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Abstract

The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have

profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate

change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geo-

graphic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a

detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse mod-

eling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related

landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also

examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of

observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the

strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in

importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal

water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i)

growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradi-

ents in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of

spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of

greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for under-

standing environmental controls on growing season length, and predicting how these might be affected by climate

change.
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Introduction

One of the largest, most easily predicted, and already

documented biological impacts of climate change on

temperate ecosystems is a lengthening of the growing

season (Menzel & Fabian, 1999; Field et al., 2007). In

summer-active/winter-dormant systems, the timing of

spring and autumn has a profound impact on the

water, carbon, and energy balance of forests, grass-

lands, and agricultural fields (Parmesan & Yohe, 2003;

Liang & Schwartz, 2009; Morisette et al., 2009). In par-

ticular, a longer growing season, which has already

been detected in remote sensing time series for some

regions (Myneni et al., 1997; Zhang et al., 2007), might

be expected to increase carbon uptake by temperate for-

ests, providing an important negative feedback to

greenhouse gas concentrations and global warming

(Baldocchi & Wilson, 2001; Chapin et al., 2008). How-

ever, if belowground resources become more limiting

or if warmer temperatures stimulate heterotrophic res-

piration, the impact of a longer growing season will be

reduced (Gu et al., 2003; White & Nemani, 2003; Moris-

ette et al., 2009; Noormets, 2009; Richardson et al.,

2009b, 2010; Zhao & Running, 2010). Understanding

landscape and climatic controls on the trajectory of leaf

area development, summer maturity, and senescence is

therefore key to understanding the impact of feedback

processes and ecosystem response to climate change.

The nature of phenological patterns in spring and

autumn is dependent on the scale of observation, which

strongly determines the suite of environmental parame-

ters influencing phenological timing. At continental

scales, growing season length is predicted well by

climatic gradients associated with latitude, longitude,

and elevation (Hopkins, 1918; Fitzjarrald et al., 2001).

Common garden experiments have also demonstrated
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a direct effect of photoperiod (as expressed by latitudi-

nal differences) on spring phenological timing for some

species (Lechowicz, 1984). At smaller scales, spatial pat-

terns are likely more complex, incorporating a greater

range of processes. For example, urban heat islands

(Imhoff et al., 2010) have been shown to lead to an ear-

lier start of spring in some areas of the world (Zhang

et al., 2004; Fisher et al., 2006), but not all (Gazal et al.,

2008). Climate moderation due to large water bodies

has been related to a later spring onset of greenness,

and even microclimatic patterns related to cold air

drainage into small valleys have been shown to influ-

ence the timing of the spring onset (Fisher et al., 2006).

Fine scale variability in phenological timing can be due

to species effects (Liang et al., 2011), with the phenol-

ogy of individual tree species consistently either pre-

ceding or lagging other species despite up to 3 weeks

inter-annual variation (Richardson & O’Keefe, 2009).

Remote sensing data are widely considered to pro-

vide a source for consistent phenological measurements

across space and time. However, observed trends in

growing season length are highly sensitive to the obser-

vation and algorithm used to identify the start and end

of the growing season (White et al., 2009). Of the many

studies investigating changes in phenology (e.g. Myne-

ni et al., 1997; Schwartz et al., 2006), the vast majority

have focused on the start of spring or have used the

same methodology to identify both ends of the growing

season (Robeson, 2002; Christidis et al., 2007; Vitasse

et al., 2009). In general, studies that have examined both

spring and autumn timing have concluded that both

are important to global change research due to differing

effects on ecosystem metabolism (Ahas et al., 2002;

Chmielewski & Rotzer, 2002; Piao et al., 2007; Piao

et al., 2008). However, a gradual summer ‘green down’

seen in most remote sensing timeseries of forest canopy

greenness (Jenkins et al., 2007; Friedl et al., 2010) pre-

sents a challenge to resolving the timing of autumn

from remote sensing timeseries. Vegetation indices

characterizing reflectance in the visible green or the

strength of near-infrared reflectance relative to visible

(e.g. the Normalized Difference Vegetation Index,

NDVI) typically rise to a peak in late spring, at which

point a two-stage decline begins: several months of

gradually decreasing greenness, beginning as early as

late June, are followed by a more rapid drop-off in

autumn, related to leaf senescence and abscission.

Because the autumn greenness trajectory is more grad-

ual than it is in spring, estimates of the end of season

are inherently more uncertain (Ganguly et al., 2010).

Beyond accounting for summer greendown, a second

limitation to understanding mechanisms determining

phenological timing using remote sensing concerns the

need for higher spatial resolution measurements.

Coarse resolution sensors such as the Moderate Resolu-

tion Imaging Spectrometer (MODIS) are inadequate for

detecting fine-scale variability in the onset or offset of

greenness due to microclimatological patterns that are

obscured by the large pixel sizes. Recently, methods

have been developed to calculate average phenology at

medium spatial resolution (Fisher et al., 2006). These

methods involve analyzing stacks of many medium-res-

olution satellite images, organized by day of year

(DOY) and discarding the year of acquisition. Measure-

ments of vegetation from each image are then used to fit

an average phenology curve. The resulting average date

of the onset of greenness has been validated against

field data (Fisher et al., 2006), spatially aggregated and

compared against measurements from lower-resolution

data (Fisher & Mustard, 2007), and compared with pre-

dictions from phenology models (Fisher et al., 2007).

Such observations provide valuable information regard-

ing spatial patterns in the average land surface phenol-

ogy, but do not directly lend themselves to monitoring

the effects of climate change over time.

The objectives of this paper were to (i) develop and

quantify the uncertainty of a phenology curve-fitting

algorithm that accounts for declining greenness

throughout the summer growing season, here termed

‘greendown’; (ii) apply this algorithm at a spatial grain

appropriate for the study of individual forest stands;

and (iii) use the derived estimates of spring onset and

autumn offset of greenness and growing season length

to explore landscape patterns in phenological timing.

Due to mixed pixel effects, we saw the need for obser-

vations of growing season length made at a signifi-

cantly smaller spatial grain than what is routinely used

in remote sensing phenology research. We apply the

method to a highly fragmented landscape, in the mid-

Atlantic region of the United States, which is undergo-

ing considerable pressure from land-use (Lookingbill

et al., 2009; Elmore & Guinn, 2010) and climate changes

(Najjar et al., 2010).

Methods

Site description

The study region chosen for this work is defined by the

boundary of the Landsat path 15/row 33, which spans a lati-

tude range from 39.87 to 37.95°N and longitude from �77.75

to �76.16°W. The Chesapeake Bay and its tidal tributaries

dominate the eastern portion of the study region. The study

region spans three different physiographic regions: the

Coastal Plain, the Piedmont Plateau, and the Blue Ridge

Mountains. Each physiographic region has distinct landscape

characteristics that justify studying each in isolation. The

Coastal Plain is a relatively flat region extending from tidal

shorelines to the geographically important ‘fall line’, which
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designates the border with the Piedmont Plateau, where

streams abruptly drop from the Piedmont Plateau to the

Coastal Plain. The Piedmont Plateau exhibits significantly

greater topographic variation than the Coastal Plain. Early

development in the mid-Atlantic focused on the fall line due

to the accessibility of hydraulic power in these areas. Where

the fall line met tidal waters appropriate for developing deep-

water ports, dense urban societies emerged. Today, the cities

of Baltimore and Washington DC are the dominate urban cen-

ters in the region with a combined metropolitan regional pop-

ulation of 8.2 million. Forests of the coastal plain and

piedmont plateau are fragmented by agriculture and sub-

urban expansion, leaving approximately 40% of forest intact.

The Blue Ridge lies to the west of the Piedmont and remains

largely forested. Elevation along the Blue Ridge summit is

~500 m above the surrounding piedmont, constituting the

largest elevation gradient in the study region.

The native land cover of the mid-Atlantic region (spanning

the eastern states from New York to Virginia) is primarily

deciduous forest, roughly 80% of which falls into two forest

categories, Oak-Hickory and Maple-beach-birch (Jenkins et al.,

2001). Forests in the state of Maryland, upon which our study

region is centered, are composed of 90% deciduous hardwood

species (Brown et al., 1999), such as hickory (Carya spp.), Tulip

poplar (Liriodendron tulipifera L.), black cherry (Prunus serotina

Ehrh.), oak (Quercus spp.), sugar maple (Acer saccharum

Marsh.), American beech (Fagus grandifolia Ehrh.), and white

ash (Fraxinus americana L.). Evergreen forests are less exten-

sive, primarily constrained to eastern hemlock (Tsuga canaden-

sis (L.) Carrière) stands within riparian zones, and in the

southern portions of the study area, which exhibit stands of

loblolly pine (Pinus taeda L.) and Virginia pine (Pinus virgini-

ana Mill.). Understory vegetation can be evergreen consisting

of great laurel (Rhododendron maximum L.) and mountain

laurel (Kalmia latifolia L.), the distribution of which is patchy

and a function of the overstory canopy and topographic posi-

tion (Chastain & Townsend, 2008). A number of understory

invasive plants are present, particularly in forest edge habitat

and small fragments of forest (Minor et al., 2009). Several of

the shrubs in this category have an early phenology more sim-

ilar to cool season grasses than to native overstory trees (Wil-

fong et al., 2009).

Data set description and pre-processing

The data used in this work were selected from all available

Landsat Thematic Mapper (TM) and Enhanced Thematic

Mapper plus (ETM+, SLC-ON) acquisitions for path 15/row

33 containing <20% cloud (Irish et al., 2006). Using visual

inspection, we further filtered these data and removed images

containing semi-transparent clouds or substantial portions of

surface ice and snow that we expected to be problematic. This

resulted in a data set of 90 images of appropriate quality. The

data were distributed roughly evenly across DOY, but were

slightly biased towards the more recent decade (Fig. 1). All

data were processed to standard terrain correction (Level 1T)

radiometric and geometric accuracy by the USGS prior to our

acquisition of the data (Woodcock et al., 2008).

To account for variations in atmospheric scattering between

scenes we performed a dark object subtraction, which

removes the effects of path radiance. For each image, the dark-

est pixel was selected from a collection of deep lakes, and its

spectrum was subtracted from that of all other pixels. No

attempt was made to correct for differences in gain (atmo-

spheric transitivity) between data sets as this correction is not

necessary when performing change detection on multispectral

remote sensing data (Song et al., 2001). This decision is also

justified by the relative insensitivity of the Landsat spectral

bands to atmospheric water vapor and the strong contrast

between spectra of vegetation (of primary interest here) and

the spectra of other surfaces. Nevertheless, future work might

consider employing a more comprehensive atmospheric cor-

rection procedure, such as offered by the Landsat Ecosystem

Disturbance Adaptive Processing System (Masek et al., 2006).

Finally, a sun canopy sensor correction was performed to nor-

malize for topographic effects and differences in sun zenith

angle between data sets. This correction normalizes the radi-

ance received from north and south facing slopes, as well as

sun elevation changes through the year (Gu & Gillespie, 1998).

Spectral mixture analysis (SMA) (Adams et al., 1986; Smith

et al., 1990; Elmore et al., 2000) of every scene was performed

using a common set of four image-derived endmember spec-

tra representing photosynthetic vegetation (PV), non-photo-

synthetic vegetation, substrate (e.g. bare soil, impervious

surfaces), and water/shade (represented by a spectrum

acquired from a deep clear lake). Spectral mixture analysis

assumes that each pixel is a linear combination of endmember

spectra, each weighted by the fractional cover of that end-

member. The forward equation and model assessment are

embodied by the equations:

DNb ¼
XN
i¼1

fiDNi;b þ Eb ð1Þ

Fig. 1 The data used for this study encompassed 90 Landsat

TM and ETM+ data acquisitions, spanning 25 years and the

entire calendar year.
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RMSESMA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
b¼1

ðEbÞ2
B

vuut ð2Þ

where DNb is the observed satellite response in wavelength, b;

DNi,b is the ith image endmember response in band b, fi is the

fraction of the ith endmember necessary to account for the

observed response (DNb), Eb is the residual response in band b

in the same units as DNb, N is the number of endmembers,

and B is the number of wavelength bands used (6 in this appli-

cation utilizing Landsat TM and ETM+ data). Equation (2) was

used to summarize the model fit across all wavelength bands.

Using linear model inversion techniques (Menke, 1989), we

solved for the four endmember-fractions simultaneously. SMA

has been shown to be a robust measure of greenness in a wide

variety of ecosystems, notably exhibiting linearity with vegeta-

tion cover and insensitivity to background reflectance, includ-

ing snow (Adams et al., 1986; Smith et al., 1990; Mustard, 1993;

Elmore et al., 2000; Asner et al., 2003; Small, 2004). Although it

is more common in phenology research (White et al., 2009), the

NDVI produces slightly lower values over snow compared

with other types of substrate, thus delaying predictions of the

onset of greenness (Fisher & Mustard, 2007).

Phenology curve fitting

The resulting timeseries of photosynthetic vegetation fraction

(fPV), stacked by DOY, reflects the average temporal pattern of

leaf development, growing season stability, and senescence at

any given location. An initial investigation of the data con-

firmed that a logistic sigmoid growth curve would be an

appropriate model form to fit to spring and autumn trajecto-

ries in fPV. The logistic curve has been used in numerous

investigations of phenology, including our primary inspira-

tion (Fisher et al., 2006), but also the MODIS phenology prod-

uct (Zhang et al., 2003) and recent MODIS phenology

validation projects (Liang et al., 2011), to model increasing

greenness in spring and decreasing greenness in autumn.

The usual form of the dual logistic curve is:

mðt;mÞ ¼ m1 þm2
1

1þ em3�m4t
� 1

1þ em5�m6t

� �
ð3Þ

where v(t,m) is the modeled fPV at time t (in DOY), and m =

[m1, m2, m3, m4, m5, m6]
T where m1 is the average fPV measured

in winter, m2 is the difference between summer-time fPV and

m1, and m3,4 and m5,6 are parameters that adjust the shape of

the sigmoid growth curve in spring and autumn, respectively.

It has been shown how Eqn (3) can be fit to annual timeseries

of vegetation greenness (Fisher et al., 2006). The DOY where

greenness is changing most rapidly (highest first derivative),

is halfway between the winter minimum and summer maxi-

mum, and is calculated as m3/m4 (spring) and m5/m6

(autumn). These inflection points are termed the spring onset

of greenness and autumn offset of greenness (sensu Fisher

et al., 2006).

Despite the simplicity and proven effectiveness of Eqn (3)

for modeling phenological transitions in forests, we found that

this equation often under-predicted observations in early sum-

mer and over-predicted observations in late summer due to

declining greenness although the summer months (i.e. ‘green-

down’ as discussed in the Introduction). This systematic dis-

crepancy between observed and predicted data during the

summer months suggested that the model in Eqn 3 is not capa-

ble of fully capturing the phenological dynamics, which might

result in biased parameter estimates. To account for these sum-

mer trends in greenness, we constructed a new formulation of

the standard logistic curve that utilized a sloped line to join the

spring increasing curve and autumn decreasing curve. The

addition of the summer greendown parameter [m7 in Eqn (4),

below] accomplished this goal. Additionally we made the fol-

lowing variable substitutions: m3′ = m3/m4, m4′ = 1/m4, m5′

= m5/m6,m6′ = 1/m6, resulting in a new formulation for v(t,m),

mðt;mÞ ¼ m1 þ ðm2 �m7 � tÞ 1

1þ eðm
0
3
�tÞ=m0

4

� 1

1þ eðm
0
5
�tÞ=m0

6

� �

ð4Þ:
In this new formulation of the classic dual logistic curve,

the spring onset and autumn offset of greenness are explicit

model parameters (m3′ and m5′, respectively) and the slope of

the spring and autumn trajectories are the parameters m4′ and

m6′. In the original form (Eqn 3), the parameters determining

the shape of the increasing and decreasing sigmoid functions,

which also defined the spring onset and autumn offset, were

strongly correlated, making unique predictions of these

parameters problematic. The above variable substitutions

greatly improve the ability to make unique estimates of spring

and autumn timing in a relatively few number of iterations.

Inversion theory (Menke, 1989) offers elegant methods for

calculating the nonlinear least-squares solution for the seven

parameters in Eqn 4 given sufficient data on the fPV through-

out the year. This is accomplished by minimizing an objective

function (φ) that contains a combined measure of data misfit

(φd) and model length (φm).

/ ¼ /d þ /m ¼ Wdðdobs � mðt;mÞÞk k22þ Wmðm�mrefÞk k22 ð5Þ

In φd, dobs are the observed values of v(t) at DOYs where

there are data available; v(t,m) is the set of predicted data cor-

responding to model values m = [m1, m2, m3′, m4′, m5′, m6′ m7]
T

and at the observed times, t; and Wd is a diagonal matrix with

elements 1/ri, where ri is the expected error in the ith mea-

surement. In the model regularization term, φm, mref is a refer-

ence model that is used to constrain the solution, and Wm is

the estimated model covariance matrix, which is a diagonal

matrix with elements equal to the expected standard devia-

tions in model parameters. The estimated parameter uncer-

tainties in Wm are chosen to be relatively broad so that they

do not overly constrain the solution, but provide necessary

stability in the inverse problem.

The model regularization term (φm) serves two primary

roles in the estimation of parameter values. First, due to the

fact that typical parameter values vary over several orders of

magnitude (102 for m3′ and m5′ to 10�4 for m7), there is signifi-

cant variability in the sensitivity of the model to each parame-

ter. By including appropriate values in Wm, parameters with

relatively low sensitivities can be more accurately estimated in

the inverse solution. Second, numerical instabilities can occur
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in the solution of the inverse problem due to the nonlinearities

in Eqn (4) that, without the regularization term, result in an

ill-posed set of equations.

The solution to the nonlinear inverse problem that mini-

mizes Eqn (5) involves iteratively solving for perturbations to

the model parameters (dm), starting from an initial estimate,

m0. The equation for model updates is given by

dmi ¼
�
GTWT

dWdGþWT
mWm

��1�
GTWT

dWdðdobs � mðt;mi�1ÞÞ
þWT

mWmðmref �mi�1Þ
�

ð6Þ:
Updates to the current model are calculated as mi = mi-1 +

dmi, and the iterative process is continued until a desired level

of data misfit is achieved (more specifics below). G is the

matrix of partial derivatives (i.e. the Jacobian matrix) of Eqn

(4), with each column equal to the partial derivative of v(t,m)

with respect to a different parameter and rows corresponding

to the DOYs for which data are available. In our case G was a

9097 matrix, given 90 data points and 7 parameters. Because

G is a function of the model parameters, it is recalculated at

each step of the nonlinear inversion with respect to the current

model estimate, mi-1. The reference and first estimate of model

parameters (mref and m0, respectively) were chosen close to

the expected scene-wide mean value: mref = m0 = [0.07, 1.3,

125, 7, 300, 7, 0.003]. Although these values are important to

model performance, the global minimum of Eqn 5 can be

attained as long as mref and m0 are chosen such that the

expected true model parameters fall roughly within two stan-

dard deviations of the chosen reference model.

Specification of the a priori information on parameter stan-

dard deviations and data errors (Wm and Wd, respectively)

provides important controls on the solution of the inverse

problem. We estimated prior standard deviations on model

parameters as [0.05, 0.5, 30, 2, 30, 2, 0.002]. These values gave

sufficient flexibility to the model parameters so that the model

arrived at a solution in a small number of iterations (<5),
greatly improving computational speed compared with using

smaller a priori parameter variances. Assigning a very small

variance to a particular model parameter has the effect of bias-

ing that parameter towards the reference model value, regard-

less of the effect on the data fit. Thus, by setting the a priori

variance for m7 to an extremely small value, and mref,7 = 0, the

solution is strongly constrained to have m7 = 0, thus default-

ing to a version similar to Eqn (3). This provides a useful way

to assess model improvement with the inclusion of the green-

down parameter, and study changes in the resulting estimates

for spring and autumn phenology.

Large a priori estimates of data errors (small values on the

diagonals of Wd) down-weight the importance of fitting the

data compared to satisfying the model regularization con-

straints. Our estimates of a priori data variances were derived

from studies that have compared SMA-derived estimates of

fPV to field measured values. Elmore et al. (2000) completed a

rigorous analysis of uncertainty in a semi-arid environment

and determined that errors were Gaussian, independent of

time, and approximated one standard deviation uncertainties

at 0.04. Other studies in forested systems have produced simi-

lar results (Lobell et al., 2001). From these studies we decided

that 0.05 was an appropriate, conservative, value for the a pri-

ori estimates of data errors. Because Wd is an a priori estimate,

it does not take into account spatial variation or the outlier sta-

tus of data uncertainties.

The L1 norm and minimizing the effect of outliers

Outlier management is a reoccurring problem when attempt-

ing to measure phenologically important dates from remote

sensing time series. Typical solutions to the problem of out-

liers include using composite data generated from the best

observation in each 8- or 16-day window (Zhang et al., 2003),

the application of timeseries filtering or smoothing functions

(Bradley et al., 2007; Tuanmu et al., 2010), or utilizing a non-

uniform data-weighting matrix where a priori data variances

are estimated from the RMSESMA (Fisher et al., 2006). We

investigated several of these options but found that data resid-

uals were non-gaussian, suggesting diverse sources of error

that were not well correlated with available a priori estimates

of data error (e.g. RMSESMA, thermal anomalies due to cloud

and snow, or estimates of atmospheric scattering). We found

that outliers were inconsistently due to any of these processes,

depending on the time of year, yet were sometimes due to

actual changes in the surface such as changes in land use.

An elegant solution to problems of this nature is to mini-

mize the L1 norm of the data misfit, rather than the L2 norm

that was specified in Eqn (5). This identifies the median fit to

the data instead of the mean fit by minimizing the absolute

data residuals rather than the squared residuals. Minimization

of the L1 norm reduces the penalty on outliers, which helps to

avoid model errors caused by over-fitting bad data points.

This technique introduces additional nonlinearity into the

inverse problem, but is easily implemented by iteratively re-

weighting data weights based on the absolute residual data

variance (Scales et al., 1988). Here, the data residuals calcu-

lated after each iteration are placed on the diagonals of a

re-weighting diagonal matrix, R, which is used to scale the

data weights for the subsequent model update (Farquharson

& Oldenburg, 1998), so that Eqn (6) becomes:

dmi ¼
�
GTWT

dRWdGþWT
mWm

��1�
GTWT

dRWdðdobs

� mðt;mi�1ÞÞ þWT
mWmðmref �mi�1Þ

� ð7Þ:

Note that the original prior estimates of data uncertainty

encompassed in Wd are still included, but are modified by the

absolute data residuals following each iteration. Solutions cal-

culated from Eqn 7 are robust in their insensitivity to outliers,

which has many desirable qualities. Most notably, land-use or

climate-driven changes in phenology that might have

occurred near the end of the Landsat era and thus appear as

timeseries outliers, have minimal impact on the calculation of

the parameters using Eqn (7).

Equation (7) was solved until the L1 norm of the model mis-

fit (a unitless measure equal to the sum of the weighted data

residuals), given by

Misfit ¼
XN
1

Wddresj j ð8Þ
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reached a target value. The L1 norm sums the data residuals

weighted by the a priori data weights, and therefore is depen-

dent on the number of observations (in this case, N = 90). The

appropriate target value for the L1-norm model misfit was

chosen to be

/tar
d ðL1Þ ¼ N

ffiffiffiffiffiffiffiffi
2
�
p

q
¼ 71:8 ð9Þ

based on previous work (Parker & McNutt, 1980). To avoid

situations where /tar
d ðL1Þ is never reached, the inversion is

stopped when additional iterations reduce φd(L1) by <0.5%
[i.e. stop when (ud L1ð Þi � /dðL1Þi�1Þ=/dðL1Þi�1], or when the

number of iterations for any pixel reaches 100. When this lat-

ter constraint was actually reached, pixels were flagged as

unreliable and ignored in further analyses.

Estimates of model parameter uncertainty

We used Monte Carlo bootstrapping methods (Efron, 1979;

Efron & Tibshirani, 1991) to estimate parameter uncertainties

for a selection of 50 pixels spanning a gradient in elevation

across the Blue Ridge Mountains. For each pixel, we re-sam-

pled the original data set, dobs, with randomly chosen data

points removed and replaced by duplicating existing samples.

In this work, 5000 re-sampled data sets were generated and

inverted for the seven unknown parameters using Eqn (7) at

each pixel. In a second set of bootstrap models, we constrained

the a priori variance for m7 and mref,7 to equal 0, and thus

enabled a comparison of model performance with and with-

out the greendown parameter (m7). The distribution of param-

eter estimates for these bootstrap models provides valuable

information about parameter uncertainty and correlation that

is free of assumptions about the underlying data distributions.

Classification of forest pixels

We chose to focus on forest trees. Forests are the native land

cover of the mid-Atlantic, and although cool season grass-

lands (pasture, hay, and lawn) are as common, their land sur-

face phenology as viewed by Landsat sensors are more likely

than forest trees to be impacted by management styles that

vary annually (Asner et al., 2004; Elmore & Craine, 2011). At

the 30-m pixel size, mixed pixels are common, but many pure

forested pixels exist in a wide range of landscapes, from urban

to rural. Therefore, by performing a per-pixel classification of

forests, we expected to enable an analysis of forest phenology

across the entire study area, despite significant forest fragmen-

tation. Previous studies at this spatial resolution were con-

ducted in New England, USA and made the distinction

between deciduous and evergreen forests (Fisher et al., 2006).

Here we chose a definition of forest that included both decidu-

ous and evergreen trees because in the mid-Atlantic, ever-

green trees represent a smaller portion of the landscape and,

regardless, our initial observations revealed that Eqn 4 was

accurately fitting leaf area changes from evergreen canopies.

We classified forest pixels using a maximum likelihood

supervised classification scheme on the resulting parameter

set. Training areas were digitized from eight aerial photo-

graphs available for the study region via the National Agricul-

ture Imagery Program (NAIP) from 2003. The areas selected

for training were all closed canopy forests and spanned the

entire study area including all physiographic provinces. In the

classification we included all parameters (7) and the misfit

[Eqn (8), which was lower for forest pixels], for a total of eight

variables. The inclusion of the data misfit had the desirable

effect of excluding pixels that were not fit well by the model,

most likely due to land use changes occurring during the

Landsat era. The resulting classification resulted in 11.5 mil-

lion forest pixels, which was 39% of terrestrial image area. We

visually inspected the resulting classification and noted that it

appeared to represent forest area conservatively, but per-

formed no rigorous classification validation. Misclassified pix-

els appear as noise in subsequent analyses of the effect of

landscape variables.

Understanding and using model parameters

Equation 4, with the fitted parameters, describes the leaf

development, summer stability, and autumn senescence of

forested canopies. To explore the multicollinearity between

phenological information and key vegetation cover values we

calculated Pearson correlation coefficients between each pair

of parameters extracted directly from Eqn (4), with the

replacement of m2 with maximum vegetation cover (MAX-

VEG). MAXVEG is not equal to m1 + m2 except in rare cases where

m7 equals zero. Thus, we calculated MAXVEG as the maximum

of Eqn (4) using the final parameter set for each pixel.

Comparison with daily webcam data

We utilized a webcam mounted above a forest canopy to

quantify, at high temporal resolution, seasonal changes in the

optical properties of a forest canopy. These data offer an excel-

lent platform for comparing remote sensing-based and

ground-based phenology observations, due to their intermedi-

ate scale and, thus, comparability with these two endmember

approaches. Recent studies (e.g. Richardson et al., 2007; Ahr-

ends et al., 2008) have demonstrated how camera imagery can

be used to quantitatively monitor both seasonal development

and senescence of deciduous broadleaf forest canopies and

even seasonal changes in the apparent ‘greenness’ of ever-

green conifer canopies. With three channels (colors) of infor-

mation, webcams provide insight into not only the amount of

foliage present (e.g. estimates of leaf area index), but also its

physiological capacity for photosynthesis (Richardson et al.,

2009a; Richardson et al., 2009b).

Across the eastern US and Canada, the PhenoCam network

(http://phenocam.sr.unh.edu/) comprises roughly 80 sites

where digital webcams are recording daily (or in some cases

hourly) images of forest vegetation. We identified the only

webcam within our study region, maintained by the National

Park Service and located adjacent to the national capitol build-

ing. Within this camera’s field of view, we identified a large

stand of closed-canopy deciduous forest and sampled the

green and red intensity measured by the camera at daily inter-

vals (at local noon) for the available period, 2004–2008. Several
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metrics of greenness have been developed for analyzing web-

cam data. We chose one that mimics the NDVI, thus normaliz-

ing for variation in overall image intensity. We calculated

WebCamVeg using the following equation (Brügger et al.,

2007):

WebCamVEG ¼ DNgreen �DNred

DNgreen þDNred
ð10Þ

where DNred and DNgreen are camera’s response in the visible

red and green, respectively. We then located and sampled the

four Landsat pixels that corresponded to the forested stand

apparent in the webcam image (located at latitude 38.888°N
and longitude 77.062°W). After confirming that all four pixels

were roughly identical and all located in closed canopy forest,

we calculated the mean fVEG and parameter values, thus gen-

erating a single fVEG timeseries and corresponding phenology

curve. Several important landmarks (e.g. the Washington

Monument) were apparent in the image, thus guaranteeing a

close match between the webcam field of view and the Land-

sat pixels sampled. However, the angle of observation was

considerably different with the webcam observation angle

approximately 60 degrees off nadir.

We fit the phenology curve (Eqn 4) to the webcam data for

each year individually (4 years of data) and the average

annual curve (generated by averaging by DOY). These results

were quantitatively compared against the average Landsat

phenology curve.

Comparison with autumn aerial photography

Fisher et al. (2006) extensively validated the date of the onset

of greenness resulting from a curve-fitting technique that was

similar to the technique described here. More recent attempts

to validate satellite-based phenology observations have been

equally successful and support the use of logistic curve mod-

eling, particularly for the spring onset of greenness (Liang

et al., 2011). Therefore, we concentrated our validation efforts

on autumn phenology using aerial photography that was col-

lected during leaf senescence from a single year. We identified

a region with topographic relief sufficient to offer a variety of

autumn leaf color and available high-resolution aerial photog-

raphy approximately 15 km south of Harpers Ferry, WV.

Color aerial photography was acquired from the National

Map seamless data server for the month of October 2008 with

0.3-m pixel resolution.

From this October aerial photograph, we sought to compare

autumn coloration with the date of autumn offset of green-

ness. This required using a method different from that used to

analyze the webcam data, which only quantified the contrast

between the visible green and red wavelengths. We expected

more green hues to be present in pixels returning a latter

autumn offset and more red and yellow hues (depending on

the dominate tree species) to be present in pixels returning an

earlier autumn offset. After evaluating different options for

extracting color information from three-band visible color

photography, we selected a hue-intensity-saturation (HIS)

transformation (Wang et al., 2005) using the ENVI image pro-

cessing software package (ITT Visual Information Solutions).

The resulting hue vector was compared with the original red-

green-blue image and it was determined that hue values

between 0–90 corresponded to yellow, 90–180 to green, 270–

360 to red, and 180–270 to blue (Naik & Murthy, 2003). We uti-

lized a simple decision tree to classify the hue using each of

these ranges corresponding with a visible color. Atmospheric

scattering, which is strongest at blue wavelengths, resulted in

the appearance of a blue hue within all shadowed pixels.

Therefore, all pixels classified as blue using the above data

ranges were labeled as no data and made transparent in fin-

ished maps.

Investigating landscape patterns

To enable an evaluation of landscape controls on phenology,

we generated maps at 30-m resolution for five different

parameters: elevation, aspect, distance to tidal water, impervi-

ous surface area (ISA), and latitude. These parameters were

chosen because of their expected impact on local climate and

photoperiod, both known to influence forest phenology (see

references in the Introduction). National Elevation Data (30 m

NED) was acquired from the USGS seamless data server.

From these data, aspect was calculated as the angular

(degrees) displacement from north, and therefore ranged

between 0 and 180 degrees. Although there might be poten-

tially important differences in forest phenology between East

and West facing slopes, we could not find any evidence for

this effect; therefore, East and West facing slopes received the

same value of 90 degrees. A map of tidal water was derived

from a coastline map and the distance from tidal water was

calculated for each 30-m pixel using the ESRI ArcGIS software

package. Finally, the 2001 National Land Cover Data ISA data

layer was acquired from the USGS seamless data server and a

5 9 5 pixel spatial mean filter was applied. The filter replaces

the center pixel in each 5 9 5 pixel box with the mean ISA of

the 25 pixels in the box. Therefore, a 30-m forest pixel sur-

rounded by development resulted in a higher mean ISA value

than a forest pixel surrounded by forest. We also generated a

map of distance to the geographic centers of the cities of Balti-

more and Washington, DC.

We viewed the entire data set of 11 million forest pixels

as too large for efficient analysis. Additionally, for multiple

regression analysis using nearly continuous spatial data, spa-

tial autocorrelation causes adjacent pixels to be very similar

and therefore the inclusion of such pixels is essentially the

same as duplicating data points. Therefore, we reduced the

total data set by arranging a grid of points with 500-m spac-

ing in both the X and Y direction. If a point did not fall on a

forest pixel it was deleted from the database, otherwise it

was included. The resulting set of sample points totaled

29 819 data, 14 110 in the Coastal Plain, 13 263 in the Pied-

mont plateau, and 2446 in the Blue Ridge. At each location

we sampled the four landscape variables mentioned above,

along with the X and Y position, expressed in meters in

UTM projection, zone 18. We then divided the data set into

three parts, one for each physiographic province to explore

the relative importance of landscape variables between prov-

inces.
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Using these three data sets we constructed multiple linear

regressions (Type III) for each physiographic province using

all landscape factors as model effects, and the date of spring

onset of greenness, the date of the autumn offset of greenness,

and growing season length as model responses. Despite 500-m

spacing between data points, we expected spatial autocorrela-

tion to increase the significance of landscape variables. To

account for this, we calculated a cubic trend surface by includ-

ing all third-degree polynomial terms of the X and Y position

of the sample locations (Lichstein et al., 2002). As an example,

the model exploring the effect of landscape variables and

landscape position on the onset of greenness in the Piedmont

plateau was:

m3;Pp � b0 þ b�1Elevationþ b�2Aspect

þ b�3Dtidal þ b�4ISAþ b�5Yþ b�6X þ b�7XYþ b�8X
2

þ b�9Y
2 þ b�10X

3 þ b�11Y
3 þ b�12X

2Yþ b�13XY
2 þ er

ð11Þ:

The term representing the Y position (latitude) is the only

spatial term that is expected to directly influence phenology.

All the other spatial terms (combined) are included to reduce

the effect of spatial autocorrelation on the significance of the

other model effects. By including the cubic trend surface we

also enabled an analysis of the spatial structure unaccounted

for by the landscape variables included in the model. For each

regression, we calculated model estimates and the fraction of

the sum of squared variance each model estimate explains in

the overall regression. A P-value (probability of significance)

was calculated for each model effect.

Results

Parameter uncertainty

The 7-parameter model exhibited a visually improved

data fit compared with the 6-parameter model, which

lead to several quantitative improvements in terms of

data residuals, the dependence of the autumn offset of

greenness on summer greendown, and model parame-

ter uncertainties. For the 50 pixels included in the Blue

Ridge and piedmont test data set, the misfit (Eqn 8)

decreased an average of 15.5% with the inclusion of the

7th parameter, but the largest improvement occurred in

the temporal balance of the residuals. For the 6-parame-

ter model, data residuals were positive between DOY

120 and 210 and negative between DOY 210 and 300.

However, the 7-parameter data residuals through this

period were much closer to zero and did not appear to

be either more positive or more negative in either early

summer or late summer (Fig. 2). This reduction in

‘structure’ within the residuals is a strong indicator that

the 7-parameter model more accurately captures the

phenological dynamics than the 6-parameter model.

The 7-parameter model always predicted a later

spring onset and autumn offset of greenness than the 6-

parameter model, but for the autumn offset the differ-

ence was greater and depended strongly on summer

greendown (Fig. 3). The later phenology in spring is a

consequence of higher maximum vegetation cover in

spring, which delays the spring inflection point by an

average of 5 days. In autumn, the 6-parameter model

Fig. 2 Landsat%Veg annual trajectories of spring onset, sum-

mer stability, and autumn offset of greenness (•) modeled using

the 6-parameter (dashed line) and 7-parameter (solid line) equa-

tions for a deciduous forest pixel. The model residual is plotted

as a smoothed function of DOY along the top of the figure,

showing smaller and more uniform residuals for the 7-parame-

ter model. Autumn color [shown using the visible red (Landsat

band 3; N)] increases just prior to the inflection point of the

descending sigmoid curve (vertical lines).

Fig. 3 The difference between the spring onset ( ) and autumn

offset of greenness (N) as predicted by the 6- and 7-parameter

models plotted against summer greendown as measured by the

7-parameter model. The 7-parameter model always predicts a

later spring onset and autumn offset, but the difference is

greater for the autumn offset, resulting in a longer growing sea-

son prediction, particularly for pixels with a strong greendown.
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over predicts late summer greenness, which forces the

model to predict an earlier autumn to maximize model

fit through the period of leaf senescence. This effect is

strongest in the late summer, influencing the estimates

of the beginning of autumn most, and decreases into

the late autumn. Pixels with a stronger summer green-

down exhibited a larger difference between models’

prediction of autumn phenology, ranging from 7 to

20 days (Fig. 3). The dependence of autumn phenology

on summer greendown is therefore removed by utiliz-

ing the 7-parameter model.

The bootstrapping results show only a moderate

deviation from normality in the distribution of parame-

ter estimates (Fig. 4). Because the bootstrap distribu-

tions are approximately symmetric about the mean

estimate, we report values with 95% confidence limits

defined as half the difference between the upper and

lower bootstrap bounds (Table 1). Doing so, the aver-

age uncertainty in the prediction of the autumn offset

decreased nominally from ±7.9 to ±7.4 days and the

maximum uncertainty decreased from 14.9 to 11.6 with

the inclusion of parameter m7. We observe that there is

Fig. 4 (a) Summary of bootstrapping results on a single pixel. Diagonal elements show histograms of all 5000 bootstrap estimates for

each parameter, and off-diagonals show crossplots of all parameter combinations, providing details about parameter correlation.

Parameter estimates using the full dobs (gray x) and the bootstrap 95% confidence region (ovals) are also shown. (b) Original data with

error bars (black), the data fit for the inversion result using dobs (gray), and the data fits for the bootstrap samples (dark gray).

Table 1 Summary of bootstrapping results

Parameter Meaning

Inversion estimate

using dobs

Mean bootstrap

estimate

Bootstrap 95%

lower bound

Bootstrap 95%

upper bound

m1 Minimum vegetation cover 0.1023 0.9977 0.08046 0.1210

m2 Potential amplitude 0.8802 0.8779 0.6917 1.042

m3′ Spring onset of greenness 108.2 108.5 100.0 115.7

m4′ Slope of spring onset 7.596 8.600 6.182 11.45

m5′ Autumn offset of greenness 311.4 311.4 301.6 321.5

m6′ Slope of autumn offset 7.473 6.971 4.657 8.742

m7 Summer greendown 0.002250 0.002231 0.001499 0.002898
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a varying degree of correlation between parameters; for

example, m2 and m7 are highly correlated, whereas m3′
and m5′ are uncorrelated. More important than average

uncertainties, we found that the dependence of the

autumn offset uncertainty on greendown in the case of

the 6-parameter model was a factor of two larger than

in the case of the 7-parameter model (Fig. 5). The

6-parameter model is, therefore, biased towards an

early prediction of the autumn offset of greenness,

the size of this bias is dependent on the strength of the

summer greendown (Fig. 3), and uncertainty in the

autumn offset prediction is dependent on the strength

of the summer greendown (Fig. 5).

When applied to the entire data set, the model suc-

cessfully returned a complete set of parameters for 99%

of the image pixels. The distribution of misfit values

peaked at 90, with a long thin tail towards larger val-

ues. In 33% of the cases, the optimum misfit (70) was

reached and 99% of the forested pixels reached either

the target misfit or the optimal misfit interval within 10

iterations. Forest pixels generally were modeled in five

to six iterations whereas non-forest land covers gener-

ally took more iteration and returned a higher misfit.

Validation with high-resolution data

We validated the effectiveness of our method at small

spatial scales using an aerial photograph acquired

above the Blue Ridge Mountains, just south of Harpers

Ferry, WV on 15 October 2008. For this mid-autumn

image, red canopy hues spatially correlated with early

autumn offset dates, yellow hues correlated with inter-

mediate autumn offset dates, and green hues correlated

with late autumn offset dates (Fig. 6). These patterns

held up across scales, with patches of visually homoge-

neous color 5-10 Landsat pixels in size returning similar

values. Representative of very fine scales, the webcam

located in Washington, DC, showed good correlation

with the average phenology derived from Landsat

(Fig. 7). The webcam data exhibited summer green-

down in all years of a similar intensity to that observed

in the Landsat data.

Landscape patterns at large spatial scales

We calculated Pearson correlation coefficients between

important phenological dates and vegetation cover esti-

mates throughout the timeseries (Table 2). Some nota-

ble characteristics of the data set that are apparent from

this analysis include:

1 The spring onset and autumn offset of greenness

were negatively correlated, but not strongly

(r = �0.45), suggesting that there are both similarities

and differences between the set of environmental

drivers that determine the timing of spring and

autumn. This correlation is not predicted based on

model structure (i.e. m3′ and m5′ are not correlated in

Fig. 4). On the other hand, a theoretical perfect corre-

lation between spring onset and autumn offset, using

the bootstrapped uncertainties for each parameter

(Table 1), leads to a correlation of �0.74, significantly

greater than the observed correlation. Despite this

degree of independence between the timing of the

spring onset and autumn offset, across the study

region, variance in the spring onset (r2 = 21.7) and

autumn offset (r2 = 29.9) are roughly equal. This

indicates that neither dominates the variation in

growing season length, particularly considering the

larger uncertainty in the autumn offset compared

with the spring onset, which leads to a higher vari-

ance.

2 Increasing greendown was associated with increas-

ing MAXVEG and a later spring onset. This suggests

that forest canopies with high leaf area in spring

greenup later and are more susceptible to summer

greendown. Conversely, canopies that exhibit stable

summer greenness (low greendown) are associated

Fig. 5 The autumn offset 95% confidence interval (in days) for

the 6-parameter model (a) and the 7-parameter model (b), both

plotted against greendown calculated using the 7-parameter

model. The models exhibit a similar range in uncertainty, but

the relationship between the autumn offset uncertainty and

greendown is reduced in the 7-parameter model.
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with lower maximum vegetation cover and an earlier

spring onset of greenness. However, one must be

careful in interpreting this result because the boot-

strapped model parameters also exhibited a strong

correlation between m2 and greendown (Fig. 4), sug-

gesting the model structure strongly influences these

relationships across pixels.

3. The slope of the spring and autumn transitions was

not strongly correlated with any parameter. They

were, however, weakly correlated with each other

indicating that canopies that develop over a more

extended period throughout the spring also take

longer to senesce in the autumn. This relationship

(unlike the relationship between MAXVEG and

greendown) was not seen in the bootstrapped model

parameters, suggesting that it is not due to model

structure. There was a weak negative correlation

between the slope of the spring and autumn transi-

tions and MAXVEG (�0.22 and �0.23, respectively)

suggesting that forest canopies with low canopy

cover in early summer achieve this state only slightly

more rapidly than canopies with higher cover.

Elevation, distance to tidal water, impervious surface

area, and latitude all significantly influenced the timing

of spring onset and autumn offset of greenness, and

therefore growing season length (Fig. 8). Aspect was

not generally significant. For each significant landscape

variable (elevation, tidal distance, urbanization, and lat-

itude) the predicted relationship was stronger for the

spring onset than for the autumn offset of greenness.

Because the uncertainty in the autumn offset is 6 days

larger than the uncertainty in spring onset (Table 1), it

is possible that the more significant relationships found

with spring timing is simply due to greater measure-

ment precision. The importance of each of the four

landscape variables varied across the three physio-

graphic provinces (Table 3):

1 In the Blue Ridge Mountains, elevation accounted for

95% of the model variance in spring onset and grow-

ing season length, driving a highly predictive model

for spring onset (r2 = 0.74). However, elevation was

less important in modeling the autumn offset and

lead to a weaker model (r2 = 0.18). The relationships

(a)
(c)

(b)

Fig. 6 Validation of the autumn offset was completed using an aerial photograph acquired on 14 October 2008 over the Blue Ridge

Mountains, 15 km south of Harpers Ferry, WV. Sunlit canopies were classified as red, yellow, or green, discarding shadowed canopies

(see text). The fractional area of each classified color was plotted against the date of autumn offset (end of season, EOS) calculated using

the 7-parameter phenology model (a) showing that earlier autumn offset is related to red and yellow canopies and later autumn offset

is related to green canopies in this autumn photograph. The spatial pattern of red, yellow and green canopies exhibits the influence of

elevation, but also smaller scale variations that are likely micro-habitats supporting color-distinct species. Colors in b are draped over a

hillshade image with the sun at 200 degrees azimuth and 40 degrees elevation.
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between the spring onset and autumn offset and ele-

vation were nonlinear, with increasing elevation

associated with an increasing growing season length

(earlier spring and later autumn) until an elevation of

275 m. Above this elevation, increasing elevation

caused growing season length to decrease more rap-

idly (~4 days per 100 m). The reduction in growing

season length observed with increasing elevation

above 250 m was driven to a greater extent by a later

spring than by an earlier autumn (Fig. 9).

2 In the Piedmont Plateau, where extensive urban devel-

opment has occurred, %ISA was generally the strong-

est model effect. We found that the effect of urban

land cover extended out 32 km from city centers at

which point a breakpoint occurred and further varia-

tion with urban distance approximated zero (Fig. 10).

The effect of %ISA on autumn offset was greater than

it was on the spring onset. In general data from the

Piedmont Plateau did not result in strong explana-

tory models with r2 values ranging from 0.11 to 0.22.

3 In the Coastal Plain, distance to tidal water was the

most important predictor of both spring onset and

autumn offset of greenness, explaining approxi-

mately 60% of model variance. Of secondary impor-

tance, was %ISA, which (similar to the Piedmont

Plateau) explained more of the variance in autumn

offset than spring onset. In general, the model effects

used did not result in highly explanatory models,

with r2 values ranging from 0.09 to 0.12.

Spatial patterns evident from multiple linear regres-

sions utilizing the entire data set held up at smaller spa-

tial scales (Fig. 8a). In particular, elevation was

correlated with the date of spring onset resulting in

longer growing seasons. The small mountain shown in

Fig. 8 exhibited longer growing seasons at all toe slopes

and a shorter growing season at the summit. Fine-scale

variability is also apparent, which has a spatial struc-

ture suggestive of variation in edaphic factors and plant

community composition.

Discussion

Summer greendown has received inconsistent treat-

ment in the remote sensing literature and is not

accounted for at all in analyses of moderate to low reso-

lution data (White et al., 2009), influencing the calcula-

tion of autumn phenology dates (Friedl et al., 2010;

Ganguly et al., 2010). Beginning in the 1990s, several

papers reported that increasing leaf lifespan was

Fig. 7 (a) Four years of vegetation index measured daily from

webcam imagery of canopy trees adjacent to the US Capital

building, Washington, DC. In (b), the four years of webcam data

have been averaged by DOY and plotted with the %Vegetation

from Landsat with their respective 7-parameter phenology

models.

Table 2 Pearson correlation coefficients between phenologically important dates and quantities

m3′ m5′ m5′-m3′ m4′ m6′ m7 MAXVEG m1

m3′ Spring onset of Greenness 1.00 �0.45 �0.82 �0.05 �0.18 0.46 0.16 �0.18

m5′ Autumn offset of greenness �0.45 1.00 0.88 0.01 0.08 �0.18 �0.09 0.04

m5′-m3′ Growing season length �0.82 0.88 1.00 0.03 0.15 �0.36 �0.14 0.12

m4′ Slope of spring onset �0.05 0.01 0.03 1.00 0.34 0.21 �0.22 0.01

m6′ Slope of autumn offset �0.18 0.08 0.15 0.34 1.00 �0.21 �0.23 �0.14

m7 Summer greendown 0.46 �0.18 �0.36 0.21 �0.21 1.00 0.61 �0.25

MAXVEG Maximum vegetation cover 0.16 �0.09 �0.14 �0.22 �0.23 0.61 1.00 �0.11

m1 Minimum vegetation cover �0.18 0.04 0.12 0.01 �0.14 �0.25 �0.11 1.00
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related to important traits such as decreasing net photo-

synthesis, leaf nitrogen (N), and specific leaf area (Reich

et al., 1997). Other efforts have attempted to link leaf

chemistry to physiological traits and stand-level carbon

assimilation (Field, 1983; Reich et al., 1991; Wilson et al.,

2000; Ollinger et al., 2008). At the scale of individual

leaves, summer greendown is thus described as a grad-

ual process related to aging and damage or stress. It

often commences within weeks of initial leaf expansion.

As leaves age they thicken and photosynthetic capacity

decreases as mesophyll conductance and leaf nitrogen

allocated to photosynthetic machinery both decrease

(Poorter & Evans, 1998; Rey & Jarvis, 1998; Wilson

et al., 2000). Through the growing season, light use effi-

ciency decreases, but water use efficiency increases,

suggesting that this process may be an adaptive

response to reduced soil moisture in the late summer

(Field & Mooney, 1983). Although there are few studies

that investigate trends in leaf and canopy reflectance

throughout the growing season, reduced contrast

between the red and near-infrared wavelengths

appears to be a consistent observation (Gausman et al.,

(A)

Fig. 8 Growing season length for forests in the study region across four physiographic provinces (upper left). Inset (a) shows detail for

Sugar Loaf Mountain (255 m) with 50 m contour intervals shown from 50 m to 250 m. Across the study region, longer growing seasons

are spatially related to lower elevations, coastal regions, and proximity to urban centers.
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1971; Carter et al., 1989), as does reduced contrast

between the visible green and red wavelengths

(Fig. 7a). Seasonal changes in leaf-level reflectance in

the visible wavelengths are primarily related to synthe-

sis and decay of foliar pigments (e.g. chlorophylls and

carotenoids). Once leaf expansion is complete, reflec-

tance in the visible red appears to change little until

autumn senescence, at which time it increases as chlo-

rophyll degrades rapidly (Fig. 2). In the near-infrared,

however, reflectance declines throughout the summer

(Jenkins et al., 2007), thus influencing remote sensing

measures of photosynthetic capacity.

Because greendown is a consistent feature of remote

sensing timeseries, the 6-parameter logistic model,

which assumes constant greenness throughout the sum-

mer, does not properly model forest canopy phenology.

Our results show that transition to a 7-parameter model

that explicitly models summer greendown is warranted

and leads to improvements, both in terms of model

parameter uncertainty and reduction in bias. Because

greendown varies across the landscape, its influence on

measurements of spring and autumn timing also varies

over space. Thus by correctly modeling summer green-

down, our approach enables a more accurate view of

phenological patterns. A second technological advance-

ment we introduce is refinement in the application of

inverse modeling to stacks of high resolution remote

sensing data organized by DOY. While this method

Fig. 10 Similar to Fig. 9, but showing relationships between the

spring onset, autumn offset, and growing season length and dis-

tance to the urban centers of Baltimore and Washington, DC in

the Piedmont and Coastal Plain.

Fig. 9 Relationships between the spring onset, autumn offset,

and growing season length and elevation in the Blue Ridge

Mountains. In all three relationships, we calculated a model

using all the variables in Table 3 with the exception of elevation

and then plotted the residuals. Segmented regression was used

to identify breakpoints in each relationship and the slope (indi-

cated on each plot) of each linear segment. All values for slope,

between segments and between variables, are significantly dif-

ferent in that their 95% standard errors do not overlap.

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 656–674
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does not allow for analysis of interannual variability, it

does provide a fine-grain analysis of the average date of

spring onset and autumn offset of greenness that is rela-

tively insensitive to data noise introduced by atmo-

spheric and other ephemeral impacts common to

remote sensing timeseries. In future work, annual devi-

ations from the average phenology observed at any one

point in time could be explored, which should theoreti-

cally be related to annual climate anomalies. If

extended to fine-resolution remote sensing data (e.g.

Quickbird, Ikonos, or webcam imagery) or different

biophysical measurements from Landsat-class data, our

methods could provide new inroads in phenological

research that has long been concerned primarily with

continental-scale patterns of leaf area and thus broad-

scale climatic drivers (White et al., 2009).

In mid-Atlantic forests, the effect of landscape fac-

tors on the timing of spring onset and autumn offset

and growing season length is more complex than

previously thought. Landscape variables were more

successful in explaining variation in the spring onset

(r2 between 0.12 and 0.74) than in the autumn offset

(r2 between 0.07 and 0.18; Table 3) reflecting either

increased uncertainty in values for the autumn offset

relative to the spring onset (Table 1), or a generally

reduced dependence on the landscape variables mea-

sured here. Previous work has indeed identified a

stronger relationship between climate and the timing

of spring relative to autumn. For example, both gross

and net ecosystem productivity were more highly cor-

related with spring than autumn temperature anoma-

lies in an analysis of eddy covariance flux tower data

(FLUXNET), and remote sensing observations of can-

opy phenology were more highly correlated with

dates of net carbon assimilation in spring than in

autumn (Richardson et al., 2010). Such observations

have been attributed to decreasing light levels in

autumn, reducing the productivity associated with

extended growing seasons (Suni et al., 2003). Observa-

tions that corroborate these past results were identified

in the Blue Ridge Mountains, where higher elevations

were associated with a later spring to a greater extent

than an earlier autumn (Fig. 9). However, in other

areas of our study region we found the opposite trend,

that autumn offset was a stronger influence on grow-

ing season length than was spring onset. For example,

for the region surrounding the cities of Baltimore and

Washington, DC, increasing distance from these cities

was associated with a stronger gradient in autumn off-

set than spring onset (Fig. 10). We found this gradient

extended 32 km from the geographic center of these

cities, approximately two times the distance observed

in previous work utilizing coarse resolution data

(Zhang et al., 2004). Future work will have to explore

why urban heat islands might affect the timing of

autumn more than the timing of spring, but candidate

hypotheses might include changes in plant community

composition (Shustack et al., 2009) and reduced soil

moisture limitations in cities where irrigation might be

more common.

A second unexpected result was the finding of a

breakpoint in the relationship between the timing of

spring onset or autumn offset, and elevation located at

275 m (Fig. 9). Across the entire Blue Ridge elevation

gradient (i.e. without considering the breakpoint) the

observed relationship between the spring onset of

greenness and elevation was 3.27 days 100 m�1

(Table 3), which generally matches what has been

found previously. For example, studies of forests along

the east coast, USA have found 2.7 days 100 m�1 (New

Hampshire; Richardson et al., 2006), 3.3 days 100 m�1

(mid-Atlantic; Hopkins, 1918), and 3.4 days 100 m�1

(North Carolina; Hwang et al., 2011). The finer-grain of

our data enables an investigation of how the relation-

ship with elevation varies along different segments of

the slope. We found that for the first 200 m of elevation

increase, the spring onset actually became earlier by

~1 day 100 m�1. This effect was even stronger in the

autumn, leading to a strong breakpoint in the trend in

growing season length with elevation (Fig. 9). The

remaining elevation range above 275 m exhibited a

trend of 2.7 days 100 m�1, closely matching field obser-

vations in New Hampshire, USA (Richardson et al.,

2006). Recent work has highlighted complexities in the

relationship between the onset of spring and elevation.

For example, in southeast New England, a strong

dependence on elevation was found in small areas

where cold air drainage delayed the onset of greenness

by approximately 25 days 100 m�1 (Fisher et al., 2006).

At larger scales, work has shown that the thermal time

requirement for the spring onset of greenness increases

with decreasing winter chilling days (Zhang et al.,

2007). In addition to these potential causes for the

observed breakpoint (i.e. cold air drainage and suffi-

ciently warm winters at lower elevations to require a

longer thermal time requirement for spring onset of

greenness), it might also be useful to consider the posi-

tion of the atmospheric boundary layer, which might

limit the effect of elevation on climate below ~275 m.

The 275-m breakpoint does not coincide with any

known transition in plant composition, such as to ever-

green forest, but due to a general lack of information on

plant community composition at this scale, such an

effect cannot be completely ruled out.

We also found considerable residual variance that

was unexplained by the landscape variables used here.

Spatial autocorrelation in the residuals for both spring

onset and autumn offset did not help us to identify

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 656–674
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additional landscape variables to include in the model,

suggesting that residual variance is simply data noise.

Alternatively, residual variance might be explained by

variables that are difficult to map at a fine spatial grain,

such as species composition and edaphic factors (Liang

et al., 2011). Tree species are known to exhibit relatively

consistent offsets in year-to-year phenological timing

despite large inter-annual variability in observed transi-

tion dates and the underlying meteorological drivers

(Richardson & O’Keefe, 2009). Analyses that utilize

phenology data at a high spatial grain could potentially

leverage from these differences to aid in species distri-

bution mapping. Such interactions are generally

obscured at coarse resolutions (e.g. 250 m to 1 km

grain) due to mixed pixel effects with other land cover

types.

Conclusions

The effects of climate change on forest ecosystem pro-

ductivity will likely involve both changes in growing

season length as well as site suitability, thus requiring

analyses that consider changes in ecosystem processes

during spring and autumn as well as trends throughout

the summer. Summer greendown is biologically rele-

vant in that it is clearly associated with ecological pro-

cesses that vary across landscapes. Further, in webcam

observations the rate of summer greendown appears to

vary between years (Richardson et al., 2009a; Fig 7a),

suggesting annual climate factors are important in con-

trolling the rate of summer green down. Therefore, if

summer greendown intensifies (or is reduced) as a con-

sequence of changes in drought or temperature stress,

and this change is not accounted for in phenology mod-

els, estimates of autumn timing will become increas-

ingly biased. Comprehensive analyses of forest

productivity must include summer greenness trajecto-

ries as well as spring and autumn timing. We found,

for example, that the maximum vegetation cover and

the rate of summer greendown varied spatially, inde-

pendent of spatial variations in the date of spring onset

and autumn offset of greenness. This suggests complex-

ity and tradeoffs in relationships between forest canopy

greenness and growing season length that are entirely

obscured if observations focus on just one time of year

or assume constant leaf area throughout the year.

Transferring an understanding of the effect of land-

scape gradients on phenological timing to an under-

standing of the effect of temporal changes in climate

is inherently problematic. The analysis of gradients

provides insight into how ecosystem processes vary

with climate-related variables, but these gradients

also include hidden gradients in site characteristics

that are difficult to measure using remote sensing

data (e.g. plant composition, edaphic factors, etc.

Burke et al., 1997). Nevertheless, studies that utilize

space-for-time substitution along relatively short gra-

dients (enabled by medium-grain remote sensing

data) provide insight into how gradual changes in

climate might influence phenological timing. We

found that growing season length does not decrease

linearly with increasing elevation, suggesting pheno-

logical responses to projected warming may not be

as simple as an increase in growing season length

and might depend strongly on microclimate (Fisher

et al., 2006; Hwang et al., 2011), winter chilling

requirements (Zhang et al., 2007), and photoperiod

(Korner & Basler, 2010). Secondly, we found that

urban heat islands, centered on the two large cities

in our study region, influenced the timing of autumn

more strongly than the timing of spring, suggesting a

diverse response to the warming (and associated

changes in site characteristics) associated with the

creation of urban forest fragments. As phenological

data acquired at finer spatial grains become more

common, future studies might examine more fully

the ecosystem-level implications for these observed

trends, and the degree to which they are upheld in

forested systems worldwide.
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