Invasive pests and pathogens can kill public trees, resulting in losses of critical ecosystem services, like carbon sequestration, runoff mitigation, and air pollution removal. For each invasive threat, the annual benefits provided by all potential host trees are summed into a total potential loss. In addition to the loss of benefits, the cost of replacing dead trees is estimated as the total structural cost. Together, these values can be used to weigh the potential benefit losses and costs that a municipality may incur if the invasive pest or pathogen is not contained.

Glens Falls, New York, (2020) Glens Falls, New York Street Tree Inventory. Available online at: https://www.uvm.edu/femc/data/archive/project/glens_falls_new_york_street_tree_inventory

Valuations were generated with i-Tree Eco (Version 6.1.30) Estimate generated on: 3/11/2020

LEGEND

- Gross Carbon Sequestration ($/yr)
- Avoided Runoff ($/yr)
- Air pollution removal ($/yr)
OVERVIEW OF TREE INVENTORY

The percent population, percent leaf area, and importance value for the 10 most abundant tree species in the inventory

Percent population is the proportion of trees of this species relative to the entire inventory. Leaf area is a measure of a tree’s canopy cover; it is displayed here per species relative to the leaf area for all of the trees in the inventory. Importance value is a measure of how dominant a species is in the urban landscape and is calculated as the sum of the percent population and percent leaf area.

Diameter size classes (in inches) for the 10 most abundant genera in the inventory.

The proportion of inventoried trees displayed by genus. For clarity, only the 10 most common genera recorded in the inventory are displayed.

For more information visit www.uvm.edu/femc/cooperative/projects/urban_pest_risk