Shaw Mountain Ice Storm Study, 1998-2002
 DOWNED WOOD ANALYSIS

Comparisons of iced and control plots:
Hypothesis A: Iced plots have greater density and mass of downed woody debris than Control plots following the ice storm.
For debris sizes of 1 to 3 " in diameter, the hypothesis is supported.
For small size classes, data do not necessarily support the hypothesis.

1. In general, woody debris was found at greater densities and mass in Iced plots than in Control plots (iced:control ratios > 1).
2. Woody debris in larger size classes (1 to 3 ") remained greater in Iced than in Control plots in all 5 years.
3. Small woody debris (< $25^{\prime \prime}$) was greatest in density and mass in year 1 Iced plots (n.s.), but greater in Controls after that (n.s.).

Comparisons between years
Hypothesis B: Fine woody debris will peak in abundance before coarse woody debris following the ice storm.
Data support this hypothesis for debris sizes ranging from 0 to 3 ". Coarser debris is not greater in year 3 than in year 1 .

1. Density and mass of downed woody debris $1-3^{\prime \prime}$ in diameter increased in iced areas between years 1 and $3(p=.05)$.
2. Density and mass of downed woody debris $>3 "$ in diameter increased in iced plots between years 1 and $5(p=.05)$
3. Density and mass of downed woody debris < $25^{\prime \prime}$ in diameter decreased in iced plots following a year 1 high ($p=.19$)
4. Iced:control ratios of density or mass were highest in year 1 for small size classes, and highest in year 5 for debris > 1".

MEANS by year and by size class															
density	0-. 25	.25-1		1-3	>3		total		mass	0-. 25	.25-1	>3		total	
1998 iced	110		71		34	9	43	223	1998 iced	0.050	0.655	2.510	3.295	5.805	6.510
control	85		40		15	7	22	146	control	0.045	0.365	1.070	3.415	4.485	4.890
1999 iced	49		61		44	10	54	163	1999 iced	0.023	0.561	3.246	4.291	7.537	8.122
control	46		77		15	5	20	142	control	0.022	0.709	1.070	2.640	3.710	4.441
2000 iced	41		119		60	9	69	228	2000 iced	0.020	1.099	4.390	3.685	8.075	9.196
control	84		74		20	5	25	182	control	0.040	0.682	1.439	2.435	3.874	4.596
2001 iced	73		102		48	10	58	232	2001 iced	0.035	0.941	3.541	4.305	7.846	8.823
control	109		70		25	6	31	209	control	0.053	0.644	1.845	2.935	4.780	5.477
2002 iced	83		65		80	12	92	239	2002 iced	0.040	0.603	5.866	6.150	12.016	12.658
control	95		75		23	6	29	198	control	0.046	0.691	1.697	3.035	4.732	5.469

ICED:CONTROL RATIOS of mean densties and mean mass

obs = observation number
$\mathrm{pl}=$ plot number $(1,2,3,4)$
ice $=$ ice treatment ($1=$ iced, $0=$ control)
age $=$ age relative to the time of the ice storm
($0=$ wood downed before ice storm,
1 = wood downed by ice storm,
2 = all downed wood)
$\mathrm{yr}=$ year of observation
$\mathrm{d} 0=$ density of down stems 0 to .25 " in diameter (number per 60 m transect)
d. $25=$ density of down stems .25 to $1^{\prime \prime}$ in diameter (number per 60 m transect)
d1_3 = density of down stems 1 to 3 " in diameter (number per 60 m transect)
$d 3=$ density of down stems $>3^{"}$ in diameter (number per 60 m transect)
$\mathrm{d} 1=$ density of down stems >1 " in diameter (number per 60 m transect)
$\mathrm{dt}=$ density of all down stems (number per 60 m transect)
$\mathrm{m} 0=$ mass of down stems 0 to $.25^{\prime \prime}$ in diameter (tons/acre)
m. 25 = mass of down stems .25 to $1^{\prime \prime}$ in diameter(tons/acre)
m1_3 = mass of down stems 1 to $3^{"}$ in diameter(tons/acre)
$\mathrm{m} 3=$ mass of down stems >3 " in diameter (tons/acre)
$\mathrm{m} 1=$ mass of down stems >1 " in diameter (tons/acre)
$\mathrm{mt}=$ mass of all down stems (tons/acre)
To convert tons/acre to Kg/ha, multiply tons/acre by 2241.74

