\frac{6 / 14 / 90}{}$	Unver.	P. Nothnagle
S1	Springfield	$8 / 15 / 94$	Sight	Dan Magoon
S1	Randolph	$\frac{6 / 5 / 97}{}$	Unverified. Nathan Webb	
S1	Newbury	$9 / 17 / 97$	Unverified. J. Andrews	

Appendix D

Identification and Natural History Notes on the Amphibians of Vermont

xo meaxis 7 soxeou ouq wory 7! sumbx ^^вəप raffe to suụmp		seә.ге рароом и! sәчэұ!р 	 	
 	punof aq uвэ s.əәремреәч [000 ךuәuruxəd 	sureatis јо s.гәтемреәч 'рәдеиәяКхо 	โ!e7 pauә7าе! 	
Кצsna 7 TN ən!snjo uмохq-צпер рия 'те7!qв 7әм 'โ!	Su!̣রup [euoṭseoso јо 	Кхоұлдәло צххр ‘Клеәч е mojs suofe st!os ұәм Кıәл	чว рив кроq рәрипох в чттм лөрившвгвя poz!s-ш!!!pau uмохq-Кppnü в	 snosnf snyวฉus̊owsวa
องฺาร ษว pax әप7 u! suoqepaxd of orxo	 	suipuezs do mots pue quauruarad u! punof роомр.гяч Кโبгшйд	 	แ๐ Z'ZI-L'G
সəә.0 s!̣MəT u! pəlt! uəəq sey !usy doj 	meप7 0ұu! suịurexp доโеш әч7 U! К К! reutud		ssqnous parenbs чұтм 	wo \&\&-0z snsolnovu snımpoan Sdondipmis
S270N		7ETqEH	SHJETN PIOIH	awen

u！ceg uṇed әуயт өч7 ய！рәләлоэs！р 	ұurpunqe κ гәл рия шедsем јо веәле ләшлвм 	ssoiu unugryds ч7！м stood дo sduress 	 	хәриешгеге рәод－mnox
punosfaəpun su！̣mex јо uosees su！peaxq su！uds st！gutump puy of 7se！sea	punof eq әләчм sвәхя рәроом ұәм и！ 	slood Kıexodure7 ләұем su！pueqs jo sa！poq ‘sso［чsg＇quaururəd！̣uəs 10 queurunad punore spoom u！suо！̣вдұиәวиол 	 	wo L＇6I－でII шпұрппори ршоғsКquヲ ләрививтеs рәнодs
อsגəa！p spuqq̧ч－uou өq̆ дәqumuqno чฆృо sхәривитргв хәјduoэ р！	anoqe se aures	anoqu se aurs	ләриешиегя 	
โ！udy u！pourd suppoaxq $87!$ 	 	pue sjood［euzas puridn чт！м sвеле ророом кчрол	 	
รэаччв｜ах рй प7？	enoqs st aurus	onoqe se ourss	s！u7sou pooeds पา	
uoseas uвəưนə 	 	sәр！ธьи！Кчәод двәи pus smoqxo puepaiol	sumsou 	
spyon	20uaxmiol	7e7！98H	SYxew ploty	Ouren

Version 3, James S. Andrews, April 1996; most sizes and names are taken from Reptiles and Amphibians of Eastern/Central North America by Roger Conant and Joseph T.

স.IOX MoN - 97 finq ex!̣ sen mory pazrodex әге suoţendod pəzerost	7uowna วefiqey stu7 jo squnoure patiurt		suotiomas 	แo Z'LI-T'ZI ләрививгеs Кu!is
 ssowe punoz s! seịods sṭप7	рәдеэог иәәq әлеч sұाпре јо 	souṭcex pue sureans suofe zinq spoox pue siol хәрип ұвт!чеч әdКұ-довqрәх	 	
โ!ef u! sat!̣s su!pəorq of seqe.xiticu 7! so!oods 	шәлен 	spood K.resoduraz Io quauruıađṭuas प7!м sop!sा!!	sey $\mathbf{5 7 0 1 9}$ 	

ләұем Su!̣pueqs 7 səreәu әप7 moxy rey punoy aq ubs โелие $57!$ puəds ұou səop 	suoṭ!puos геәр! дәрй ұиерйqе Кıəл นәұо 	spoom u! punof si f! fnq ¥eq!qey รұรәдој роомргеч әлпұеш	punoj axe syd.rou 	
Say0N		787TqEH	SY-TETA P[日S]	ouren

Species which are entirely terrestrial throughout their lives

punof ə．xe sұsexoj 7Seə fe do sfsodil xy－zonuds еq of рәұrodax पəฟั	 	ләұем јо sә！̣оq рәұедәなал 		mo L－8ㅎ so．x সu！tW
pezfods κ［！ивеч of peqłodsun рй шәәгя－угер Кіәл אrea unəz7ed pue доро puod uoumoo әप7 s！s！̣7	so！̣oq дәұвм Su！puefs uo ұuepunqe 7 soux 7 nq 	（soret ＇spuod＇sxasụ）＇sazts pue 	 	subา？ump p pupy
suṛi Kaeay Suump КГио дәұем шоду s．дәрием	7ou op ұеч7 seare os．x．wo．y 	 su！uou－mo［s xo su！puras	（хеә）unueduk 	แั そ「9T－6 pun？วqsวュps pupy 80．
 KBW）uoseas su！upaoxq su！unp －［ाeo s7！Kq pąesol oq ues	su！̣pәә．q 	 	บәаля צxep of 	
 SKı su！̣eәq әл！̣әu！̣s！p Kiən est［ाeo sumeu әप7	 	¿St！os Кpurs	 	$\text { wo } G^{\prime} L-\tau^{\prime} G$ ？．1ว1mof ？？snoypoom ofng proq spro［MOH
पәұеә s！ $7!$ шәч从 surxoq 	seare рәтsәлој рәләдәегs u！quepunqe fsou of suras әsuәp u！punof Күә．е．х	ләдем ұиәиешиә！！шәs pur quouruxad јo soṭoq Ifeus ч7！м spueppoom u！uошшоэ 7soun qnq＇suo！ 	 	
Sə40N		787¢¢H	SY：TETN PIOSH	OueN

I66I 'su!nion
Version 2, James S. Andrews, April 1996 most sizes and names are taken from Reptiles and Amphibians of Eastern/Central North America by Roger Conant and Joseph T.

 	əวu!̣s punoJ uәวq 70u sยч 7 ! 7 nq u! рәұеэо! sem uoṭ\|rindod әuo		 	 so.xy snioqo uxeqso M
suucds eq7 u! 078! ut spoom 7sịou jo 	ұиошнал $\boldsymbol{\text { 7noч9̊noxy }}$ 	ssooxylnq Λq sdursms рәұетәรәа К К двеи sроом до иопұедәдәas u!	 	xədəodsutuds
ведв реuyuos suyxot eseepax of peqrodex	рив spoos u! peordsәр!м өлои st 7t: ssoxy predool 07 pereduros 	'ивәр двеи spoom \$u!u!o!pe рие sморвәш хәлеәq	ssory 	 s?.us snipd pupy
soxy paәมฺ! 	 	sdurems pue seys.reu 20 spioy u! punof uәұŋ	 	
umoiq от чธ! sәurea umoiq әप7 jo גоן00 әч7	 	u! paoxq of puno 'suo!̣еләәә IIe jo spuépoom u! peads saptu Кias	7se.quos u! әұ! 	
seqoN	0040.m00	7e7!9eH	SHRETN PIO!	ouren

Appendix E

Vermont Reptiles and Amphibians with State Heritage Ranks and Explanations

Amphibians and Reptiles of Vermont
 Nongame and Natural Heritage Program
 Vermont Department of Fish and Wildlife
 103 South Main St.
 Waterbury, VT 05671-0501
 May 1999

Common	Scientific	State
Name	Name	Rank

Reptiles

Spiny Softshell
Common Snapping Turtle
Painted Turtle
Spotted Turtle
Wood Turtle
Common Map Turtle
Common Musk Turtle
Five-lined Skink
Eastern Racer
Timber Rattlesnake
Ringneck Snake
Eastern Rat Snake
Milk Snake
Northern Water Snake
Smooth Green Snake
Brown Snake
Redbelly Snake
Eastern Ribbon Snake
Common Garter Snake

Apalone spinifera S1
Chelydra serpentina S5
Chrysemys picta S5
Clemmys guttata S1
Clemmys insculpta s3
Graptemys geographica S3
Sternotherus odoratus S2
Eumeces fasciatus S1
Coluber constrictor s1
Crotalus horridus s1
Diadophis punctatus S4
Elaphe obsoleta S2
Lampropeltis triangulum s5
Nerodia sipedon S3
Liochlorophis vernalis S4
Storeria dekayi S4
Storeria occipitomaculata S5
Thamnophis sauritus S2
Thamnophis sirtalis S5

Amphibians

Jefferson Salamander
Blue-spotted Salamander
Spotted Salamander
Marbled Salamander
Northern Dusky Salamander
Allegheny Dusky Salamander
Northern Two-lined Salamander
Spring Salamander
Four-toed Salamander
Northern Redback Salamander
Common Mudpuppy
Eastern Newt
American Toad
Fowler's Toad
Gray Treefrog
Spring Peeper
Western Chorus Frog
Bullfrog
Green Frog
Pickerel Frog
Northern Leopard Frog
Mink Frog
Wood Frog

Ambystoma jeffersonianum s2
Ambystoma laterale S3
Ambystoma maculatum S5
Ambystoma opacum SR
Desmognathus fuscus S4
Desmognathus ochrophaeus SR
Eurycea bislineata S5
Gyrinophilus porphyriticus S4
Hemidactylium scutatum s2
Plethodon cinereus S5
Necturus maculosus S2
Notophthalmus viridescens 55
Bufo americanus s5
Bufo fowleri S1
Hyla versicolor S5
Pseudacris crucifer S5
Pseudacris triseriata S1
Rana catesbeiana S5
Rana clamitans S5
Rana palustris S4
Rana pipiens S4
Rana septentrionalis S4
Rana sylvatica S5

Vermont Nongame \& Natural Heritage Program
 Department of Fish and Wildlife Explanation of Legal Status and Information Ranks

State Status As per the Vermont Endangered Species Law

E: Endangered: in immediate danger of becoming extirpated in the state T: Threatened: with high possibility of becoming endangered in the near future

Information categories only; not established by law

SC: Special Concern: rare; status should be watched
PE: . Proposed for endangered
PT: Proposed for threatened

State Ranks of Plants, Animals, and Natural Communities
State ranks are assigned by the Nongame \& Natural Heritage Program based on the best available information. They are not established by law. Ranks are reviewed annually.

S1: Very rare, generally 1 to 5 occurrences believed to be extant and/or some factor(s) making it especially vulnerable to extirpation from the state
S2: Rare, generally 6 to 20 occurrences believed to be extant and/or some factor(s) making it vulnerable to extirpation in the state
S3: Uncommon, believed to be more than 20 occurrences and/or there is some threat to it in the state
S4: Apparently secure in state, often with more than 100 occurrences
S5: Demonstrably secure in state
SA: Accidental in state
SE: An exotic established in state
SH: Known from historical records only
SR: Reported from the state, but without persuasive documentation
SRF: Reported in error but this error persisted in the literature
SP: Possible in the state but no reported or documented records
SSYN: No longer considered a taxon in the state.
SZ: Not of practical conservation concern because there are no definable occurrences
SX: Extirpated from the state
SU: Status uncertain
?: Denotes provisional rank

Appendix \mathbf{F}

Forest Management Practices to Minimize the Negative Impacts on Vermont Reptiles and Amphibians

Forest Management Practices to Minimize Negative Impacts on

Vermont Reptiles and Amphibians

Most amphibians spend the majority of their lives away from water in the surrounding woods. The wetlands, vernal pools, and ponds are critical for breeding of most species but the forests are also critical for the foraging and wintering of those species. Some local amphibians migrate 300 meters or more from wintering and foraging areas to breeding ponds. Most snakes, some turtles, and Vermont's only lizard spend the majority of their lives away from water. Hence management of wetlands and the surrounding woods both have an impact on reptiles and amphibians. Some species of larger snakes and most land turtles require many years to reach breeding age. Direct mortality or removal of breeding adults can have a devastating impact on a population.

Specific management plans for rare, threatened, or endangered species

Learn to recognize Vermont's rare, threatened, and endangered species.
(habitat in which they are found should be managed specifically for them)
(contact the Vermont Non-game and Natural Heritage Program, they will be interested in the distribution information and may be able to make specific management suggestions)

General

Maintain large down trees (2 per acre, 7 per hectare), dead standing trees, and a future supply consisting of older standing trees.

Maintain standing trees with knotholes and dead branches.
Within areas that are heavily cut, patches of older trees should be left in addition to the scattered mature trees.

Maintain a thick layer of deciduous litter.
Softwood plantations limit the number and diversity of amphibians.
(decreased coarse woody debris, decreased structural diversity, decreased hardwood leaf litter, increased acidity)
(in these situations maintaining pockets of hardwoods and leaving large debris on the ground would help to minimize the impact)

Long rotations provide the old mature growth and dense forest cover amphibians prefer.
(as forests age they show increasing amphibian abundance up to an age of 60 to 70 years old in wet cool habitats and up to 120 years in warm, dry, lowland habitats)

Minimize compaction of the soil and direct mortality by keeping heavy equipment off the site when the ground is saturated.
(winter logging or logging in late summer and early fall conditions should help minimize this effect)

Protect and maintain shrub cover in the forest and on forest edges.

Openings

Maintain a natural pattern of forest cover with small forest breaks.
Large clear-cuts regularly show fewer amphibians than adjacent older growth.
(successive short rotation clear-cuts showed the lowest abundance of amphibians)
(natural disasters such as diseases and storms seem to have less of an effect on amphibian abundance as clear-cuts, probably because of the amount of coarse woody debris left behind)
(large clear-cuts seem to block the movements of some amphibian species)
Small upland meadows with nearby woods provide partial habitat requirements for some snake species.

In small upland meadows exposed rock piles, sawdust piles, and coarse woody debris can provide good habitat for snakes.

Wetland areas

Maintain the ability of swamps, vernal, and semipermanent pools to hold water.
Do not create ditches and ruts that will hold water only briefly. Amphibians often lay their eggs in these small patches of water which dry too soon to permit the larvae to transform and leave. They should either be prevented or they should be deep and shaded enough to hold water through July.

Streams, ponds, and vernal pools should be kept shaded and silt should be kept out.
(among other effects, silt fills the spaces in stream beds where the larval amphibians hide and feed)
(direct sun may speed the rate of evaporation in vernal pools)
Equipment and logs should be kept out of vernal pools and other wetlands.
(small amounts of coarse woody debris or single trees that fall into a wetland are not harmful but vernal pools should not be filled with debris)

Buffer strips should be maintained around all water bodies including streams, ponds, and vernal pools.
(these strips minimize siltation, maintain shade, maintain undisturbed soil and deep leaf litter, provide patches of older growth as sources for recolonization, and provide movement corridors)
(the width of uncut buffer strips should be a minimum of 30 meters, with a wider zone of up to 100 meters where cutting and its impacts are limited)
(deMaynadier and Hunter suggest no more than 25% of the basal area should be cut in this second tier buffer)
(buffer strips should be widest where streams are larger, where the intensity of harvest is greatest, where the surrounding terrain is steepest, or where rare, threatened, or endangered species are found)

Equipment should be kept out of forested seepage areas.
Forest cover over seepage areas should be maintained.

Chemicals

Amphibians absorb any chemicals which are in the water (dew, ground water, streams etc.) around them.
(minimize use of herbicides, pesticides, etc.)
(one study suggests that CaCl spread on roads to minimize dust may be a barrier to amphibian movement)

Roads

Minimize the number of roads, size of roads, and the amount of traffic on roads.'
(a rural paved road in upstate New York killed between 50 and 100 percent of migrating amphibians breeding near it)

Permanent roads should be planned not to intercept the annual movements of reptiles and amphibians between breeding, foraging and wintering habitats.

Other Species

Allow only moderate grazing after the breeding season.
Keep livestock out of the riparian zone and away from vernal pools and ponds.
If livestock need access to a pond or a lake, limit it. Maintain as much naturally vegetated shoreline as possible.

Don't introduce fish in streams and ponds where they were not previously found.
(many fish feed on amphibian eggs and larvae, and absence of predacious fish is a primary requisite of vernal pool breeders)

Open areas with dense annual or shrubby growth near water bodies or on the edge of woods provide foraging areas for some species
open areas that are to be kept open should be cut high and either not raked or raked by hand, (direct mortality should be minimized)
these areas could be cut after the ground is frozen and before the first snows (reptiles and amphibians would no longer be active)

General amphibian microhabitat requirements include;

breeding locations that hold water at least through July, coarse woody debris in adjacent forested areas, foliage height diversity in adjacent forested areas, canopy cover over breeding and foraging areas, deep deciduous leaf litter for moisture retention and feeding, cool and moist conditions.

General reptile microhabitat requirements include;

coarse woody debris (standing and down), small open patches for basking, mixed with well shaded refugia for warm weather and feeding, undisturbed areas in and around wetlands for feeding and breeding, access to safe denning areas.

Many of the above ideas were taken from a recent review of the literature regarding amphibians and forest management. This review includes an extensive bibliography that might be of interest.
deMaynadier, P. and M. Hunter. 1995. The relationship between forest management and amphibian ecology: a review of the North American literature. Environmental Reviews 3: 230-261.

Additional suggestions for this list were provided by the author (J. Andrews), P. Bartelt, S. Droege, S. Jackson, L. Raw, and R. Waldick.

Appendix G

Aerial Photos Taken on the Low-elevation Flyover, April 1999

6016
EP 9810

