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Abstract. Sugar maple (Acer saccharum Marsh) has experienced poor vigor, regeneration failure, and

elevated mortality across much of its range, but there has been relatively little attention to its growth rates.

Based on a well-replicated dendrochronological network of range-centered populations in the Adirondack

Mountains (USA), which encompassed a wide gradient of soil fertility, we observed that the majority of

sugar maple trees exhibited negative growth trends in the last several decades, regardless of age, diameter,

or soil fertility. Such growth patterns were unexpected, given recent warming and increased moisture

availability, as well as reduced acidic deposition, which should have favored growth. Mean basal area

increment was greater on base-rich soils, but these stands also experienced sharp reductions in growth.

Growth sensitivity of sugar maple to temperature and precipitation was non-stationary during the last

century, with overall weaker relationships than expected. Given the favorable competitive status and age

structure of the Adirondack sugar maple populations sampled, evidence of widespread growth reductions

raises concern over this ecologically and economically important tree. Further study will be needed to

establish whether growth declines of sugar maple are occurring more widely across its range.
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INTRODUCTION

Sugar maple (Acer saccharum Marsh) is argu-
ably the most ecologically and economically
important species in the northern hardwood
forests of eastern North America. Ecologically,
sugar maple provides nutrient-rich litter to forest

soils (Long et al. 2009, Lucash et al. 2012),
promotes N mineralization and reduces leaching
of nitrate into groundwater (Lovett et al. 2004),
and shapes the diversity of plant and animal
communities (Beier et al. 2012a). Economically,
the tree provides the raw materials for a
profitable maple syrup industry, provides dura-
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ble hardwood for furniture and flooring, and
offers aesthetically pleasing fall foliage (Millers et
al. 1989).

Unfortunately, the future of sugar maple in
northern hardwood forests seems highly uncer-
tain. Sugar maple suffers from a suite of ‘decline
symptoms’—including branch dieback and foliar
discoloration (Long et al. 1997, 2009), poor tissue
nutrition (Hallett et al. 2006), regeneration failure
(Sullivan et al. 2013) and elevated mortality
(Horsley et al. 2000)—across central and northern
portions of its range, including Pennsylvania
(Horsley et al. 2000), New York (Sullivan et al.
2013), eastern Canada (Duchesne et al. 2002), and
Vermont (Gavin et al. 2008). Collectively these
symptoms have led some to define a ‘decline
disease’ etiology for A. saccharum (Bauce and
Allen 1991). Several proximate causes have been
proposed, including soil acidification and nutri-
ent depletion due to acid rain (Duchesne et al.
2002, Sullivan et al. 2013), insect outbreaks such
as forest tent caterpillar (Welch 1963, Horsley et
al. 2000), infection by Armillaria pathogens
(Wargo and Harrington 1991), density-depen-
dent competition (Bauce and Allen 1991), and
climate-mediated stress and injury (Gavin et al.
2008, Hufkens et al. 2012). Decline symptoms
have been more severe (or evident) in popula-
tions where the co-occurrence of two or more of
these stressors has been documented (Driscoll et
al. 2003).

Among the larger-scale stressors of sugar
maple, acid rain and climate change may pose
the greatest historical and future threats to the
species across its range. Sugar maple is calciphilic
and therefore is vulnerable to effects of acidic
deposition in poorly buffered soils, including loss
of soil calcium (Ca) and the mobilization of
inorganic aluminum (Al), which is toxic and
inhibits root uptake of Ca and other nutrients
(Lawrence et al. 1995, Cronan and Grigal 1995).
Recruitment, vigor, crown condition and foliar
nutrition of A. saccharum tend to be lower on
base-poor soils, relative to base-rich soils (Hallett
et al. 2006, Sullivan et al. 2013).

With respect to climate change, niche models
(Iverson et al. 2008) indicate that sugar maple
will experience one of the largest reductions in
range and importance among eastern deciduous
trees under a range of projected climate scenar-
ios. To date, however, there has been relatively

little investigation of climate sensitivity in extant
A. saccharum populations. Gavin et al. (2008)
observed mostly weak and non-stationary
(changing over time) climate-growth relation-
ships for two populations in Vermont during the
last several decades. Climate-mediated injury
may also play a role, such as defoliation due to
an early thaw—late frost event that affected an
area of over 8700 km2 across New England in
2010 (Hufkens et al. 2012).

Compared to the visible symptoms of decline,
relatively little attention has been given to the
long-term patterns of sugar maple growth rates
(Kolb and McCormick 1993, Gavin et al. 2008),
despite the fact that growth and yield have more
direct implications for both the ecological and
economic value of the species. Decreasing
growth rates have been used as a proxy of tree
vitality and susceptibility, and in many species
have been observed as a precursor to mortality
when coupled with additional stressors (Peder-
sen 1998, Suarez et al. 2004). Changes in tree
growth can also provide a long-term empirical
basis to draw inferences about causal factors
associated with decline etiology, which often
involve a complex set of precursors and proxi-
mate stressors. Few studies of A. saccharum have
documented whether declining health and vigor
are associated with declining growth (Long et al.
2009), or if visibly healthy stands are experienc-
ing changes in growth that may be consistent
with ‘niche model’ predictions in a changing
climate.

In this study, we assessed growth rates of
range-centered sugar maple populations using a
well-replicated sampling network that included
both healthy and unhealthy populations across
the Adirondack Mountains (USA). Our sampling
network captured a wide range in soil chemis-
try—from well-buffered and nutrient rich to
heavily acidified and nutrient poor—in a recently
warming portion of the species range (Beier et al.
2012b). The health, vigor, and recruitment of A.
saccharum are much lower in culturally acidified
Adirondack forests, but due to variations in
surficial geology, there exist areas of highly-
buffered base-rich soils that support visibly
healthy populations (Sullivan et al. 2013). We
compared recent A. saccharum growth rates and
trends across sites varying in soil chemistry (and
visible indices of health and vigor) and evaluated
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the sensitivity of growth chronologies to recent
climatic variability. We expected to observe lower
absolute growth rates (measured as basal area
increment) on acidified soils with low base
saturation and high exchangeable [Al], relative
to well-buffered, nutrient-rich soils. No popula-
tion-wide growth trends were expected, given
the age and competitive status of the trees
sampled; however, we hypothesized that trees
on poor soils would exhibit less overall variabil-
ity in growth due to nutrient limitation. Lastly, as
a cold-temperate species with deterministic
growth behavior (Bauce and Allen 1991), we
expected A. saccharum growth to exhibit a
positive sensitivity to temperature and precipita-
tion during the growing seasons both prior to
and during the year of ring formation, although
these climate-growth relationships may have
been variable over time (Gavin et al. 2008).

METHODS

Selection of study sites
We sampled 18 A. saccharum populations in a

network of upland hardwood forests distributed
across the western and central Adirondack
Mountains (Fig. 1). Sites were originally estab-
lished as part of the Western Adirondack Stream
Study (Lawrence et al. 2008) and were selected
by Sullivan et al. (2013) to capture a regional
gradient of soil base availability, which is known
to shape A. saccharum nutrition and health (Long
et al. 2009, Sullivan et al. 2013). Soil samples from
Oe, Oa, A, and B horizons were assayed for
exchangeable Ca, Mg, Al, and base saturation
(see Sullivan et al. 2013 for methodology).

Growth measurements and tree-ring chronologies
Acer saccharum growth was measured through

two tree-ring sampling efforts using our site
network. In 2009, increment cores (2 per tree)
were collected at each site from 6-9 dominant or
co-dominant A. saccharum trees with a diameter
at breast height (DBH; 1.3 m) � 35 cm. To
improve stand-level replication, we cored an
additional 4–10 trees per site in 2012, using a
lower minimum DBH of 30 cm. Using this
threshold, most, if not all, canopy-dominant or

Fig. 1. Network of study sites (n ¼ 18) across the Adirondack Mountains of New York State, USA.
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co-dominant A. saccharum trees were sampled in
every plot; DBH and crown position were
recorded for each tree. Increment cores were
measured to 0.001 mm accuracy with a sliding
stage laser micrometer (Velmex Corporation,
Bloomfield, New York, USA). Program COFE-
CHA was used to verify visually cross-dated
series of radial increment as well as identify
measurement errors, false rings, and missing
rings. Two pairs of nearby sites with similar soil
chemistry and land use history were combined
(31009 with 35014; 12003 with 13008) to remedy
small sample sizes.

The sample population consisted of 18 sites,
242 trees, and 450 ring-width series. Using these
raw ring widths, we compiled two data sets for
analysis: (1) basal area increment (BAI) at the
individual tree, site (average), and regional
population (average) levels; and (2) ring width
indices (RWI) derived from detrended and
standardized chronologies using ARSTAN (Cook
1985). The BAI time series data were used to
assess trends in A. saccharum growth, because the
BAI calculation accounts for geometric bias in
raw ring width series. Average site-level BAI
during 1970–2008, selected to represent a period
most temporally relevant to our soils data, at the
site level was used to compare absolute growth
rates among sites, and to estimate correlations
between soil chemistry and increment growth.
The RWI series—based on detrended and stan-
dardized chronologies derived from the same
raw data as BAI—was used to assess the climate
sensitivity of A. saccharum growth at the site level
during 1909–2008.

Growth trends
We calculated basal area increment (BAI) for

individual trees using the bai.out function in the
dplR package (Bunn 2008). Mean BAI estimates
were summarized by site (n ¼ 18) and the entire
regional population (all trees; n ¼ 242), and by
quartiles of the pooled size class distribution
(based on DBH) to evaluate growth patterns
across different size classes.

We used a multiple-step approach to assess
temporal changes in growth based on the sugar
maple BAI data. First, a segmented regression
technique was used to identify shifts in the BAI
time series for each individual tree. When a shift
was identified, we then assessed whether the BAI

time series after the shift experienced a positive
trend, negative trend, or random walk. The start
years of trend calculation were based on the
‘‘breakpoint’’ identified from the analysis, which
was found by minimizing the residual sum of
squares in a segmented linear regression fit
(Zeileis et al. 2003). To assess trends, we used a
two-part non-parametric procedure that provides
comparable outputs to a least-squares regression,
but is more robust to outliers. First, the Mann-
Kendall test was used to evaluate directionality
in the time series; a significant s statistic ( p ,

0.05) indicates that a time series is consistently
moving upward or downward and is not a
random walk (Kendall 1938). Next, the non-
parametric Theil-Sen slope (Sen 1968) was
calculated to estimate a linear rate of change
(mm2 decade�1) in a time series. Relative to least-
squares regression, the Theil-Sen method greatly
reduces the effect of outliers on low-frequency
trend estimation (Sen 1968), which is preferable
given the high interannual variability of tree-ring
data.

To summarize, each tree’s BAI time series was
fitted with a segmented regression, the break-
point was identified (if one existed), and the
Mann-Kendall tau and Theil-Sen slope for the
period following each breakpoint were calculat-
ed. The tau statistic and slope were used to assess
directionality (significance) and magnitude (mm2

decade�1), respectively, of the growth patterns
over time. The timing (calendar year) of the
breakpoint was also recorded for each tree.

Soil chemistry
To test the hypothesis that soil chemistry

influences A. saccharum growth, Pearson correla-
tions were evaluated between site-level soil
chemistry (exchangeable Ca, exchangeable Al,
and base saturation) and three growth parame-
ters: mean site-level BAI (1970–2008), the timing
of the BAI ‘‘breakpoint’’ (growth shift), and the
growth trend magnitude (rate) following the
‘‘breakpoint.’’ Exchangeable Mg was correlated
with Ca across all soil horizons ( p , 0.01) and
subsequently removed to avoid collinearity
among soil chemistry variables.

Climate sensitivity
Standardized chronologies were created using

ARSTAN (Cook 1985) to generate ring width
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indices (RWI) for climate analysis. Geometric
trends and effects of disturbance were reduced
through two rounds of detrending: (1) a negative
exponential curve or linear regression (best fit) to
account for geometric bias (Cook 1985), and (2) a
data-adaptive smoothing spline (Friedman 1984)
for disturbance and release events. Releases were
identified based on the Lorimer and Frelich
(1989) classification system. Following Pederson
et al. (2004), chronologies that did not exhibit
releases were fit with a horizontal line. Detrend-
ing’s primary purpose is to separate the geomet-
ric and ecological noise from the climatic signal
(Fritts 1976, Cook and Kairiukstis 1990), devel-
oping dimensionless and standardized chronol-
ogy tree-ring indices for comparison with
climate. After detrending, series were grouped
by site and averaged annually using a robust
biweight mean to create site-level ARSTAN
chronologies (Cook and Kairiukstis 1990). Site-
level ARSTAN chronologies were also aggregat-
ed into a regional composite using the first
principal component (PC1) from a principal
components analysis of all site-level ring-width
indices (RWI).

To represent local climate conditions across the
site network, we used 4 km resolution gridded
historical estimates of monthly temperature
(Tmax and Tmin) and precipitation (PPT) pro-
vided by PRISM (PRISM Group, Oregon State
University, Corvallis, Oregon, USA; http://www.
prism.oregonstate.edu). Variables included
monthly TMax, TMin, and PPT for the same
year of growth (t) and prior year (t � 1). Data
extracted from PRISM cells associated with study
sites were averaged to produce a shared clima-
tology for the regional population, and to
account for uncertainty associated with PRISM
temperature estimates in this region (Beier et al.
2012b, Bishop and Beier 2013). To evaluate
drought, monthly Palmer Drought Severity
Index (PDSI) was collected from the National
Climatic Data Center’s online database for New
York State, Northeastern Plains division (www.
ncdc.noaa.gov/; Diamond et al. 2013).We focused
on 1909–2008 for climate-growth analyses due to
issues with data reliability and continuity.

Climate sensitivity of the RWI (standardized
chronologies) for the study period (1909–2008)
was evaluated using a seasonal moving window
correlation screening procedure. Pearson correla-

tion coefficients between the site-level RWI and
3-month seasonal climate windows with a 1-
month time step from January to March of the
previous year of ring formation through July–
September of the year of ring formation, follow-
ing a similar approach by Liu et al. (2013). Only
correlations significant at p , 0.05 were consid-
ered further. The same analysis was conducted
with the regional composite RWI using the first
principal component (PC1), which explained
47.3% of the variance in all site-level RWI series.

To account for temporal variability in climate
sensitivity, we used time varying parameter
(TVP) regression modeling based on a state-
space model using the Kalman filter (Kalman
1960). The TVP method is a commonly used
approach that allows for a time-dependent
relationship between ring-width indices and
climate (Cook and Johnson 1989, Visser et al.
2010), and the Kalman filter improves signal-to-
noise ratio by introducing a noise term to the
TVP model that allows for dynamic RWI
responses to climate. TVP regressions were
analyzed only for those seasonal climate vari-
ables correlated with RWI, based on the screen-
ing described above. In lieu of building TVPs for
each site, we analyzed the regional composite
‘signal’ based on first principal component (PC1),
as above. Prior to model fitting, climate data
were standardized (zero mean, standard devia-
tion of 1), and PDSI was pre-whitened to reduce
built-in autoregressive persistence.

Except for COFECHA and ARSTAN, all
analyses were conducted in R (R Development
Team 2010) with the zyp (Bronaugh and Werner
2009), dplR (Bunn 2008), vegan (Oksanen et al.
2011), strucchange (Zeileis et al. 2002), and dlm
(Petris 2010) packages.

RESULTS

Growth trends
Decreasing growth was observed after 1970,

with intensification after 1990, in the majority of
Acer saccharum trees sampled across the Adir-
ondack Mountains (Fig. 2A; Appendix: Fig. A1).
A segmented regression model fit to mean
population BAI (n ¼ 242 trees; 1909–2008)
indicated a significant shift to a negative growth
trend occurred in 1970, followed by a second
shift after 1990 (based on the first and second
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‘‘breakpoints’’). Mean BAI exhibited negative
trends across diameter classes (quartiles) after
1970, although trees in the smallest size class
(lowest DBH quartile) exhibited the smallest
trend magnitude (Fig. 2B).

We note that creation of ARSTAN chronologies
(Fig. 2C; Appendix: Fig. A2) removed many of
these growth trends, as purposed to evaluate
radial growth sensitivity to high-frequency var-
iability in climate. The first principal component
(PC1), derived from the PCA of all 18 ARSTAN
site chronologies, accounted for 41.1% of vari-
ance (Fig. 2D).

Of the 242 trees sampled, we found that 139
trees (57%) exhibited negative growth trends ( p
, 0.05) after the most recent ‘‘breakpoint’’ in

segmented regression fits (Table 1). In contrast,
only 13 trees (5%) exhibited positive growth
trends ( p , 0.05), and the remaining 90 trees
exhibited a ‘random walk’ pattern based on
Mann-Kendall tests ( p . 0.05; Fig. 3). Frequen-
cies of growth trends are listed in Appendix:
Table A1 over varying confidence levels.

Of the 289 breakpoints calculated after 1970,
140 (48%) were followed by negative growth
trends ( p , 0.05), 33 (12%) were followed by
positive growth trends, and the remaining 116
exhibited a random walk (Fig. 3). At the site level
(mean BAI by site), 13 of the 18 populations
(72%) exhibited significantly negative BAI trends
after the most recent growth shift. Growth trend
estimates at the individual and site levels were

Fig. 2. Growth patterns of canopy-dominant Acer saccharum across a network of upland forests (n¼ 18) in the

Adirondack Mountains, New York (USA). Plots include (A) basal area increments (BAI) averaged by site (grey

lines), (B) BAI averaged by quartiles of the pooled size distribution (Diameter at Breast Height; DBH), (C)

ARSTAN chronologies for each site (grey line) and averaged across the region (black line), and (D) composite

chronology derived from principal component analysis (PCA) of ARSTAN chronologies from 1909–2008.

v www.esajournals.org 6 October 2015 v Volume 6(10) v Article 179

BISHOP ET AL.



not associated with age or size (DBH) parameters
( p .. 0.05; Fig. 4).

Soil chemistry
Sugar maple trees on base-rich soils had higher

growth rates than trees on moderate or base-poor
soils. Mean growth increment from 1970–2008
was negatively correlated with exchangeable
[Al3þ] (�0.51, p , 0.05), and was positively
correlated with base saturation (0.41; p ¼ 0.09)
and exchangeable [Ca2þ] (0.42, p¼ 0.08), in the A
horizon (Appendix: Table A2). Site-averaged A
horizon soil chemistry values are summarized in
Appendix: Table A3.

We found no association between soil chemis-
try and growth trends; neither the direction
(Mann-Kendall tau) nor the magnitudes (Theil-
Sen slope) of recent BAI trends ( p .. 0.05) of A.
saccharum were associated with soil variables at
the site level. Populations on base-rich soils
experienced declining growth at similar rates as
those on moderate and base-poor soils.

Climate sensitivity
Sugar maple growth sensitivity to climate was

variable across sites and over the 1909–2008
period. The first principal component of the
regional chronology (PC1) was negatively corre-
lated ( p , 0.05) with July-September TMax,

June-August TMin, and July-September TMin of
the prior year (t � 1); and positively correlated
with February–April PPT of the prior year (t�1)
and June–August PPT of the same year (t; Fig. 5).
Neither the regional chronology (PC1) nor the
site-level chronologies were associated ( p . 0.05)
with monthly PDSI over the 1909–2008 period.

Growth sensitivity to these climatic factors was
non-stationary in several cases. We observed the
following shifts in A. saccharum growth responses
to climate: (1) prior year (t � 1) February–April
PPT shifted from a null effect to a positive effect
on growth (Fig. 6A); (2) same year (t) June–
August PPT steadily changed from a positive to a
null effect in recent decades (Fig. 6B); and (3)
prior year (t � 1) July–September TMin shifted
from a null to a negative effect over recent years
(Fig. 6C). Although the chronologies were not
correlated with monthly PDSI, prior year (t � 1)
PDSI from May through September had a
positive effect on growth during the 1960s
drought, followed by a decreasing to null effect
during and after the 1970s pluvial.

DISCUSSION

Growth rates of sugar maple—a keystone
species in the northern hardwood forests of
eastern North America—have been unexpectedly

Table 1. Summary of growth trends and demographic parameters for sample populations of sugar maple (Acer

saccharum) in the Adirondack Mountains, New York, USA.

Sites n Last breakpoint Negative growth BAI trend Mean age Mean DBH

S14 10 1993 7 (70) �441.9 153.3 46.1
12003/13008 15 1992 13 (87) �1400.5 86.6 44.5
9006 12 1990 7 (58) �525.4 96 44.1
28030 14 1990 9 (64) �407.9 145.7 47.2
NW 14 1990 4 (29) �215.8 101 41.8
22019 13 1989 11 (85) �760.1 99.2 43.3
N1 15 1989 5 (33) �277 117.1 47.5
29012 15 1983 9 (60) �193.9 90.2 42.5
WF 14 1983 4 (29) �134.3 123.5 48.3
28037 14 1982 10 (71) �521 119.2 40.2
17002 14 1980 8 (57) �658 87.4 41.1
26008 12 1978 7 (58) �99.2 96.5 37.3
7001 14 1971 11 (79) �325.4 92.5 48.3
30009 15 1971 9 (60) 15 116.7 41.9
24001 10 1970 5 (50) �369.2 113.4 47.7
31009/35014 16 1970 10 (63) �323 102.9 42.8
AMP 11 1957 6 (55) �200.8 176.5 53.5
27019 14 1946 4 (29) 81.6 84.6 37.7
Stand 242 1990 139 (57) �423.2 107.9 44.1

Note: Columns include sample size (n), year of last breakpoint in the BAI (basal area increment) time series (average by site)
using segmented regression, number (with percentage in parentheses) of trees with significant negative growth trends based on
Mann-Kendall tau ( p , 0.05), estimated mean rate of change in BAI since last breakpoint (mm2 decade�1), mean age in 2009,
and mean DBH (cm).

v www.esajournals.org 7 October 2015 v Volume 6(10) v Article 179

BISHOP ET AL.



decreasing in recent decades in range-centered

populations across the Adirondack Mountains.

The observed shifts to negative trends in growth

were unexpected given the competitive status

and the relatively young ages of these long-lived

trees. Similar growth patterns were observed

across tree age and size distributions, indicating

that the decreasing growth rates were not a result

of old age or large diameter. Although acidic

deposition has decreased and climate has become

more favorable for sugar maple growth, we

observed predominantly declining patterns of

growth across the Adirondack region. The

discovery of these declining growth rates, eval-

uated with the known lack of sugar maple

regeneration on less fertile soils (Sullivan et al.

2013), identifies a major concern for this ecolog-

ically and economically important tree species.

Adirondack sugar maple trees on base-rich

soils have higher growth rates than trees on

naturally base-poor and culturally acidified soils

(based on basal area increment; Sullivan et al.

2013; this study). Depletion of Ca and mobiliza-

tion of Al in soils resulting from acidic deposition

is well documented within the Adirondack

region (Lawrence et al. 1995, Sullivan et al.

2006, Johnson et al. 2008) and elsewhere (Likens

et al. 1996, Bailey et al. 2005). The negative effects

of Ca depletion and Al mobilization on the health

and regeneration of A. saccharum are also well

documented (Duchesne et al. 2002, Long et al.

2009, Sullivan et al. 2013), as are the positive

effects of adding calcium to stressed A. saccharum

stands (Long et al. 1997). These effects are most

Fig. 3. Breakpoints in segmented regression model fits for all sampled Acer saccharum trees (n ¼ 242).

Segmented regressions were fit to each individual tree BAI (basal area increment) time-series, with (A)

breakpoint year (x-axis) plotted against the Theil-Sen slope coefficient (y-axis) estimated for the period following

the break and (B) a histogram for the distribution of breakpoint occurrences in time that are followed by a

significant trend ( p , 0.05). Breakpoints preceding positive slopes are shown in blue and negative slopes are in

red. Significant trends (Mann-Kendall tau, p , 0.05) in top plot are colored in blue and red for positive and

negative slopes, respectively; black points have no significant trends following the breakpoint.
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pronounced on naturally acidic, poorly-buffered
soils on granitic parent materials, which are
prevalent in the Adirondack Mountains (Driscoll
et al. 2001), while irregular ‘patches’ of base-rich
and highly-buffered soils are much less vulner-
able to acidification (Page and Mitchell 2008,
Beier et al. 2012a). Our results confirmed the
positive effects of Ca availability, and negative
effects of soil Al mobilization, on the above-
ground productivity of A. saccharum trees.

Our data shows, however, most sugar maple
trees in the Adirondacks have declining growth
rates over the past several decades and that these
trends were consistent regardless of soil Ca or Al
availability. This regional-scale decrease has been
most evident since the amendments to the Clean
Air Act in 1990—a period during which we have
high confidence that all of the trees sampled were
canopy-dominant. Given significant reductions
in acid deposition in the Adirondacks and
surrounding regions since the 1990s (Lawrence
et al. 2012), we expected positive growth trends
to have occurred via recovery of the slow-
growing trees (and stands) on acid-impaired
sites. In other words, with the amelioration of a
known stressor that exacerbates a limiting factor
(soil Ca availability), A. saccharum growth on
poor sites should have increased and begun to
approach higher rates of growth observed on
higher quality sites. Yet the lack of recovery of A.
saccharum growth on acid-impaired sites is

consistent with a recent study that found no
evidence of soil recovery—in terms of base
saturation or Al mobilization—in the Adiron-
dacks following reductions in N and S deposition
since 1990 (Lawrence et al. 2012). Further study is
needed to understand how temporal changes in
soil nutrition due to acidic deposition could
differentially shape sugar maple growth on
base-rich versus base-poor soils in the Adiron-
dacks and elsewhere across its range.

Niche model projections under climate change
scenarios suggest a drastic reduction in the future
range, distribution, and importance of sugar
maple in eastern US forests (Iverson et al. 2008).
We did not detect any consistent patterns of
climate sensitivity in range-centered A. saccharum
that would indicate recent warming was associ-
ated with the recent downward trajectory in its
growth. Growing season precipitation in the
Adirondacks has increased or remained steady
during the period of sugar maple growth decline
(Appendix: Fig. A4) with synchronous increases
in minimum temperatures and lengthening of
growing seasons (Hayhoe et al. 2008, Beier et al.
2012b; Appendix: Fig. A3). Moreover, during the
last two decades, the northeastern US has
experienced one of the wettest periods of the
last 100–500 years (Pederson et al. 2013). Given
these changes in regional climate, we might have
expected to observe increases in forest produc-
tivity (Boisvenue and Running 2006), but our

Fig. 4. Distribution of growth trends across (A) age classes and (B) size classes in the Acer saccharum sample

population. Histograms depict frequency of significant positive (blue) and significant negative (red) trends for

individual trees, based on the growth pattern following the most recent breakpoint (from segmented regression

model fitting). Smoothed kernel density function (black line) for total number of trees illustrates sample depth

distribution.
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data clearly indicate otherwise—only a small

minority of sugar maple trees have increased

their growth rates during this time.

Growth chronologies of range-centered A.

saccharum populations in the Adirondacks exhib-

ited a relatively weak but non-stationary sensi-

tivity to climatic conditions. Non-stationarity in

growth-climate relationships, which suggests

that A. saccharum populations are responding

differently to climate variability today relative to

the mid-20th century, was also observed in

Vermont (Gavin et al. 2008), and partly explains

the weak correlations between climate and A.

saccharum chronologies during the study period

(1909–2008). We did observe a growth sensitivity

of A. saccharum to the well-documented drought

of the 1960s in the northeastern US, but we also

observed a clear pattern of BAI recovery post-

drought and a lack of sensitivity to drought

severity (PDSI) since 1970. These insights, along

with recent increases in moisture availability

suggest that sugar maple growth decline is

unrelated to moisture limitation.

Because we sampled only canopy dominant or

co-dominant trees, there is the possibility that a

‘‘big-tree selection bias’’ could influence our

results. New research suggests that a collection

dominated by large diameter trees typically is

associated with a moderate to large increase in

growth rates in which more carbon is fixed in

recent decades (Brienen et al. 2012, Stephenson et

al. 2014). Our observations of sharply reduced

Fig. 5. Summary of Acer saccharum growth sensitivity to climate. Correlations (circles) between composite

chronology and monthly climate variables over 1909–2008 for (A) maximum temperature, (B) minimum

temperature, (C) precipitation, and (D) Palmer’s Drought Severity Index (PDSI). Each climate variable is

calculated using a 3-month moving window with a 1-month time step, beginning with January–March of prior

year and ending with July–September of current year. Climate variables are identified by the central month of 3-

month window on the x-axis (e.g., Feb includes January–February–March). 95% confidence intervals represented

by error bars. Significant correlation coefficients ( p , 0.05) are represented by solid circles.

v www.esajournals.org 10 October 2015 v Volume 6(10) v Article 179

BISHOP ET AL.



growth rates in canopy dominant A. saccharum
populations across size classes are in strong
contrast with this expectation. The negative
trends and estimated absolute changes in BAI
since 1970 suggest that the net productivity of
Adirondack sugar maple populations is in
decline.

In conclusion, given the high ecological and
economic importance of sugar maple in northern
forests, new evidence of its decreasing growth
and productivity—including areas where soils
remain base-rich and populations indicate no
outward signs of stress or decline—warrants
significant concern. Long et al. (2009) suggest
that similar patterns may be found in sugar
maple populations across the US Northeast, and
while our study strongly supports this hypoth-
esis in a region covering a large portion of the
over 8,000 km2 Adirondack Park, further study of
long-term growth patterns and their associated
factors is needed. Reductions in growth alone do
not necessarily indicate that a population is in

decline, but may be a precursor of increased
mortality and/or decreased recruitment, which
often emerge as part of a decline complex
(Manion 1981). Decreased recruitment has al-
ready been observed in our study region on
relatively acidified soils (Sullivan et al. 2013).
Among numerous potential inciting factors for
sugar maple, insect defoliator outbreaks (e.g.,
forest tent caterpillar; Gross 1991) and freeze-
thaw injuries (Hufkens et al. 2012) may be most
prevalent. In addition, from an applied perspec-
tive, while visual cues of defoliation and branch
dieback are useful indicators of tree health,
changes in growth rates are more directly
relevant for forest management decision-making,
as well as ecosystem services such as syrup
production, carbon sequestration, habitat provi-
sion and nutrient cycling. As we observed,
visibly ‘healthy’ sugar maple populations can
be experiencing downward shifts in growth rates
that may prove to be problematic. Further study
is needed to establish whether growth declines of

Fig. 6. Non-stationarity in Acer saccharum growth sensitivity to climate. Time varying parameter (TVP)

regression slope coefficients (black lines) plotted over time (1909–2008) for (A) prior year February–April

precipitation, (B) same year June–August precipitation, and (C) prior year July–September TMin. The grey

shaded area illustrates the 95% confidence interval. Regressions were built with the composite chronology as the

response variable and regional mean climatic variables as predictors.
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sugar maple are occurring more widely across its
range, and if so, to address the sustainability of
this iconic and highly valued species of the
northern hardwood forest.
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