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ABSTRACT

Community ecology theory maintains that abiotic and biotic variables in the
environment influence community taxonomic structure and community standing
stock. Deficiencies and excesses in the abiotic environment have been shown to
result in sub-optimal growth (stress) or loss of individuals from within the
community (disturbance). Winter at high latitudes presents organisms with a
number of potential stresses including low temperature, low light and sporadic
high flow events associated with snow melt. The research presented here
attempted to determine whether two abiotic factors, light and stream flow, cause
algal community minima in winter as measured by chlorophyll a and ash free dry
mass and if winter conditions effect changes in community taxonomic structure
and diversity.

Periphyton samples were collected from rocks in Stevensville Brook, a 2nd
order stream in the Green Mountains of Vermont. Fast flow and slow flow
treatments, and high light and low light treatments, were created using a 22
factorial design for winter/spring 1994. Approximately 100 stream rocks were
evenly distributed in an area of 1.0 m x 0.5 m in each treatment and 100 artificial
substrata were added to the 1.0 m x 0.5 m area of stream bed next to the rocks
to assess periphyton colonization. Rocks were collected about every two weeks
from 4 February 1994 to 17 March 1994 and a clay tile collection occurred on 5
April 1984, Data from 4 February were analyzed using a two factor t-test to test
for a significant difference between high and low flow samples. The remaining
data were tested using the general linear model ANOVA. Rocks for fall/winter
1994/95 were collected on 4 August and 5 October 1984 and about every two
weeks from 8 November 1994 to 5 January 1995. A periphyton suspension
collected from the rocks was split for analysis of chlorophyll a, ash free dry mass
and algal taxonomy. To determine if nutrients were limiting to periphyton, a
nutrient enrichment experiment was performed from January 1995 to March
1995 using chiorophyll @ and AFDM as indicators of response.

Results suggest that ash free dry mass responds to different parameters in the
abiotic environment than chiorophyll a. Chlorophyll a was found to be influenced
predominately by phosphorus concentration in the water whereas AFDM was
more responsive to sample date, indicating that AFDM may be influenced by
mid-winter spates. Relative abundance data showed an active community during
the sampling period with a predominance of cyanophyta throughout most of the
study period and three taxa - Chamaesiphon sp., Lyngbya subtilis and
Synechocystis sp. - dominant out of a total of 52 taxa found. Neither individual
taxon cell densities nor diversity were found to respond to the light treatment.
Diversity for samples following the imposition of treatments was significantly
affected by sampling date and flow, but no consistent pattern of flow mediated
response could be seen across sampling dates. The hypothesis that lowest
diversity occurs during winter was rejected since a mid-February sampling date
had the highest diversity values for three of the treatments.
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INTRODUCTION
I. Winter Ecclogy

Although the biotic environment appears inactive to humans during winter,
there is evidence that many components of ecosystems continue to function year
round (Marchand 1991). Many terrestrial plant species retain their photosynthetic
apparatus during this time and are able to restart as soon as conditions become
favorable. Some studies of stream algal communities have found that complete
algal assemblages are present throughout winter and that their abundances may
actually be greater in winter than during other seasons of ihe year (Douglas
1858, Rounick and Gregory 1981).

Unfortunately, ecological aspects of the winter environment have often been
neglected in field studies, especially in aquatic ecosystems. Two reasons-for this
aré: 1) the lack of instrumentation able to withstand the rigors of the winter
environment and 2) the inaccessibility of many areas to humans during the
winter period (Marchand 1991). Nonetheless, changes occurring in the
environment during winter are important to fully understand the mechanisms of
an ecosystem (Resh ef al. 1988). |

The goal of this research is to determine the response of stream algal
communities to changes in flow, light and nutrient concentrations which oceur
during winter in New England stream ecosystems. Variations in amounts of chl a
and AFDM, and community taxonomic structure have been analyzed for
differences resulting from treatment with a given level of flow, light or nutrients.
Significant differences indicate community stress or disturbance which may

result in successional changes. Current successional models provide a
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framework for predicting the effects of winter conditions on community structure
and function and would benefit from four season testing (Harper 1981). Algal
communities are excellent model communities to test hypotheses about flow,
temperature, and nutrients regimes in situ due to their small size and quick

regenaration.
[l. Definitions
Winter

Since this research is focused on algal community dynamics during a given
part of the year it is appropriate to define what makes winter different from all
other seasons. For the purposes of this research, winter is defined as a period
from December 1 to March 31; a time during which mountain areas in Vermont
maintain sub-freezing temperatures on average. Sub-freezing temperatures
result from reduced solar exposure and radiation intensity caused by a change in
the angle of the earth's surface in relation to the sun. Temperature is depressed
further by the loss of long wave radiation from snow covering the ground surface
during winter (Marchand 1991). _

The definition proposed above does not correspond to our traditional
astronomical concept of winter as the period of December 21 - March 21. It is
proposed as defining a period of study in which the climatic conditions desired
will have a high probability of occurring. These conditions are: sub-freezing
temperatures, low light intensities, reduced photoperiod, stream ice formation
and snowfall. Biotic conditions, such as leaf loss from deciduous species, are

also important.



Another commonly used definition for winter is meteorological which charts
winter as occurring December 1 - February 28 (Trenberth 1983). A four season
structure is only useful in the mid-latitudes (22.5-67.5) since the poles and the
equator have only two well defined seasons. Lag phases between the earth-sun
distances and the resultant surface temperature changes occur in both
~hemispheres as a result of the moderating influence of the continents and the
ocean. The lag phase is most pronounced in the Southern Hemisphere where
the oceans comprise the bulk of the earth's surface while annual differences
between high and low mean temperatures are greatest in the North.

Resh (1988) mentions that adaptation of algae to seasonal fluctuations in the
envircnment needs to be studied. Any stch studies must take into account the

high variability of the seasons between and across distances.
Stress and Disturbance

A variety of definitions exist in the literature concerning stress and disturbance.
Some authors use these terms synonymously (Odum 1981, Neuhold 1981),
while other authors prefer to differentiate between the two (Menge and
Sutherland 1987, Grime 1979). Although these different uses may be
appropriate for a given study or model, the lack of consistent usage leads to
confusion in th.e interpretation of study results and a breakdown of
communication (Poff 1992). As used in common English and defined in any
dictionary, stress and diéturbance are two fundamentally different concepts,
although they are not mutually exclusive in community and population ecology.
In this research, these two terms will be used to describe different processes

affecting algal communities.



White and Pickett (1985) defined disturbance as "any relatively discrete event
in time that disrupts ecosystem, community, or population structure and changes
resources, substrate availability, or the physical environment". This definition was
intended as a broad outline with the specifics to be determined relative to the
system under study. A more specific definition is given by Menge and Sutherland
(1987) who define a disturbance as the lethal effects of physical, chemical and
biological stress. |

An obvious disparity between these definitions results from the use of cause
versus effect to determine disturbance. White and Pickett (1985) focus on the
causal event which produces a given effect. Menge and Sutherland (1987) focus
on the effect produced by an event. While this may seem to create a problem for
an ecologist trying to study a system influenced by disturbance, the division is
actually reconcilable. The effects that result from the event that Pickétt and White
describe are equivalent to Menge and Sutherland's lethal effects. However,
Pickett and White's definition does not explicitly call for organism destruction,
and although death would necessarily be included in possible effects, non-lethal
outcomes are also possible.

Since Pickett and White's definition was designed to accommodate variable
study conditions, | prefer a merger of their definition with Menge and
Sutherland's: A disturbance is any relativéiy discrete event in time resulting in
organism death causing a disruption of ecosysfem, community or population
structure and changes resources, substrate availability, or the physical
environment. In short, a disturbance is an eﬁvwonnmxﬁaieventthatcauses
organism mortality. This definition purposely excludes the use of stress. |t is
assumed that stress and disturbance are different points along the same

continuum.



As mentioned above, stress is often used synonymously with disturbance
resulting in the lumping together of many dissimilar events and subsequent
community responses. The term stress derives from distress which refers to an
event that induces a negative response. This is a relatively broad definition that
would include disturbance. Odum et al. (1979) and Odum (1985) employ this line
of thought calling stress an unfavorable alteration or deviation from what is usual
or expected. These two papers develop models for stressed ecosystems and
outline diagnostic features associated with such systems. As would be expected,
some features paraliel those associated with disturbance models while other
features are unique to the stress modei.

Barrett's and Rosenberg'’s (1981) compilation of papers on stress in a variety of
ecosystems focused on a number of functional properties that are affected. In
this work, Barrett (1981) defines stress as "a perturbation that is applied to a
system by a stress which is foreign to that system or which may be natural to it
but, in the instance concerned, is applied at an excessive level" In a later
chapter, lvanovici and Wiebe (1981) review past attempts to define stress
including Bayne's 1975 work in which he determines stress to be an alteration
from a steady-state caused by environrﬁental change and resulting in a
population or community more vuinerable to further change. Ivanovici and Wiebe
propose using the adenylate energy charge (AEC-a ratio of ATP to AMP) as an
indicator of stress. Stressed organisms convert-a higher percentage of ATP to
ADP and AMP in order {o maintain celluiar processes in sub-optimal conditions.
A threshold value of AEC would be designated as indicative of stress.

Grime (1979) and Menge and Sutherland (1987) distinguish between stress
and disturbance. Grime defines stress for plants as phenomena which restrict

photosynthetio production. This definition, although still vague, establishes stress
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as an agent and implies sub-optimal production (as opposed to deviation from
normal) due to sub-lethal conditions. Menge and Sutherland define stress as a
reduction in performance of an organism caused by physical stresses (produced
by mechanical force) or physiological stresses (produced by biochemical
reactions). While Menge and Sutherland refer (o the effect as stress, their
definition provides a useful base for a working definition in the proposed
research,

Drawing from the strengths of the existing definitions and broadening their
scope 1o include populations and communities, | propose to define stress as: a
factor extemél to the organism, ‘population or community which causes a
reduction in growth, reproductive and photosynthetic rates relative to the optimal
rate for the process. The advantages of this definition are twofold. First, by
defining stress in terms of an outside force, those conditions which produce
stress can be quantified in a manner similar to disturbance so that predictions of
lethal endpoints can be made. Second, there are a number of analyseé which
may be used to determine growth and reproduction so that effects can be

quantified and results compared to control units.
Hl. Community Dynamics

Community dynamics have historically been explained by the theory of
succession (Luken 1990). Algéf communities are known to follow distinct
succession patterns and are an excellent model for succession studies due to
relatively short organismic life cycles (Power et al. 1988, Townsend 1989,

McCormick and Stevenson 1991). The following sections examine succession



mechanisms can be sorted according to their role in promoting succession. The
levels they provide - 1) general cause of succession, H) contributing processes or
conditions, ) modifying factors - move from general causes to detailed
mechanisms of succession. The advantages of this concept inciude the
allowance for mechanisms not presented by Connell and Slatyer, the explanation
of successional sequences by multiple mechanisms, and the accommodation of
individual community deviations from the "norm". Figure 1 depicts two categories
from Pickett et al's (1987) framework which apply to winter algal community

dynamics.

Figure 1 - Diagrammatic representation of 2 categories from Pickett et al's

hierarchical model for causes of succession.

Levels
I Site Availability Species Performance
1 Course-Scale Disturbance Environmental Stress
i Size Severity Time Climate Cycle

Site Availability

A site becomes available for colonization as a result of disturbance as defined
above (Connell and Slatyer 1977, Grime 1979, White and Pickett 1985, Menge
and Sutherland 1987, Petraitis ef al. 1989). Recent work in stream biology has
focused on disturbance as a controlling factor in lotic ecosystems (Resh et al
1988, Pringle ef al. 1988, Boulton ef ‘al. 1988, Townsend 1989, Grimm and
Fisher 1989, Steinman et al. 1991). The reason for this emphasis is the



stochastic nature of the stream environment, especially with regard to wate:
current which may significantly depart from the mean at any time during the year.
There are two theories as to the effects of disturbance on communities: the
intermediate disturbance hypothesis and the dynamic equilibrium model (Resh
et al. 1988). Intermediate. disturbance theory (Connell 1978) suggests tha
maximum species richness in communities will occur in environments where
disturbance is frequent and intense enough to reduce cofnpetitive dominants
before they exclude inferior competitors, but not frequent enough to prevent
competitors from colonizing. Dyhamic equilibrium (Huston 1979) is similar to
Connell's hypothesis, but focuses on the disturbance in relation to organismic life
cycles.

Streams under winter conditions are subject to three disturbance variables:
light, temperature and flow (Rounick and Gregory 1981, Marchand 1991).
Temperature can lead to disturbance through thermal shock or by ice formation
which can scour channels or trap algae in a solid medium. Light extinction
caused by temporary and long term snow deposits on ice across the stream
surface may cause mortality. Incfeased flow rate resulting from snow melt is
capable of removing algal biomass. Given the high potential for disturbance, it is
likely that species richness in winter wili remain low compared to spring, summer
and fall. In this scenario the most likely type of algae present Would be the
ruderal from Grime's classification (1979). However, it is assumed that herbivory
is absent during winter and that leaf litter from deciduous plants supply adequate
nutrients. Thus, species subject to grazing pressures or nutrient shortages during

other seasons may flourish during the winter period.



Differential Species Performance

During any part, or over the entire length of its lifetime, an organism is likely to
be subject to stress. As with disturbance, stress can affect a particular species
population or it can subject entire communities to reduced productivity (Grime
1979). Although much of the literature does not differentiate stress from
disturbance, the distinction is important in determining responses at all scales of
study. Unlike disturbance, stress may endure any period of time. Potentially,
stress may overlap disturbance, thereby affecting both pre- and post-disturbance
communities. For example, low light intensities may inhibit algal production over
long periods during the winter while short term spates occur at various intervals
during the same time peried. Since energy must be spent on photoacclimation,
the organism would have less energy to allocate for disturbance adaptation
(sensu Petraitis ef al. 1991, Parsons 1993). It seems likely that under conditions
resulting in multiple stresses, disturbance frequency should increase as a result
of a decrease in the organism's range of {olerance to disturbance intensity.

Many authors refer to the general responses of both organisms and
communities as stress (Odum ef al. 1979, Grime 1979, Odum 1985, Parsons
1993). On the whole, responses can be lumped into one of the following
categories: 1) net energy loss from an individual population which may result in a
net energy loss from the community; 2) shifts in species relative abundance; or,
3) both 1 and 2 (Rapport ef al. 1981, Odum 1985, Parsons 1993). Shifts in
species relative abundances do not necessarily indicate disturbénce, but rather,
the need for one species to grow at a faster rate than the species which is

inhibited by stress (Grime 1979, Menge and Suthertand 1987, Keely 1991).
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However, any disturbance occurring during a period of étress is likely to enhance
the rate of succession in a community.

In summary, both stress and disturbance influence the successional trajectory
of a community. The physical and chemical phenomena may be quantified
independently of the organisms affected, but it is the response of the organisms
which determines whether stress and/or disturbance are influencing community
composition. Responses of individuals or populations to either condition may be
measured and correlated to overall community changes. The next section will
address models which predict the outcomes of succession in disturbance and
stress controlled systems. It is very likely that stress and disturbance will be
ciosely linked in winter streams and that a given stress may cross the threshold

to disturbance.
Models

Although some models of succession have been mentioned in the sections
above, it is helpful to synthesize this information and formulate a single model
that can be used as an experimental guide. Succession is a process of species
replacement due to changes in relative species performances (Pickett ef al.
1987). In choosing models to illustrate this process for Winter, the important
consideration has been the abiotic ‘environment .

Menge and Sutherland (1987) proposed a model based on three trophic levels
of interaction. Their basal level model (fig.3c in Menge and Sutherland) provides
some useful predictions, although grazing in winter streams is assumed to be
low during winter and predatory fish have not been observed in the reaches

being investigated. According to that figure, basal level species (primary
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producers) in the community existing under extremely high stress levels will be
affected almost exclusively by physical factors rather than competition or
predation. A study by Power (1990) analyzing the interaction of trophic levels in a
California stream supports this aspect of the Menge and Sutherland model. She
found that the importance of predation increases with decreasing environmental
stress. As long as algal recruitment remains moderate to low in winter streams,
competition and predation should be insignificant. Another prediction of the
Menge and Sutherland model is that the importance of disturbance increases
with increasing environmental stress, whereas species diversity, in the absence
of competition (under low recruitment), is highest under moderate stress.

The Menge and Sutherland model is useful in formulating some broad scale
assumptions relative to algal stream communities, but it lacks the resolution for
determination of the effects of stress and disturbance in regulating succession
within a single trophic level. A more useful model is that of Petraitis ef al. (1989).
In their presentation they mathematically connect equilibrium and non-
equilibrium models such that immigration and extinction rates are based on
probabilities of species numbers changing over time. For disturbance to effect a
change in species numbers, it must cause a change in extinction and
immigration rates. They offer numerous graphical examples of the differential
effects of disturbance size and frequency upon species number. This model is
especially useful for winter environments in streams since it is assumed that size
and frequency of disturbance events are dependent on levels of stress prior to
the event, Since stress will affect each population differently, species within a
community should be differentially sensitive to changes in size and frequency of

disturbance.
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V. Abiotic Factors

Light

Light is the most important source of energy for autotrophic organisms. Aquatic
autotrophs are subject to large variations in fluence as a result of the depth and
turbidity of the water column (Kirk 1983). Ice cover and snow deposition on that
ice in mountain streams further reduces available solar radiation in the water
(Marchand 1991, Wright 1964). Transmittance of light through snow occurs
primarily in the wavelength range between 450-600 nm, although quantity and
quality of light transmitted depend upon the age of the snow pack (Curl ef al.
1972). Given typical weather conditions and the sun's position relative to the
earth's surface, available solar radiation during winter in mountain streams is at
the lowest level of the year. |

The abhility of algae to acclimate their photosynthetic apparatus to light intensity
has been weli documented in the physiological literature (Raps et al. 1983,
Cunningham et al. 1990, Smith et al; 1990, Sukenik et al. 1880) for all algal
classes and probably occurs in most algal species (Falkowski and LaRoche
1991). Two basic strategies have been proposed for photoacclimation in algae:
1) a change in the size (ratio of antenna pigments to reaction center pigments) of
the photosynthetic unit or 2} a change in the total number of photosynthetic units
per chloroplast (Falkowski and LaRoche 1991). These changes may be
quantified directly by established methods and correlated with environmental
variables.

The ecological significance of this process is not yet well defined though there
is an established body of Eiteratu.re for phytoplankton (Ryther and Menzel 1959,
Wright, 1964, Gallegos et al. 1983, Neori et al. 1984, Wood 1985). Changes in
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photosynthetic apparatus have been cited to result in the chlorophyll maximum
found in lakes and oceans at a depth where the light intensity is about 1% or less
of the surface irradiance (Ryther and Menze! 1959, Wright 1964, Beers et al.
1975, Gallegos et al. 1983, Neori et al. 1984). For the chiorophyll maximum {o
oceur, algae must remain at depth for a oeriod of hours or days implying that
stratification of the water column is necessary (Harris 1980). However, these
studies have failed to rule out the possibility of successional changes within the
community as a cause of the chlorophyli maximum.

Investigation of algal responses to light in lotic ecosystems has been primarily
limited to laboratory streams and is almost non-existent for winter communities.
Rounick and Gregory (1981) found a positive correlation between standing crop
of periphyton and light for streams during winter in the Western Cascade
Mountains, Oregon. Hill and Harvey (1990) found that productivity of algal
communities during summer was positively correlated 1o photosynthetica!iy
active radiation (PAR), but that loosely attached algae showed only weak
correlation as compared to tightly attached algae. This finding agrees with the
necessity of stable positioning in phytoplankton. Experiments in laboratory
streams have found that irradiance plays a significant role not only in the
standing crop biomass, but also thé composition of successional sequences
(DeNicola and Mclintire 1990). Recovery of lotic ecosystems following light
elimination disturbance (which would be possible in winter if snow deposition
occurred on stream surface ice) has also been studied under laboratory
conditions and was found to be enhanced by nutrient input and deterred by

grazing (Steinman et al. 1991).
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Temperature

As stated earlier, temperature decline and increase in the environment
generally follow solar changes with a lag period of about one month.
Temperature is extremely important in any ecological study because it influences
the rates of reactions both internal and external to organisms (Davison 1991).
For example, Tilman et a/. (1981) have found that algal cell quotas for nutrients
are temperature dependent w'it'h the result that dominance in competitive
interactions may vary at different temperatures. Low temperature has been found
to limit either electron transport or carbon fixation in algal cells resulting in a
lower light saturation value and increased photoinhibition at saturating light levels
(Davison 1991). As temperature increases, the light level necessary to reach
compensation irradiance increases, and the rate of net photosynthesis at sub-
saturating light levels decreases (Davison 1991). Algae have been observed to
acclimate photosynthetic apparatus and other metabolic functions to changes in
temperature such that inferences concerning long-term growth based on short-
term photosynthetic responses may be inappropriate (Davison 1991).

It is important to separate the effects of light and temperature on algal
community functions since the similarities between light and temperature
acclimation may obfuscate experimental results. Graham ef al. (1982) were able
to separate the two variables while analyzing Cladophora glomerata at
temperatures between 1° and 35°C for 8 irradiance levels. The data indicate that
C. glomerata is unable to attain positive net photosynthesis for any irradiance
level at 10C. Fawley (1984) measured carbon fixation and division rates at six
temperatures between 140 and 25°C under five fluence rates for the diatom

Phaeodactylum tricornutum. He found that both division rate and carbon fixation
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for P. tricornutum decreased with decreasing light at all temperatures. The
carbon:Chl a ratio is found to be influenced by temperature, whereby the ratio
decreases exponentially with increasing temperature at a constant light level for
microalgae and cyanobacteria (Geider 1987).

During winter the temperature in mountain streams is assumed to remain
relatively constant. Therefore, winter populations should provide an excellent
opportunity to study algal community response to light in the field without
temperature interference. It is apparent that some algal populations will not be
able to dominate or even survive at low temperatures, thus, winter community
taxonomic structure is likely to be completely different from spring, summer and

fall structure.
Flow

Stream flow has been increasingly noted as being an extremely important
factor in periphyton community dynamics by researchers. Rounick and Gregory
(1981) found that freshets during winter in the Western Cascades, Oregon, are
correlated to a reduction of periphyton standing crop resulting in a winter
minimum of periphyfon. They noted that under abnormally low flows the winter
minimum did not occur. Hydrological factors explained up to 83% of the variance
in periphyton biomass in rivers at Canterbury, New Zealand (Biggs and Close
1989). However, they also found that the percent of time in flood was the single
most important factdr leading to loss of periphyton biomass while the actual rate
of flow was less irﬁportant. Uehlinger (1991) determined that chlorophyll and ash
free dry mass were positively correlated with t'ime since last flood in the Necker

river, Switzerland. Stevenson (1890) observed that diatom assemblages in a
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third order stream were able to survive all but the most intense discharge events
and that increased flow may have actually enhanced growth by increasing
nutrient supply to algal cells.

In addition to field studies, there have been a number of studies of the effects
of flow on periphyton in laboratory streams. Horner ef al. (1990) showed that
sudden increases in flow above initial growth velocity can lead to increased algal
loss rates and changes in dominance. These effects were only short term and
reversed within a couple of days. Peterson and Stevenson (1890) monitored
algal recovery for slow and fast current laboratory streams following a simulated
flood event. Recovery of algal assemblages proceeded more rapidly in the slow
current regime and maximum algal abundance at 33 days was greater in slow
current than in fast. Peterson and Stevenson's results also suggested that
autogenic changes were more pronounced in slow current streams.

Due to the stored water content in snow, impermeability of frozen soil to water
and the lack of transpiration, periphyton communities will be subject to highly
variable flow and frequent spates during winter. From results presented in the
literature it is evident that flow patterns will be an importaht factor influencing

community productivity and taxonomic structure.
V. Research Questions and Hypotheses

As stated previously, the overall goal of this research is to determine the
response of stream benthic algal communities to flow, light and nutrient
availability. More specifically, this research is intended to determine whether
flow, light or nutrients control algal community activity at low temperatures during

winter as measured by chlorophyll a (chl a), ash free dry mass (AFDM) and
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taxonomic changes. The working hypothesis used was based on prior research
found throughout the literature: Quantifiable changes in abiotic factors - light,
water flow and nutrients- in mountain streams during winter result in stress
and/or disturbance which influence the structure and function of algal
coimunities during succession. The specific questions addressed in this study

and my hypotheses are listed below:

Q1.1: Does algal community chl a and periphyton AFDM change in response to

a reduction of daily solar energy during the winter in montane streams?

11 1: Chi a and periphyton AFDM per unit area declines in communities

subject to reduced daily solar energy input.

Q1.2: How does a reduction in daily solar energy affect algal community

diversity?
H1.2a: Algal community diversity, as measured by the number of species
and the relative abundances of each species, decreases as a result of

reduced solar energy in streams under winter conditions.

Q2.1: How wili algal community chl a and periphyton AFDM respond to an

increase in flow during winter?

H2.1: Algal community chl a and periphyton AFDM decreases as water

velocity increases during winter.

18



Q2.2: How will algal community diversity be influenced by stream flow during

winter?
H2.2: Diversity decreases at higher flow.

Q3.1: What effect will increased nutrient concentrations have on algal community

chil a and periphyton AFDM ?

H3.1: Nutrient increases have no effect on algal community chl a and

periphyton AFDM during winter.
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ABSTRACT

We conducted two experiments to determine the activity of and factors which
control periphyton during winter in Stevensville Brook, Vermont. The first
experiment during Winter/Spring 1994 examined the effect of a 300-450%
difference in light and doubling of flow {fow and high light, slow and fast flow) on
periphyton. Stream rocks were collected, the periphyton removed and then
processed for chlorophyll a (chl a) and ash free dry mass (AFDM). In addition,
100 uncolonized clay tiles were added to each treatment and collected at the
end of the experiment to determine the treatment effects on colonization. To
determine the availability of nutrients in Stevensville Brook, stream water was
sampled during Fall/Winter 1994/95 for nitrate (NOj), ammonia (NH,), soluble
reactive phosphorus (SRP) and total phosphorus (TP). To test whether
periphyton were nitrogen or phosphorus limited, clay saucers filled with agar
containing N, P, N+P or no nutrients were attached to cinder biocks, submersed
in the stream for two months (winter 1994/95) then sampled for chl a and AFDM.

Increases of up to 250% for AFDM and 600% for chl a during the first study
indicated robust activity throdghout the winter despite low temperatures and light.
Flow had a negative effect and sampling date was found to have a significant
effect on periphyton biomass (chl a and AFDM) while light was found to influence
increases in AFDM on clay tiles only. Water analyses showed that SRP was less
than 0.001 mg/L, NH, and TP were low and often undetectable, and NOj
remained at about 0.20 mg/L. Results from the nutrient enrichment experiment
showed a significant response of chl a to P but not N and no response of AFDM
to enrichment with either N or P. In Stevensville Brook during winter, the algal
community, as represented by the chl a concentration, is predominantly

controlled by phosphorus concentrations and is impacted to a lesser extent by
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flow: the periphyton community as a whole, represented by AFDM, is controlled

mostly by stream flow and light.

KEYWORDS: algae, ash free dry mass, chlorophyll a, flow, light, nitrogen,

nutrient limitation, perinhyton, phosphorous, stream, winter.
INTRODUCTION

The winter environment provides a formidable barrier to scientific study
resulting in a lack of complete information about stream ecosystems in winter.
Some studies of stream algai communities have found that algal assemblages
are present throughout the winter and that abundances may sometimes be
greater in winter than during periods of the year with higher temperature and
more sunlight (Douglas 1958, Rounick and Gregory 1881, Uehlinger 1991,
Delong & Brusven 1992). It is imperative that stream ecosystems are analyzed
during the winter in order to understand the temporal relationships of the system.

Winter is naturally associated with environmental minima (Marchand 1991)
which may result in stress and/or disturbance. Stress is defined as: a factor
external to an organism, population or community which causes a reduction in
growth, reproduction and/or photosynthesis (sensu Grimé 1979). A disturbance
is any relatively discrete event in time resulting in the death or removal of an
organism which causes a disruption of ecosystem, community or population
structure and thereby changes resources, substrate availability, or the physical
environment (sensu White and Pickett 1985). The most dbvious environmental
changes likely to cause stress or disturbance in streams during winter are a

reduction in temperature caused by reduced solar radiation, reduction of light
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intensity due to ice and snow cover, and erratic water flow resulting from freeze-
thaw incidents.

Temperature is extremely important in any ecological study since it influences
the rates of reactions both internal and external to the organism (Davison 1891).
For example, Tilman et al. (1981) have shown that algal cell quotas for nutrients
are temperature dependent. lce and snow buildup over streams in winter reduce
light levels within the water which may restrict algal growth (Wright 1964,
Marchand 1991). Light can also interact with temperature: at low temperatures
algal cells display a lower light saturation value and increased photoinhibition at
saturating values (Davison 1991). Laboratory studies have shown that flow can
influence the rate of recovery of periphyton following loss due to disturbance
(Peterson and Stevenson 1990). Numerous field studies have demonstrated that
stream velocity can be a significant factor in organizing stream communities
(Rounik & Gregory 1981, Biggs and Close 1989, Uehlinger 1991).

A model proposed by Menge and Sutherland (1987) predicts that under
conditions of high stress, such as those found in winter, biotic communities will
be regulated almost exclusively by abiotic factors rather than competition or
predation. This model provides the basis for our research which attempts to
determine which, if any, changes in the physical abiotic environment control the
periphyton community during winter. |

The goals of this research were : 1) to establish the extent of the winter
periphyton community as measured by ash free dry mass (AFDM) and
chlorophyll a (chl a), and 2) to test the effect of flow and light on these
community parameters under constant low temperature. Based on models and
previous research it was hypothesized that the standing stock of periphyton, as

measured by chlorophyll a and ash free dry mass, would decrease as a result of
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reduced light and that standing stock would be lower in fast flow areas than slow
flow areas. it was assumed that nutrients are not limiting to periphyton at this
time because of the increased detrital pool left by autumn leaf litter (Pomeroy
1980) and an increase in input to snow melt water caused by the reduction of

terrestrial community activity,

MATERIALS AND METHODS

Site Location

Stevensville Brook is a 2nd order stream located in Underhill State Park, VT,
USA (N44e 30", W720 53', Fig.1). The stream drains an area of 5.2 km2 in a
forested watershed with a beech, maple and birch community predominating at
the experimental site. Underlying bedrock is composed of complex highly
metamorphosed robk, primarily schists, in the area of the study (USDA, 1974).
The ground surface consists mostly of glacial till, remnants of the extensive
glaciation that has occurred in the region. Total experimental reach areawas 4 m
long by 1 m wide and located at an elevation of about 425 m. While most of the
frees and shrubs at the experimental site lose their leaves during winter, the
branches and trunks of the trees shade about 10-15% of the stream surface in
winter. The stream bottom at the site is composed of cobble-boulder material.
Water depth and stream width vary considerably, but typically the depth was 0.5
m and the width 1.5 m. During the winters of 1994 and 1995 the stream did not
freeze solid and diurnal water temperature change was less than 1°C (Tim

Scherbatskoy, personal communication).
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Figure 1: Location of Stevensville Brook.
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Winter/Spring 1994

A 22 factorial design was used with high and low levels for water velocity and
light. Fast and slow flow regimes measuring 2 m in long by 1 m wide were
constructed in-stream by building rock dams to separate and enhance existing
flow differences. Flows were measured using rhodamine dye injected into the
stream at the bottom of the water column and establishing its time of travel over
a 1 m distance (Table 1). High and low light regimes with an area of 1 m2 were
created by blocking light with eight layers of plastic black mesh (9 mm2 mesh
area) screening for low light treatments and by keeping water clear of ice cover
for high fight. Light was measured on 12 March 1994 (Table 1) in bright sun
using a Biospherical Instruments QSL-100 (San Diego, CA). Each treatment
contained at least 100 stream rocks already present in the reach as well as 100
unglazed red quarry tiles (4.5 x 4.5 x 1.0 cm, 90% New Brunswick shale and
10% clay, American Olean, Quakerstown, PA) added as uncolonized substrata.

Five rocks were takén from high and low flow areas on 4 February 1994. Ten
individual rocks were collected at approximately two week intervals at random for
each sample from all treatmehts beginning on 19 February and ending 5 April
1994. Samples from 4 February to 17 March 1994 consisted of rocks with a
mean surface area of 51.40 cmz2, SE, 1.33, n=130. Ten of the artificial substrata
were collected from each treatment on 5 April 1994 and pfocessed in the same
way as stream rocks.

Rocks were cleaned in the lab using a stiff bristle toothbrush and rinsed with
deionized/reverse osmosis water. The resulting suspension was homogenized
for about five minutes in a 120 mL sample cup using a drill mounted tissue

homogenizer with a teflon head (Wheaton Scientific, Millville, NJ). Homogenate
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Table 1 a: Estimated mean stream velocity (n=10) in experimental reaches for
Winter/Spring 1994 flow manipulation in Stevensville Brook. b: Estimated light
intensity (PAR) for Winter/Spring 1994 light manipulation experiment. Readings
were taken between 12:00 and 13:00 hours on 12 March.

1a)
reatmen Mean Flow SE
Slow Flow/l.ow Light 0.15 m/s 0.01
Slow Flow/High Light 0.15 m/s 0.02
Fast Flow/ High Light 0.30 m/s 0.03
tast Flow/ Low Light 0.34 m/s 0.05
1b)
Treatment , Quantas--cm2
High Light/ Slow Flow 0.9 x 10%7
High Light/ Fast Flow 0.8 x 1077
Low Light/ Fast Flow 0.2 x 10186
Low Light/ Slow Flow 0.3 x 1018
Stream Surface 1.5 x 1017
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volume depended on rock size since larger rocks required more rinsing.
Homogenized samples were split into separate aliquots: 25 mL for ash free dry
mass analysis (AFDM), 25-50 mL for chlorophyll a (chl a) and 5-25 mlL were
preserved with Lugol's solution (APHA 1992). AFDM aliquots were poured
directly into tared crucibles, oven dried at 90°C, and then aghed at 55C°C for one
hour (method 10300 C.5., APHA 1992). Chi a aliquots were filtered with glass
microfibre filters (934-AH, 47mm, Whatman Inc., Clifton, NJ), the filters frozen
and then extracted using 20 mL boiling (78°C) 90% ethanol (Sartory and
Grobbelaar 1984). Spectrophotometer (Shimadzu UV160U) readings using a
1cm pathlength were taken 24 hours after extracting. Extracts were analyzed at
665 nm and 750 nm before and after acidification using 0.02 mL 1 N HClina 3
mL sample to account for phaeophytin. Rock area was estimated by wrapping
the rock in aluminum foil and removing excess so that a single layer of folil
covered the rock surface and weighing the foil (Sheely 1979). Standard curves
were generated by regressing the area of aluminum: foil pieces by their weight
(r2=100%). Discharge measurements were obtained from the Vermont
Monitoring Cooperative (Tim Scherbotskoy, University of Vermont, School of
Natural Resources, Burlington, Vermqnt) which maintains a gauging station

located on a tributary about 100m upstream from the site.

Fall/Winter 1394-1995

To test the nutrient limitation assumption, water samples for nitrogen and
phosphorus analysis were collected throughout fall 1994 and into January 1995.
Separate 1 L samples were taken at the upstream end of the experiment and 4.5
m downstream at the end of the experimental reach. Nitrate was analyzed using

the cadmium reduction method of Sechtig (1992). Ammonia was analyzed using
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the salicylate method (Switala 1993) on a lLachat QuikChem AE (Lachat
Instruments, Milwaukee, WI 53218). Soluble Reactive Phosphorus (SRP) was
analyzed using method 4500-P E. outlined by the APHA (1992) for
spectrophotometric analysis with a 10 ecm pathlength. Total phosphorus sampies
(TP) were digested using the persulfate method 4500-P B, (APHA 1992) and
then analyzed as SRP. |

To further examine stream nutrient status, in situ nutrient enrichment
experiments were used. Control (2% agar only), 0.5 M N (NaNO,), 0.05 M P
(KH,PO,) and N+P treatments were prepared in terra cotta saucers (10.5¢cm top
and 6.5cm bottom diameter) as outlined by Fairchild ef, al. (1985). One of each
of the nutrient treatments was attached with silicone caulk to a 19 x 4 x 39 cm
cement paving stone to prevent movement. Positions on the paving stone were
randomly assigned. Four replicate paving stones with nutrient treatments were
placed in the experimental reach on 30 December 1994 and retrieved on 7
March 1995. The exposed colonization surface (area = 33 ¢cmz2) of each saucer
was cleaned and the periphyton analyzed for chl a and AFDM as described

above for winter-spring 1994.

Statistical Analyses

Samples coliected on 4 February 1994 were tested for differences in chl a and
AFDM between fast and slow flow reaches using a two factor t-test. The three
sampling dates following 4 February were analyzed using a three-way ANOVA to
determine the significant differences for AFDM, log.chl a and chl a/AFDM
between flow and light regimes and among sampling dates. One value from the
7 March chl a data was discarded as an extreme outlier. The ratio chl a/AFDM

was calculated in order to examine the change of the relative importance of
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autotrophy to heterotrophy over time. Two-way ANOVAs were performed on
each sampling date for the period from 19 February to 5 April to determine within
date effect of flow and light treatments on chl a, AFDM and chl a/AFDM. Data
were transformed as necessary to meet the assumptions of normality and equal
variance. A one-way ANOVA was used 1o test chl a, AFDM and chi a/AFDM for
significant differences among the four sampling dates during Winter/Spring 1994
and to test for treatment effects in the nutrient enrichment experiment. All
statistical analyses were performed using Minitab for Windows version 10.2

(Minitab Inc., State College, PA).
RESULTS

Winter/Spring 1994

Stream discharge, measured in m3/s, is shown for the period from 1 January to
5 April 1994 in figures 2, 3 and 4. Peak discharges during the winter were
caused by periods of time with temperatures above freezing and were
sometimes accompanied by rain. There were four distinct peak discharges which
occurred on 29 January, 21 February, 25 March, and 4 April. The 29 January
peak occurred Six days prior to the start of the experiment when the stream
discharge was 0.00191 m3/s, four times higher than the discharge recorded on
27 January of 0.00045 m3/s. By the 4 February collection, stream flow had
receded from the peak on 29 January to 0.00046 m3/s. The 19 February sample
collection occurred at the beginning of another thaw with stream discharge at
0.00065 m3/s. By 21 February, the stream peaked again at 0.00214 m3/s. The
discharges for the 7 and 17 March sample collections were 0.00046land 0.00054

m?s respectively. No major runoff events were noted for these two collection
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Figure 2: Mean chl a concentrations by treatment (n = 5 for 4 Feb., n = 10 for all
others) and daily stream discharge data collected upstream in the watershed for
Winter/Spring 1994 in Stevensviile Brook. Date indicates the day on which the

sample was collected. Error Bars = 1 SE
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periods. There were two major discharge events prior to the collection of clay
tiles on 5 April including a discharge of 0.0191 m3s on 25 March and 0.00270
m3/s on 4 April, which was the largest single runoff event over the period of the
experiment.

Community chiorophyll values changed dramatically from week to week (Figure
2). During the 4 February collection, the mean chl a values were 0.014 pg/cm?
and 0.017 pg/cm? for fast and slow flow stream sections respectively. By the 19
February collection, the first collection following the application of treatments, chl
a values had increased by 350% for low light/fast flow and 500% for high
light/fast flow over the 4 February fast flow value, while the high light/slow flow
and the fow light/slow flow treatments increased by 300% and 600% respectively
over the slow flow chl a value of 4 February. Between 19 February and 7 March,
chl a concentrations declined for all freatments except high light/slow flow. Chl a
for high light/slow flow almost doubled going from 0.0718 ug/cm2 on 19 February
to 0.1228 pg/cm?2 on 7 March. All treatments showed a decrease in chl a
between 7 March and 17 March, but the 17 March value for the high light/slow
flow reach remained higher than the 19 February value. Mean chl a
concentrations for clay tiles were lower than for stream rocks: all treatments had
concentrations below 0.010 pg/cm2 except for the low light/ slow flow freatment
of 0.0134 pglcm2. |

AFDM values for stream rocks wefe consistently higher for slow flow reaches
than fast flow reaches during the experimental period (Figure 3). The AFDM for
the slow flow reach on 4 February was 0.138 mg/cm2 or two and a half times
greater than the fast flow reach of 0.056. By 19 February, all treatments showed

an increase in AFDM over their initial estimates and fast flow reaches exhibited a
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Figure 3: Mean AFDM by treatment (n = 5 for 4 Feb., n = 10 for all others) and
daily stream discharge data collected upstream in the watershed for
Winter/Spring 1994 in Stevensville Brook. Date indicates the day on which the

sample was collected. Error Bars = 1 SE
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larger increase than Siow flow reaches: low light/fast flow and high light/fast flow
increased to 0.1930 and 0.2165 mg/cm?2 respectively over the 4 February fast
flow value while high light/slow flow and low light/slow flow increased to 0.2435
and 0.2945 mg/cm? respectively over the 4 February slow flow. AFDM declined
from the previous collections for all treatments on 7 March and 17 March. Clay
tiles collected on 5 Aprit did not follow the trend of slow flow yielding higher
AFDM but instead had higher values for high light treatments over low light
treatments. Unlike chl a, AFDM for the clay tiles was not much lower than AFDM
for stream rocks from the previous collection.

The chlorophyll a/AFDM ratio indicates the percent contribution of autotrophs
to the total biomass (-igure 4). Units for the ratio have been converted so that
the number given is dimensionless. On the first collection date, 4 February, the
fast flow reach had a ratio more than double the slow flow reach indicating a
much larger contribution of autotrophs to the total biomass. By 19 February, the
ratio had increased by more than a factor of one and a half for the high light/fast
flow, two for high light/slow flow, and four for the low light/slow flow since 4
February, whereas, the ratio for low light/fast flow had declined by a quarter
since the previous collection. Between 19 February and 7 March, the chiorophyil
a/AFDM ratio had increased two and a half times to 0.0046 for low light/ fast
flow, three times to 0.0074 for low light/slow flow and four and a half times to
0.0065 for low light/slow flow while declining by almost a fifth to 0.0034 for high
light/fast flow. Both fast flow reaches showed increases in the relative autotroph
contribution, low light by a tenth, high light by one and a haif times, between 7
and 17 March while both slow flow reaches experienced a decline, 13% for high
Iight and about 50% for low light. Among clay tile samples, the low Iight/fast flow

had the lowest relative autotroph contribution to biomass with a ratio of less than
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Figure 4: Mean chl a/AFDM (mg/mg) by treatment (n = & for 4 Feb., n = 10 for all
others) and daily stream discharge data collected upstream in the watershed for
Winter/Spring 1994 in Stevensville Brook. Date indicates the day on which the

sample was collected. Error Bars = 1 SE
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0.0009 and the two high light treatments had greater ratios than the low light
treatments.

A t-test of the samples collected at the start of the experiment (4 February)
shows that chl a, AFDM and chi a/AFDM were not significantly different (p>0.05)
for the fast and slow flow freatments at the start of the experiment (Table 2a and
2b), although mean AFDM in the slow flow reach was more than two times
greatef than that of the fast flow reach. Analysis of variance tests for the effect of
flow and light on AFDM for each sample date between 19 February to 17 March
did not indicate a significant (p<0.05) effect for flow. The p-values, however,
were less than 0.06 for 19 February and 17 March and the slow flow treatment
means were consistently higher for natural rock samples (Figure 3). An ANOVA,
including all three sample dates from 19 February to 17 March, indicated that
flow and collection date had a significant effect on AFDM values during that time
(Table 3). A one-way ANOVA testing the effect of sampling date on AFDM
indicated a significant effect for the period from 4 February to 17 March (Table
4). Light did not significantly affect AFDM values.

ANOVAs for chl a for each day (19 February-17 March) showed a significant
flow effect (p<0.05) on 7 March. A three-way ANOVA of sample date, flow and
light for the same period showed that flow had a significant effect on chl a when
all three days are included (Table 3). In addition, a one-way ANOVA for the
effect of sampling date over the four sampling days (4 Feb.-17 Mar.) indicated
that chi a on 4 February was significantly different from the other three sampling
dates (Table 4). Analysis of the chl a/AFDM ratio shows a significant response to
sampling date and the flow x light interaction for the period of 19 February to 17
March (Table 3). The ratio also showed a response to date for the four sampling

dates from 4 February to 17 March (Table 4).
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Table 2 a: Summary of t-test comparing means for chl a from fast and slow flow
reaches collected on 2/4/94. b: Summary of t-test comparing means for AFDM
from fast and slow flow reaches collected on 2/4/84. c¢: Summary of t-test

comparing means for chl a/AFDM from fast and slow flow reaches collected on

214194,

a) Flow N Mean (ug chl a/cm?) SE
fast 5 0.0139 0.0046
slow 5 0.0170 0.0083

=.0.30  p=0.77

b) Flow N Mean (mg AFDM/cm?) SE

fast 5 0.0560 0.0086
slow 5 0.1378 0.0370

T=-2.17 p=0.096

c) Flow N Mean(mg_chl a/mg AFDM) SE
fast 5 0.0024 0.069.
slow 5 0.0011 0.043
T=1.65 p=0.15
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DQ&MM@M%_ df Frafj

log., AFDM Sampling Date 3 28.19 0.000
Chi a ~ Sampling Date 3 3.91 0.010
Chl a/AFDM Sampling Date 3 4.98 0.003

Fisher's Pajrwise Comparison
AFDM (mg/cm2)
Date 2/4/94 2/19/94 3/7/94 3/17/94
Mean 0.0952.0 (5 o33c 0.1402 0.102b
Chl a (Hg/cm2)
Date 2/4/94 2/19/94  3/7/94 3/17/94
Mean 0.01542  0.0834b g ogaeb 0.0562a,b
Chl a/AFDM
Date 214194 2/19/94 3/7/94 3/17/94
Mean 0.1726%  0.36142b g g54pac 0.4963b,c
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Table 5 shows a summary of ANOVAs for the effect of light and flow on AFDM
and chl a sampled from the artificial tiles collected on 5 April 1994. AFDM data
have been transformed using square root. In this case, AFDM is significantly
affected by light. Figures 2 and 3 show that the slow flow, low light treatment is
responsible for this result with a large amount of chl a and small amount of
AFDM. The chl a/AFDM data were not statistically analyzed due to the large
number of missing points caused by values below the 0.0001 g detection limit for

AFDM.

Fall/Winter 1994/95

Results from samples collected to determine phosphorus and nitrogen
concentrations in the stream are listed in Table 6. All values for SRP were below
the detection limit. TP was variable during this period with a high on 2 August
1994 of 0.025 mg/L and four samples below detection limit. Ammonia (NHy4) was
also quite variable during the fall with maximum concentrations occurring on 8
November 1994 and only one other sample above the detection limit on 5
January 1995. Nitrate (NO3) remained stable over the sampling period at about
0.2 mg/L except for the upstream sample on 29 November which was below the
detection limit.

Phosphorus and nitrogen enrichment did not significanﬂy affect AFDM values
during early 1995 (Table 7). However, the control accumulated less mass. on
average than any of the enriched surfaces (Figure 5). Mean AFDM was 0.0437
mg/cm? for the control, 0.0701 mg/ecm? for phosphorus, 0.0602 mg/cm2 for
nitrogen, and 0.0625 mg/cm?2 for phosphorus plus nitrogen enrichment. A
comparison of the AFDM values shows that the nutrient enrichment experiment

generally had lower AFDM than the spring 1994 collections.
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Table 5 Summaries of 2-factor ANOVA for AFDM and chi a from clay tiles

sampled on 5 April 1994.

Dependent variable  Source df F-ratio p.
AFDM12 flow 1 0.05 0.832
light 1 12.12 0.001
flow x light 1 0.50 0.486
Chl a flow 1 1.95 0.172
light 1 0.99 0.326
flow x light 1 0.1 0.742

Table 6: Concentrations of soluble reactive phosphorus (SRP), total phosphorus
(TP), ammonia (NH3) and nitrate (NOg) by date for Stevensville Brook. All
concentrations in mg/L. Values with * show the detection limit for that analysis
and indicate that the sample was below that limit. Value with ** shows lower limit
of calibration for that date and indicates that the sample was below this limit.
N.A. indicates that samples were not available for those dates.

DATE
8/2/94 11/8/94 11/29/94 12/19/94 1/5/95
SRP u 0.005" 0.001* 0.001” 0.001" 0.001*
d N.A. 0.001* 0.001* 0.001* 0.001*
TP u 0.025 0.001* 0.010 0.009 0.002*
d N.A. 0.001* 0.010** 0.006 0.003
NH4 u N.A. 0.28 0.02* 0.02* 0.02*
d N.A. 0.08 0.02* 0.02* 0.04
NOsu  NA 0.15 0.10* 0.19 0.20
d N.A. 0.16 0.21 0.21 0.21
u=samples taken at upstream end of site
d=samples taken at downstream end of site
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Table 7: Summary of results for the nutrient enrichment experiment for Winter

1995,
Dependent
variable Source df F-ratio 9)
logc AFDM  Nutrient Type 3 2.00 0.173
log.Chi a Nutrient Type 3 3.89 0.037

Fisher’s Pairwise Comparison for Chl a

Phosphorus Nitrogen+Phosphorus Nitrogen Control

0.45032 0.33892 0.1738P  0.0937b

Means denoted with the same superscript are not significantly different at the

p=0.05 level. Arithmetic means shown; units=pg/cmz.
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Figure 5: Mean AFDM (n = 4 except nitrogen n = 3) for the nutrient enrichment
experiment during Fall/Winter 1994/95 at Stevensville Brook. Control =
substrates without nutrient addition, Nitrogen = substrate amended with nitrogen,
Phosphorus = substrates amended with phosphorus and Nitrogen + Phosphorus

= substrates amended with both nitrogen and phosphorus. Error bars = 1 SE.
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Figure 6: Mean chl a (n=4) for the nutrient enrichment experiment during
Fall/Winter 1994/95 at Stevensville Brook. Control = substrates without nutrient
addition, Nitrogen = substrate amehded with nitrogen, Phosphorus = substrates
amended with phosphorus and Nitrogen + Phosphorus = substrates amengied

with both nitrogen and phosphorus. Error bars = 1 SE.
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The phosphorus and phosphorus plus nitrogen enrichments, with five and
three and a half times more chl a respectively than the control (Figure 6),
exhibited a significant positive effect on chl a standing stock (Table 7). The
average chlorophyll value for nitrogen treated substrata was not significantly
different from the contrel (Table 7), although the nitrogen mean was almost two
times greater than the control mean(Figure 6). Chl a means were: 0.0937 ug/cm?
for the control, 0.4503 pg/cm? for phosphorus, 0.1738 ug/cm2 for nitrogen, and
0.3389 pg/em? for the phosphorus plus nitrogen enrichment (Figure 6). Average
chl a values were about two times higher for nitrogen, three and a half times
higher for phosphorus and nitrogen, and five times higher for phosphorus than

the highest chl a values for stream rocks collected in spring 1994,

DISCUSSION

The data verify the existence and dynamic nature of periphyton in Stevensville
Brook during winter. Both AFDM and chl a clearly showed activity over the period
from 4 February to 17 March 1994 (Figs. 2 & 3). A comparison of the data shows
that Stevensville Brook chl a concentrations during winter were equal to and in
some cases higher than similar Vermont streams sampled during summer (Scott
1982). Winter values for chl a reported by Scarsbrook and Townsend (1993) for
two New Zealand streams are also comparable to Stevensville Brook as are chl
a and AFDM concentration in nutrient poor catchments in New Zealand studied
by Biggs (1995), winter concentrations of chi a and AFDM in the Rakaia and
Waimakariri rivers in New Zealand (Biggs and Close 1989), and AFDM values
found in streams in Oregon (Rounick and Gregory 1981). However, Stevensville

Brook chl a and AFDM concentrations were up to an order of magnitude lower
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than in streams studied by Liaw and MacCrimmon (1978) in Ontario, Canada;
Grimm and Fisher (1989) in Arizona, USA; Uehlinger (1991) in Switzerland:;
Delong and Brusven (1992) in Idaho.

Even more interesting and unexpected than the existence of an active winter
petiphyton community were observed increases of up to 300% for AFDM and up
to 600% for chl a between the 4 February and 19 February sampling dates. It is
possible that the spate on 29 January reset the community and spurred the
increase seen on 19 February. Uehlinger (1991), following bed moving spates in
September, observed increases of about 300% for mean AFDM and about 400%
for mean chlorophyll through winter to the end of January in the Necker River,
Switzerland. It has been suggested that post spate communities can grow rapidly
because dead cells are washed away decreasing any shade effect and faster
flow can increase nutrient delivery across the viscous sub-layer (Horner et al.
1990, Stevenson 1990). The increases observed are in contrast to the findings of
Biggs and Close (1989) and Rounick and Gregory (1981) who concluded that
biomass development was higher in winter for rivers which did not experience
high discharge events.

There did not appear to be a single factor controlling periphyton standing stock
over the sampling period. The algal component, as represented by chl a, was
found to be significantly phosphorus limited (Table 7) during winter 1994-95. This
is not surprising given the phosphorus concentrations found in-stream during
Fall/Winter 1994/85 and invalidates the initial assumption that no nutrient
limitation exists during this portion of the year. During the fall and into winter
1994/95, SRP values were found to be consistently below a detection limit of
0.001 mg/L (Table 6). TP was variable for the sampling period, but generally

comparable to concentrations found in other Vermont streams with similar
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characteristics (Scott 1982). SRP and TP concentrations in Stevensville Brook
are extremely low as compared to values found elsewhere in the literature
(Rounick and . Gregory 1981, Elwood ef al1981, Biggs and Close 1989,
Winterbourn 1990, Mutholland 1992). Nutrient limitation during winter has been
reported by Mulholland (1992) who found a winter minimum for phosphorus in
streams in Tennessee, but he pointed out that this was contradictory to previous
research in the northern USA. Winterbourn (1990} has reported an increase in
chl a following nitrogen and phosphorus addition during winter in streams in New
Zealand. Phosphorus limitation has also been demonstrated at other times of the
year (Elwood et al. 1881, Peterson ef al. 1985, Carrick & Lowe 1889).

The assumption that nutrients would not be limiting was based on the
observation that leaf litter rémains in the stream from autumn and the belief that
it would continue to decompose and release nutrients throughout the winter. A
likely reason that winter processing is not providing adequate phosphorus in
Stevensville Brook is a reduction in bacterial and detritivore mineralization
caused by low temperatures (Reice 1974, Webster and Benfield 1986), although,
some studies have shown that significant breakdown can occur at 0°C (Short ef
al. 1980, Sinsabaugh ef al. 1981). Alternatively, it's possible that winter
breakdown is occurring, but that decompqsers are actually depleting stream
phosphorus (Elwood ef al. 1981, Webster and Benﬁeld. 1986). Low in-stream
phosphorus also discounts the possibility that snow meltwater during the winter
is providing adequate nutrients. It has been reported that runoff from snow melt
can carry significant amounts of phosphorus (Gjessing and Johannessen 1987)
derived largely from the forest floor (Barry and Price 1987). Most likely, the

numerous melt events that occur during the winter in Vermont are either not
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frequent enough to sup.ply adequate phosphorus, or they are not of a great
enough magnitude to leach organic materials at the forest floor.

Chl a was also significantly affected by flow and sampling date during the
Winter/Spring 1994 sample period, but flow accounted for only 4% of the
variance for the model in Table 3 while sampling date explained 8% of the
variance for the model in Table 4. This is in contrast to the nutrient enrichment
experiment in which nearly 50% of the variance was explained by the nutrient
treatments. The significance of flow and date suggests that the periodic spates
experienced as a result of snow melt in winter are responsible for the flow
mediated response and that slow flow reaches are less affected than fast flow
reaches. This finding contradicts that of Scarsbrock and Townsend (1993) who
found that pools had a higher disturbance frequency than riffles based on bed
movement.

It is unusual that AFDM did not show a response to nutrient treatment since chl
a is a component of AFDM. In fact, chl @ and AFDM response to nutrients, flow
and sampling date were different, evidence that other components of the
‘periphyton besides chl a dominated the AFDM response. A decoupling of these
variables has been reported by Biggs and Close (1989) in a study of periphyton
from nine streams in New Zealand. In Stevensville Brook, slow flow reaches
accumulated a greater amount of organic matter than fast flow reaches. This
would be expected since deposition is greater in slow flow reaches (Lau & Liu
1993). As with chl a, flow accounts for a small percentage (~4%) of the total
variance for AFDM in the model in Table 4. The response of AFDM to sample
date accounted for about 40% of the total variance for the three day (19
February - 17 March) and four day (4 February - 17 March) analyses (Tables 3 &

4). As with chl a, it seems that midwinter spates are controlling the periphyton
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AFDM, aithough the change over time could also be a response to changing day
tength.,

What is most surprising about these experimenrts is that reduced light level did
not cause a significant response in periphyton communities except for AFDM
accumulation on the clay tiles (Table 5). Cther studies have shown that light
elimination can result in a significant alteration of the periphyton community
(Wright 1964, Bothwell ef al. 1989, Steinman et al. 1991,_Hiii et al. 1995). Either
the influence of light is negligible compared to other parameters, or the effect of
light is being obscured by photoacclimation (Raps ef al. 1983, Cunningham et al.
1980, Smith ef al. 1990, Sukenik et al. 1990). In the latter situation, the loss of
chlorophyll due to reduced growth or death of algae would have been offset by
an increase in the chl a content per surviving cell. Since the response of chl a is
not apparent in the AFDM response, photoacclimation could render invisible the
effect of light on chi a. Alternatively, low temperature may have caused a
depression of the compensation point so that reduced light treatment was not
low enough to be limiting (Davison 1991). Results from the clay tile experiment
suggest that light plays a role in colonization of open patches. Movement in
response to light has been demonstrated by Bothwell ef al. (1989) in streams
and has been shown to occur among phytoplankton (Wright 1964). Light
controlled immigration would profoundly impact ice covered streams and may
explain the low standing crop of periphyton in Stevensville Brook.

Changes in the ratio chl a/AFDM through winter 1994 further support the
existence of an active periphyton community and may indicate a community
succession occurring between heterotrophs and autotrophs. Thomas et al.
(1991} noted a similar occurrence in a subalpine California lake where the ratio

of planktonic chiorophyll to bacterial biomass increased from January through
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March. Autotrophy in Stevensville Brook peaked around the 7 and 1.7 March
sampling dates which may signal algal community growth in response to
changes in daylength. This change is confirmed by an analysis of variance
showing that the ratio has a significant time response (Table 3 & 4). The ratio
also showed a significant effect in the flow x date interaction term, hut not to flow
alone, supporting the hypothesis that short term flow processes (spates) have a
significant impact on the periphyton community. The percentage of chlorophyll to
AFDM found in Stevensville Brook compares well with figures reported for other
mountain streams (Pontasch and Brusven 1987, Biggs and Close 1989).

The data from these experiments support the model put forth by Menge and
Sutherland (1987) that physico-chemical factors control community dynamics
under high stress conditions, That there is much unexplained variance in the
data indicates the need for further research and reinforces the need to conduct
research spanning all seasons of the year (Harper 1981, Resh ef al, 1988).
Three areas to investigate in future research are: 1) the role of low temperature
in controlling periphyton communities, 2) the interaction of flow, nutrients and
temperature and 3) the possible interference of photoacclimation in quantifying a

response of periphyton chl a to light.
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ABSTRACT

Numerous models of community dynamics predict low diversity in high stress
ecosystems. While epilithic algae during winter provide appropriate test
communities for such models, few studies of these systems have been made.
This research tested the hynothesis that lowest diversity for algal communities
will occur during the winter and that reaches with reduced light and fast flow
would have a lower diversity than reaches with ambient light and slower flow. A
22 factorial experiment was established in Stevensville Brook, VT consisting of a
combination of low light (0.8 x 1017 and 0.9 x 1017 Quanta-s-1-cm-2), high light (0.3
x 10%8 and 0.2 x 106 Quanta's-":cm-2) and slow flow (0.15 m/s), fast flow (0.30
and 0.34 m/s) treatments. S[ow and fast flow reaches were created by
constructing rock dams and light was controlled by removing surface ice to
create high light areas or removing surface ice and shading with a black mesh to
create low light areas. Algal samples were collected on three occasions during
February and March 1994, Algal samples were also collected on three occasions
between August 1994 and January 1995, but no light freatments were imposed
during this period. Changes in cell densities showed an active community during
the sampling period with three taxa, Chamaesiphon sp., Lyngbya subtilis and
Synechocystis sp., dominant out of a total of 52 species found. Neither individual
taxon cell densities nor diversity were found to respond to the light treatment.
Diversity. for samples following the imposition of treatments was significantly
affected by sampling date and flow, but no consistent pattern of flow effect could
be seen across all sampling dates. The hypothesis that lowest diversity occurs
during wint_er was rejected since a mid-February sampling date had the highest

diversity values for three of the treatments.
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INTRODUCTION

The community ecology literature has attempted to explain changes in
community diversity as a function of the mechanisms of predation, competition,
and stress/disturbance (Menge and Sutherland 1987). Most ecologists hold that
adaptation, long term genetic or short term phenotypic, in response to an
environmental variable involves an energy expenditure which is not then
available to use for other organismic functions (Petraitis et al. 1989, Parsons
1993). Some current models hypothesize that maximum diversity, based on
richness of species and their evenness of distribution, will be achieved when the
frequency and magnitude of disturbance-keep later successional species from
excluding early successional species, but still allow later successional species to
colonize. The connection to energy allocation is that later successional species
must invest in adaptations which make them superior competitors and, therefore,
less resilient to perturbation (Petraitis ef al. 1989).

Numerous aﬁthors have attempted to refine this hypothesis. Huston (1979)
linked disturbance and growth rate to the maintenance of diversity. He argued
that slower growth rates for the community as a whole will lengthen the period of
coexistence among competitors, thereby maintaining higher diversity, since it will
take longer for dominants to displace inferiors. Conversely, faster growth rates
will result in a quicker convergence to competitive exclusion. Menge and

Sutherland (1987) hypothesized that under low recruitment and high
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environmental stress, physical factors will predominate, competition and
predation will be minimal and diversity will subsequently be low.

Although much lotic research has been devoted to testing these models, there
is a lack of such studies for temperate region streams during winter. We studied
the effect of light and flow on algal community structure and diversity during
winter, spring and fall in a mountain stream located in northwestém Vermont,
USA. This stream experiences severe winter conditions for a period of about five
months, from November to April, each year. Winter, on average, has the lowest
temperature and light values of all the seasons. Accumulation of precipitation in
the snowpack results in long term low flows interspersed with freshets caused by
occasional mid-winter thaws. While Huston (1979) hypothesized diversity
maintenance under low growth conditions such as these, we expect that the
limiting physical envirénment will override this effect and that epilithic algal
species diversity during winter will be lower than at other times of the year as
predicted in the Menge and Sutherland model. Rather than selecting between
competitive ability and resistance to perturbation, it is likely that algae must be
prepared to resist numerous abiotic extremes. It would be expected that algal
communities would be expending energy to increase growth under low
temperature and that extremes of light or flow would re_sult in decreased cell
density from reduced growth and decreased diversity caused by local species

extinctions.
MATERIALS AND METHODS

Samples were collected from Stevensville Brdok in Underhill State Park, VT,

USA which was described in the previous chapter. For Winter/Spring 1994, a 22
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factorial design was used with high and low levels for water velocity and light
(values given in previous chapter). During Fall/Winter 1994/95 (4 August 1994, 5
October 1994 and 5 January 1995), fast flow, slow flow and high light treatments
were maintained, but low light treatments were not imposed. Rocks were
collected from all light and flow treatments on 19 February, 7 March and 17
March 1994; from' flow treatments only on 4 August 1994 and 5 January 1995;
and from the high flow reach only on 5 October 1994. A description of sampling
protocol and sample processing for Winter/Spring 1994 was given in the
previous chapter and these were the same methods used for collections made
during Fall/Winter 1994/95.

Samples collected from a single rock were homogenized and split into three
aliquots as described in the previous chapter, one aliquot of which was
preserved with Lugol's solution (APHA 1992). Two preserved aliquots out of ten
from each treatment for each date were randomly selected to make permanent
slide mounts. At the time of slide preparation, the entire preserved aliquot was
twice drawn into and forced out of a syringe with a needle to break up clumps
then manually mixed in the sample vial. Permanent slides were prepared as
outlined by Stevenson (1984). Total volume for a slide was 700 ul of Type Il H,O
+ sample; the amount of water added depended on the initial concentration of
the sample. Samples were concentrated as necessary by allowing the sample to
settle for 24 hours and drawing off a known volume of water. Slides were
analyzed at a magnification of 1000x under oil immersion using an Olympus
microscope with phase contrast illumination. Cells were enumerated by counting
along transects of 100um width. At least 500 cells were counted on each slide

(Stevenson and Lowe, 1986).
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Algae were identified using Prescott (1982), Germain (1981), Bourrelly (1970)
and Smith (1950). Cell densities were determined by calculating the number of
cells for the area of slide counted and using this number to estimate the total
number of cells per slide and, thus, per volume of sample used for the slide. The
number of cells per volume of sample used was then scaled up to number ot
cells in the driginal samplé volume and this number was then divided by rock
surface area. Relative abundances were calculated by adding the number of
cells counted for a given species from the two slides analyzed for each treatment
on each sampling date and dividing by the total of all cells counted for the
treatment and sampling date. Diversity was‘ determined using Shannon's
diversity index calculated as:

H'=-Zp;log p |
where p;is the proportion of the total number of individuals occurring in species |
or,
pi=n; /I N;

(Brower and Zar 1984). H' Was analyzed for response to flow and sampling date
once excluding the 5 October sample which lacked a slow flow sample to
balance the model, and once excluding both 5 October and 4 February. The
sample from 4 February was excluded to determine the impact of the variables
after the imposition of the treatment manipulations. An ANOVA was also
performed on the diversity values from 19 February, 7 March and 17 March to
include the light éffect which was imposed during the Winter/Spring 1994
sampling date. All statistical analyses were performed using Minitab for Windows

version 10.2 (Minitab Inc., State College, PA).
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RESULTS

A total of 52 species were found in Stevensville Brook over the sampling period
(Table1). The Cyanophyceae was the largest contributor of species and cell
densities for the periods sampled. The diatoms provided the 2nd largest group of
species, but only Eunotia exigua was found regularly and in substantial numbers.
Other phyla represented were Chrysophyceae, Rhodophyceae and
Zygnemaphyceae. There were three species which could not be identified; their
physical appearance is described in Table 1. Although none of the unknown taxa

gave a positive starch test, members of Zygnemataceae, which normally store

starch, did not give a positive starch test either. Therefore, the unknowns cannot

be ruled out as possible members of the Chlorophyta.

Taxon Relative Abundance and Cell Density

Figure 1 shows the relative abundances for 16 species which contributed
greater than 3% of the total cells counted for at least one treatment on one day.
Figures 2-17 show the densities (cells/cm?) for species which appear in figure 1.
Relative abundance plots (Figure 1) indicate that three taxa comprised 80% and
greater of the total cells counted throughout the course of the study:
Chamaesiphon sp., Lyngbya subtilis and Synechocystis sb.

Chamaesiphon cells accounted for greater than 50% of all cells for 4 February
and 4 August high light/fast flow (HL/FF), 7 March low light/slow flow (LL/FF),
and 17 March low light/fast flow (LL/FF) and high Iight/slow flow (LL/FF)
treatments. Chamaesiphon cells also accounted for 30% or more of the total
cells counted for 11 of 19 samples and never comprised less than 10% of the

total cells counted for any treatment on any day (Figure 1). Chamaesiphon cell
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Figure 1: Plots of relative abundances for species found in Stevensville Brook
which contributed greater than 3% of the total cells counted for at least one
treatment on one date.
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Figure 1 continued
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densities peaked on 17 March for LL/FF and LL/FF with 7.9 x 105 and 4.4 x 105
cells/cm? in each treatment respectively (Figure 4). Cell densities for the HL/FF
treatment were highest on 4 August at 4.5 x 105 cells/cm2 and LL/SF were
highest on 19 February at 2.9 x 108 cells/cm?2. Sampling date appeared to impact
Chamaesiphon the most with cell densities being lowest cn 5 January and 4
February and maximum density occurring on 17 March. There was no apparent
effect of the light or flow treatments on Chamaesiphon density.

Lyngbya subtilis accounted for 30% and greater of the totai cell abundance
for 8 of 19 samples over the study period and dropped below 10% for four
samples (Figure 1). The highest density of L. subfilis (Figure 6) occurred in the
LL/FF treatment on 19 February with 5.8 x 105cells/cmZ2. Two peak densities, 3.8
x 105 cells/cm2 on 17 March and 3.7 x 105 cells/cm? on 5 October, occurred for L.
subtilis in the HL/FF treatment. A peak of 2.1 x 105 cells/cm? for the LL/FF
treétment and 2.9 x 105 ceils/cm2 for LL/FF both occurred on 18 February.
Although the greatest combined density of L. subtilis occurred on 19 February,
cell densities did not show any distinct pattern by date except that the 5 January
and 4 February densities were very low compared to all other dates. The effect
of flow appeared to control cell densities on 19 February and 4 August when
slow flow reaches had greater densities than fast flow and on 17 March when
fast flow reaches had higher cell densities. Combined high light treatments on 7
March had higher L. subtilis cell densities than low light treétments.

Synechocystis sp. accounted for 30% or more of the total cells in 5 of 19
samples and comprised more than 10% of the celis found for 15 of 19 samples
(Figure 1). Except for 4 February HL/FF in which Synechocystis accounted for
less than 1% of the total, it's relative contribution to the community was highest

in mid-winter (4 February and 5 January). Cell densities for Synechocystis
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(Figure 14) peaked for LL/FF at 2.0 x 105 cells/cm2 on 7 March, for HL/FF at 2.6
x 105 cells/cm2 on 4 August, for HL/SF at 1.4 x 105 cells/cm? on 19 February and
for LL/SF at 1.6 x 105 cells/cm? on 19 February. S‘ynechocystfs densities
appeared to be flow regulated over most of the sampling period. Samples for 4
Febrisary and 19 February show a higher number of cells on average in slow flow
treatments. However, on 7 March, 4 August and 5 January, the fast flow
densities were higher than slow flow densities. There was not any obvious effect
of the light treatments on Synechocystis densities.

There were numerous other species which were found in smaller numbers than
the ones above throughout the sample period. Synechococcus sp. represented
5% or more of the algal density for 8 of 19 samples including 10% of the cells
counted for LL/FF on 7 March (Figure 1). Synechococcus was not found in
samples after 17 March. Unknown 1 accounted for 5% or more of the total for
only 3 out of 19 samples, but was found in all samples except HL/FF on 4
August and LL/FF on 5 January. Cell densities for unknown 1 were highest on 19
February, 7 March and 17 March. Pseudoanabaena catenata contributed to
more than 5% of the total cell density on 19 February, 7 March and 4 August all
in the HL/SF treatment. P. catenata was found in 14 out of 19 samples during
the study, but was not found at all on 5 January and had very low densities on 4
February (Figure 11). Although not contributing 5% or more of the total cells for
any sample, Eunotia exigua was present in every sample. There were two peak
densities for E. exigua occurring on 19 February and 4 August (Figure 2).
Audouinella sp.1 accounted for 9% of the total cells counted in the LL/FF
treatment on 7 March, but did not contribute more than 3% in any other sample
and was not found in HL/SF on 4 February (Figure 16). Audouinella sp.1

densities were highest on 7 and 17 March and lowest on 4 February and 5
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Figure 2-17: Mean cell density (n=2) for individual taxa which contributed greater

than 3% of the total cells counted for at least one treatment on one date. Cell

densities were normalized to rock surface area.
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Figure 2
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Figure 3

Borzia sp.
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Figure 4

Chaemosiphon sp.
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Figure 6
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Figure 7

Lyngbya sp.3
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Figure 9

Oscillatoria sp.1
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Figure 11

Psuedoanabaena catenata
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Figure 12

Rivularia sp.
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Figure 13

Synechococcus sp.
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Figure 14

Synechocystis sp.

400000
- (] Low Light/Fast Flaw
350000 [ B  High Light/Fast Flow
- M High Light/Stow Flow
300000 f- = Low Light/Stow Flow
250000 |-
& -
$ 200000 [~
T -
© o
150000 |—
100000 [—
50000 [T
0 4 Feb 7 Mar 17 Mar 4Aig 5 Oct 5 Jun

90




‘ Figure 15

Peroniella sp.

40000
[ (1 Low Light/Fast Flow
35000 - High Light/Fast Flow
00 C B High Light/Stow Flow
30660 [
- B Low LightSlow Flow
25000 [
I
% 20000 {—
= -
¢ ™ q
15000 [~ 0%
=
= &
10000 [— &3
-
- Bg
- %
5000 [ K
- ;:: i
- 4 =
0 L el
4 Feb 19 Feb ar 17 Mar 4 Aug 5 Oct 5 Jan

91




Figure 16

Audouinella sp.1
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Figure 17
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January. Oscillatoria sp.1 and sp.2, Lyngbya sp.1 and sp.2, Rivularia sp.,
Peroniella sp., Borzia sp., and Hormidium sp. generally did not exceed 1% of the
total for most samples and often were not found outside of a few samples, but
are shown in figure 1 because they accounted for at least 3% of the total cells in

one sample.

Shannon H' Diversity

The Shannon H' diversity index is shown in Figure 18. Initial mean diversity
values were 1.249 for fast flow reaches and 1.074 for slow flow. Between 4
‘February and 19 February, average diversity increased by 17% for HL/FF, 47%
for LL/FF and 72% for LL/FF, constituting the largest increase and producing the
largest diversity value for the sample period, while decreasing by 4% for LL/FF.
Between 19 February and 7 March the changes in diversity were opposite to the
previous sampling: diversity for the LL/FF reach had increased by 27% while it
decreased by 12% for HL/FF, 11% for LL/FF and 35% for LL/FF reaches.
Average diversity for the LL/FF reach declined by 37% between 7 March and 17
March constituting the largest decline in diversity and resulting in the lowest
diversity value over the sampling period. The diversity of LL/FF treatment also
declined by 17% while HL/FF and LL/FF increased by 4% and 5% respectively
between 7 March and 17 March. The change in mean diQersity between the last
spring collebtion on 17 March and the first fall collection on 4 August was an 8%
increase for HL/FF and a 10% increase for the LL/FF treatment. Mean diversity
from 4 August to 5 October declined by 10% in the HL/FF reach and another
16% from 5 QOctober to 5 January while the LL/FF treatment increased by 16%
betWeen 4 August and 5 January. The highest average diversity in all treatment

reaches except LL/FF was attained on 19 February.
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Figure 18
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Neither flow nor date were found to have a significant effect on diversity
values when analyzed across sampling dates excluding 5 October due to lack of
flow data for this date (Table 2a). However, when samples from 4 February were
also excluded from the analysis, both flow (p<0.10) and sampling date (p<0.05)
were found to have a significant effect (Table 2b). The ANOVA testing the effect
of flow, light and sampling date for samples from 19 February, 7 March and 17
March show that only sample date was found to have a significant effect
(p<0.05) on diversity (Table 2). Although there appeared to be a flow mediated

effect, it was not significant over these 3 dates.
DISCUSSION

The data collected at Stevensville Brook for this research are, to the author's
knowledge, the only taxonomic data available for periphyton in mountain streams
d.uring winter in Vermont, USA. The taxonomic changes occurring in Stevensville
Brook throughout the winter months indicate an active algal community. As
compared to values published for various aquatic systems in the literature, the
total number of taxa found in this ecosystem in wintér was small (Douglas and
Smol 1995, Robinson et al. 1994, Hendey 1977, Moore, 1876, Sullivan 1976,
Moore 1974). However, species richness is a function of area sampled and most
of these studies examined a larger area than the present research. Richness
values closer to those found in S{evensville Brook were reported from a study of
21 lakes in Antarctica where 66 species were identified (Hansson and
Hakansson 1992) and a study of periphyton in a sewage clarifier in Vermont,
USA where only 23 taxa were present over a 61 week sampling period (Davis ef

al. 1990).
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Table 2: ANOVA tables indicating the response of the Shannon H' Index to

experimental variables. a) Testing the effect of flow and sample date excluding &

October samples. b.) Testing the effect of flow and sample date excluding 4

February and 5 October samples. c.) Testing the effect of flow, light and sample

date for samples from 19 February, 7 March and 17 March 1994.

Source DF Seq SS Adj MS F P

a.) flow 1 2.613 2.763 1.07 0.311
date 5 22.666 4.494 1.74 0.162
flow x date 5 16.223 3.245 1.26 0.314
Error 25 64.600 2.584

b.) flow 1 0.9882 1.2467 3.21 0.087
date 4 4.8604 1.2151 3.13 0.035
flow x date 4 2.6855 0.6714 1.73 0.179
Error 22 8.5353 0.3880

c.) flow‘ 1 0.03645 0.03645 0.62 0.445
date 2 0.57624 0.28812 492 0.028
flow x date 2 0.25433 0.12716 217 0.167
light 1 0.00865 0.00865 0.15 0.707
flow x light 1 0.118%91 0.11891 2.03 0.180
date x light 2 0.00843 0.00422 0.07 0.931
flow x date x light 2 0.34865 0.17433 2.98 0.089
Error 12 0.70283 0.05857
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The predominance of Cyanophyceae in the stream s of interest.
Bacillariophyceae have generally been noted as the dominant group present in
steams and lakes in the presence of winter conditions of low temperature and
light (Allen 1995). On Baffin Island, Moore found 200 out of 240 taxa of benthic
algae in rivers to be diatoms. Winter phytoplankton communities.in a sub-alpine
lake in Colorado, USA were also dominated by diatoms (Spaulding et al. 1993)
and sub-ice algal assemblages in the Barents sea were dominated by pennate
diatoms (Hegseth 1992). However, Griffith and Perry (1995) found the
cyanophyte Chamaesiphon sp. to be the dominant algae during winter for two
out of three years in two streams in W. Virginia, USA. This indicates that the
predominance of cyanophyceae in streams during winter may be a phenomenon
occurring in the Appalachian mountain chain in the northeastern USA. Although
the dominance of cyanophytes is a surprise based on the literature, the lack of
studies during the winter may account for the disparity. In fact, members of the
Cyanophyceae are known to exhibit some of the greatest capacity to resist
extreme conditions including temperature (Fogg 1969).

Relative abundance plots indicate a stable community dominated by
Chamaesiphon sp., Lyngbya subtilis and Synechocystis sp. during most of the
experimental period. Changes in relative abundances among these three
species did not necessarily represent increases in species density. For instance,
peaks in relative abundance for Chamaesiphon sp. and Synechocystis sp. on 4
February and 5 January occurred when both species were actually experiencing
some of their lowest cell densities. As a resuit of the extremely low densities of
Lyngbya subtilis cells and the low relative abundances of other taxa,
Chamaesiphon sp. and Synechocystis sp. were able to account for a much

greater portion of the community.
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An interesting pattern that appears in the cell density plots is the existence of
some species which have two peak densities and some which peaked only once.
Numerous species including Audouinella sp.1, Chamaesiphon sp., Lyngbya sp.4,
Lyngbya sp.3, Psuedoanabaena caténata, Peroniella sp., Synechococcus sp.,
Unknown 2 and Unknown 1 had peak densities which occurred during the
VVkﬂeHSpﬁng 1994 sample period indicating a possible daylength mediated
growth -response. Other species peaked once during the Winter/Spring 1994
season and once during Fall/Winter 1994/95 which may be the result of
changing nutrient status. Since data are not available from the summer, the 4
August peak may not represent a true peak density. However, the double peak
pattern has been noted in other river studies (Allen 1995).

Among the three dominant taxa and most of the minor taxa, there did not
appear to be any consistent pattern of response of cell density to either flow or
light although there were distinct differences on some dates (Figures 2-17). For
instance, almost all of the species which were found on 19 February had lower
densities in fast flow reaches than in slow flow reaches except for Eunotia
exigua. Such a pattern may be explained by the fact that during the 4 February
sample there had been a period of very warm temperatures resulting in rain and
mghrunoﬁ.SpecmsEnskwvﬂowreadhesrnayhavebeensuMectkﬂessscounng
loss and also may have benefited from removal of debris resulting in higher
nutrient avaiiébility. In an experiment in Kentucky, USA, Peterson and Stevenson
(1992) found that communities in slow flow channels recovered more quickly
than those in fast flow channels due to enhanced reproduction and greater
accumulation of biomass due to lower shear stress. By 7 March, the pattern was
still apparent only for Psuedoanabaena catenata, Unknown 1 and

Synechococcus sp.
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Four taxa provide evidence of a distinct treatment response: Borzia-sp.,
Oscillatoria sp.1, Oscillatoria sp.2. and Psuedoanabaena catenata. Both
Oscillatoria species were found only in LL/FF reaches with sp.1 occurring on 19
February and sp.2 occurring on 4 August (Figures 9 & 10). Borzia sp. had the
greatest density of cells in the fall HL/FF treatment reach (Figure 3). P. catenata
had distinctly higher cell densities in LL/FF than in any of the other freatments. It
seems that Oscillatoria sp.1 and 2 and P. catenata were the only species
present which conformed to our hypothesis that the extreme environment would
result in more species taking advantage of slower flows and higher light. In
general, species density plots show a strong relationship between time of year
and most species densities. Celi densities were usually lowest on 4 February
and 5 January and almost all species had a peak density in the Winter/Spring
1994 experiment. Winter minima and springtime maxima have been reported by
many authors (Blomqvist et afl, 1994, Muller-Haeckel and Hakansson 1978,
Moore 1977, Moore 1976), however, the large increase in the cell densities of
many of the taxa occurring on 19 February is unusually early. as compared to
other studies. These results indicate that the flow and light freatments impoéed
were not a factor in confrolling individual species densities or were not of the
appropriate magnitude to influence individuals.

The most important predictors of algal diversity were sampling date and flow
(Table 2). Contrary to our expectations, light did not have a significant effect on
diversity. Although flow had a significant effect on diversity, there was no
consistent pattern from sample date to sample date to provide evidence that
slow flow or fast flow reaches have a greater diversity (Figure 18). It may be that
the low and high flow regimes were at the extreme ends of the current spectrum

of the stream and therefore both resulted in reduced diversity. In a summer study
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of diatoms in Kentucky, USA, Molloy (1992) found that diversity peaked at
intermediate currents and declined above and below the optimum. In fact, the
range of values found in Stevensville Brook, 0.95 to 1.85 (Figure 18), are at the
lower end of the range reported by Molloy and correspond to the faster. and
slower currents found in her study. A more obvious pattern can be seen for
sample date where the average diversity was greater for all treatments (except
LL/FF) on’19 February than on any other date sampled. This would not be
expected given the harsh conditions which exist at the site during February, but it
supports Huston's (1979) hypothesis that slower growth rates will maintain
diversity by increasing the length of time necessary for competitive exclusion.
Overall, diversity values for Stevensville Brook were at the low end of values
reported in other studies. For instancé, values for Shannon H' diversity reported
by Molloy (1992) were between about 1.00 and 3.00, and in a study of diatoms
from 14 sites in the Yellowstone Park Area, USA, Robinson ef al. (1994)
recorded a range of values for Shannon's H' from 1.00 up to 5.27 with few values
below 2.00. However, Stevensville Brook values were intermediate to those
reported by Hendey (1977) for diatom communities from six sites along the coast
of Cornwall, England which ranged in value from 0.33 to 3.84. Although Molloy's
findings suggest that extreme flow regimes may result in the lower diversity
values found, Stevensville Brook periphyton were found to be phosphorus limited
(previous chapter), and this may account for the low values.

The data from this research show that streams during winter have an active
epilithic algal community and can provide excellent experimental systems to test
theories regarding community dynamics and species diversity. Our results
support the hypothesis that lower diversity will occur in ecosystems with extreme

physical conditions such as exist during winter in the northeastern USA.
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However, we were unable to determine the exact mechanism controlling the
community. Since ambient light intensity does not appear to be a factor it would
be best to focus on interactions of flow, nutrient status and daylength in future

investigations.
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CONCLUSIONS

My initial goal in pursuing the research presented was to try to disprove the
intermediate disturbance hypothesis as presented by Connell and Slatyer (1977).
[t seemed that a theory developed around tropical ecosystems would lack the
ability to predict dynamics though seasonal changes associated with temperate
climates. Furthermore, the language associated with the theory, such as
"intermediate”, is vague and cannot be quantified with accuracy. As the research
progressed and resulté began to appear, | realized that | had not, in fact,
designed my experiments to test intermediate disturbance.

While this research did not result in an earth shattering rebuke of the
intermediate disturbance hypothesis, it did provide much needed periphyton
community information from a previously unobserved ecosystem. The
cornerstone of this research was the determination of factors which control
stream periphyton in the mountains of Vermont during winter. A review of the
literature turned up very few attempts to quantify periphyton during winter and no
experiments to explain why communities are present or absent. However, there
were numerous models which provided a hypothetical basis for examining these
communities. From these models came the hypothesis that increases or
decreases in magnitude of abiotic environmental variables away from the
optimum in an ecosystem already subject to extremes will result in a decline of
community biomass and species diversity. This is a very similar concept to the
intermediate disturbance hypothesis, but it does not necessitate a disturbance as
defined in the Introduction.

The most likely variables to have an immediate impact on community dynamics

in winter were identified as temperature, flow and light. Since temperature is
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difficult and expensive to control in a natural stream channel, [ initially chose to
focus on flow and light during winter/ spring 1994 and return to temperature later.
The parameters chosen to measure community response were chlorophylt a, an
indicator of algal biomass; ash free dry mass, an indicator of total periphyton
hiomass: algal species densities; and algal diversity. Studies were carried out in

situ in Stevensville Brook.

Results Summary

Most of the results obtained were unexpected. It was found that not only did
Stevensville Brook have a periphyton community during the winter, but that
periphyton biomass over a two month period in February and March peaked in
mid-February and declined into March, indicating active growth. The hypothesis
that chl a and periphyton AFDM per unit area declines in communities subject to
reduced daily solar energy input must be rejected since reductions in light
mimicking ice cover did not affect algal biomass except for possibly influencing
colonization rates on artificial tiles. There is weak support of the hypothesis that
algal community ch! a and periphyton AFDM decreases as water velocity
increases during winter since differences in flow were found to have a significant
effect on biomass, but the effect did not account for ml_Jch of the variance
observed. Sampling date was consistently a significant féctor accounting for
differences in periphyton biomass, but also left much of the variance
unexplained.

Water sampling during the fall of 1994 and bioassay data not presented in the
thesis indicated that nutrient deficiency may be responsible for controlling the
periphyton in Stevensville Brook. So in January 1985, four nutrient treatments

were introduced at the stream site to test the hypothesis H3.1 that nutrient
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increases have no effect on algal community chl a and periphyton AFDM during
winter. Results from this experiment confirmed the fact that the algal portion of
the periphyton was phosphorus limited and therefore hypothesis H3.1 was
rejected based on chl a data, but supported for AFDM data. | suggested that in
addition to nutrient limitation, the significant flow and sampling date effects
during Winter/Spring 1994 indicate that periodic spates have an impact on the
periphyton community.

Algal taxonomic data collected during the Winter/Spring 1994 experiment and
also in the Fall/Winter 1894/95 su‘pported the chlorophyll a data and added detail
to the changes observed. Three dominant taxa, all members of the
Cyanophyceae, were observed out of a total of 52 species found. Based on the
literature, | expected to find a predominance of diatoms, but blue green algae
comprised the bulk of the species found both in numbers of taxa and cell density.
Relative abundance plots show a dynamic community indicating that the high
chlorophyll a values found on 19 February were the result of a bloom by Lyngbya
subtilis. Density plots show that all but 16 of the most abundant species had
peak densities occurring in February or March. Mean algal species diversity was
highest for three treatments on 19 Fébruary and diversity was found to be
significantly affected by flow and sampling date. These data do not support
hypothesis H1.2a: Algal community diversity, as measure'd‘by the number of
species and the relative abundances of each species, decreases as a. result of
reduced solar energy in streams under winter conditions; but there is not enough
evidence to accept or reject H2.2: diversity decreases at higher flow. In general,
species diversity in Stevensville Brook was found to be at the lower end of

diversity value ranges reported for other streams. These results supported some
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hypotheses put forth by Menge and Sutherland (1887) and Huston (1979), but

do not entirely conform to any specific model.

Future Directions

The results point to some research possibilities for future investigators.
Phosphofus limitation indicates the need to consider nutrient status in any
benthic research conducted in mountain streams in Vermont. Although it is likely
that many of these lower order streams are nutrient deficient, it would be
interesting to test a number of streams throughout the Green Mountains. It is
known that temperature affects algal minimum requirements for nutrients and it is
likely that temperature affects in-stream nutrient availability. Experiments
controlling stream temperature in situ, though difficult and expensive, are
essential to fully understanding stream periphyton in Vermont. Flow must also be
a consideration in future investigations and | propose designing factorial
experiments which incorporate flow treatments and nutrient freatments.
Significant sampling date effects raise the possibility of seasonal changes
resulting from changes in daylength or stochastic processes such as spates.
More frequent sampling would aid in obtaining samples as close to a high runoff
event as possible providing before and after analysis capability. This is certainly
not an exhaustive list, but it covers some of the most bésic research questions

for this system that remain for me.

Relevance
It is my view that the importance of this research is two fold: 1) it provides
information necessary to establish the validity of theoretical models, and 2) it

provides data to be considered when making determinations concerning
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resource management. With regard to the former, this research has provided a
direct test for some aspects of community succession models in the literature. It
has also provided the basic data from which to launch further testing of these
and other models. As regards the latter point, decisions concerning stream
drawdown for snowmaking at ski resorts and plans to harvest northern forests
could benefit from this data, too. As a result of the lack of seasonal studies, such
management decisions are often made using anecdotal evidence. The results of
this research show that anything short of quantitati.ve. evidence may be
misleading and result in detrimental management decisions. | hope, as do many
graduate students, that my thesis will provide useful information and analyses

that will remain pertinent to future investigators.
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APPENDIX A
Table of chlorophyll a, ash free dry mass and rock area data for Winter/Spring

1994 flow and light experiments listed by date collected and treatment.

Notes on some Headings

Treatment: 1=Low Light/Fast Flow, 2= High Light/Fast Flow, 3=High Light/Slow

Flow, 4=Low Light/Slow Flow.
Light: 1=High Light, O=Low Light

Flow: 1=Fast Flow, 0=Slow Flow
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APPENDIX B
Table of chlorophyll a and ash free dry mass data for winter 1995 nutrient

enrichment experiment listed by treatment type.

Notes on some Headings

Light: 1=High Light, O=Low Light

Flow: 1=Fast Flow, 0=Slow Flow
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date Shannon light flow
204r 1.77215 1
2041 0.72499
04d 1.73203
04ff  0.99388
04ff  0.49491
219a 1.36793
219g  1.026985
2191 1.63133
219n  1.37323
19a 1.74022
219cc 1.41799
19e¢ 1.76562
21981 1.93685
307e 1.24031
307¢c 1.79654
307s 1.24542
307n  1.40296
307cc 1.46018
307v  1.3528
307kk 1.00089
307ff 1.40472
317i  0.71579
317g 1.17591
317p 1.39771
317r  1.34526
317z 0.72274
17b  1.32407
317 1.27641
317fF  1.26118
804s 1.52963
804sf 1.42707
804fg 1.30731
804ff (0.93587
1005; 1.69372
005 0.96459
105f1  1.1113
1055 1.11665
105s 1.12518
105s  1.46855

__L_x._\...x_.:;_.x_.x_\_x_\oo_\_\...;_\oooo_;_x_x_;OOOC)_;_.x...a....\QQ_L_.x._.J.._\._x

1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
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APPENDIX C
Table of species densities (# cells/cm?) for Winter/Spring 1994 and Fall/Winter
1994/95 listed by date collected and treatment.

Notes on some Headings

Light 1=High Light, O=Low Light

Flow: 1=Fast Flow, 0=Slow Flow
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date flow light julien Audouinelfa 1 Unknown 1 Eunotia exigua
1

204rCl/cm 1 35 0 4282 ‘ 789
204iCL/cm 1 1 35 2085 2502 0
204ddCL/ 0 1 35 0 17998 2000
204ff1CL 0 1 35 0 277 602
204ff2CL 0 1 35 0 682 3808
219aCl/c 1 0 50 2715 13577 2112
219gCLl/c 1 0 50 166 14277 1660
219ICL/c 1 1 60 2753 11011 918
21enCl/c i 1 50 O 2401 32413
218aaCL/ 0 1 50 18363 16740 13116
219ceCL/ 0 1 50 1723 137826 6891
219eeCL/ 0 0 50 15286 17196 7643
2191CL/ G Q 50 0 68514 10541
307eCl/c 1 0 66 32188 5365 1788
307cCL/c 1 0 66 13384 26789 0
307sClL/c 1 1 66 6790 7312 2089
307nClL/c 1 1 66 5561 3817 0
307ccCL/ 0 1 66 1432 85903 5602
307vCL/c 0 1 66 23834 5181 3109
307kkCL/ 0 0 66 3096 5348 844
307ffCL/ 0 0 66 78835 10034 1433
317iCL/c 1 0 76 20801 2311 5778
317gCL/c 1 0 76 3968 794 132
317pCl/c 1 1 76 20002 108584 8572
317rClic 1 1 76 3546 4433 1773
317zClL/c 0 1 76 34884 20349 0 -
317bbCL/ 0 1 76 18038 58923 2405
317iCL/ 0 0 76 3657 522 12015
317ffCL/ 0 0 76 6434 14706 10110
804sgCL/cm 0 1 216 0 1869 29909
804sfCl/em 0 1 216 11545 6102 3661
804fgCl/cm 1 1 216 0 0 22387
804ffCL/em 1 1 216 8626 0 4140
1005jCL/em 1 1 278 5263 14709 385
1005bClLIcm 1 1 278 7786 12235 3337
1108s3CL/cm 0 1 310 2278 1519 2278
1108f10Cl/cm 1 1 310 6227 9785 890
1129s6CL/cm a 1 333 1628 8142 0
1128f9CL/cm 1 1 333 0 2591 0
1219s3CL/cm 0 1 353 5098 6118 0
1219f10CLicm 1 1 353 2230 1115 0
105f1ClU/cm 1 1 5 1571 o - 943
1056f5CL/Icm 1 1 5 2619 6112 1746
106s3CL/cm 0 1 5 1833 367 2199
1G5s7CL/Icm 0 1 5 0 0 1369
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date Acnanthes marginulata Meridion circulare Eunotia pectinalis

204rCL/cm 185 17 17

1 204iCL/icm 0 0 0
¥ 204ddCL/ 0 0 0
i 204ff1CL 0 277 0
20452C1 0 0 0

219aClL/c 0 0 0

218gCLl/c 0 0 0

218ICL/c 918 0 0

219nCL/c 2401 0 0

21%aaCl/ 2623 0 0

219ccClL/ 0 0 0

219eeCl/ 1911 0 0

219iCL/ 0 0 0
! 307eClic ' 0 0 0
s I 307c¢cClic 1218 0 0
307sCL/c 1567 0 0

307nClic 0 0 0

307ccCL/ 0 0 0

307vCl/c 0 0 0

307kkCL/ 281 0 0

I07HCL/ 0 0 0

317iCLfc 0 0 0

317gCL/c 794 0 0

317pClic 0 0 0

317rCl/c 1773 0 0

317zCL/c 0 0 0

317bbCL/ 0 0 0

317HCLS 0 0 0

317§fCL/ 2757 0 0

804sgCL/cm 1869 ) Q

804sfClL/icm 299 85 0

804fgCL/cm 0 0 0

R04ffCL/cm 0 0 0

1008jCL/cm 770 0 0

1005bCL/em 0 0 0

1108s3CL/cm 380 380 0

1108f1CCL/cm 949 0 0

1129s6CL/cm 0 0 0

1129f9CL/cm 0 0 0

1218s3CL/cm 0 0 0

1219f10CL/cm 0 0 0

105f1CL/cm 0 0 0

105f5CL/cm 0 0 0

10583CL/cm 0 0 0

105s7CL/cm 186 0 0
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date Gomphonema angustatum _Lyngbya 2 Pinnularia appendiculata

204rCl/cm 185 269 17
2041CL/em 0 0 0
204ddCL/ 0 0 0
204ff1CL 0 0 &
204ff2CL 0 0 0
219aCl/c 0 0 0
219gCLl/c 0 0 0
219ICL/c 0 0 0
219nClic 0 0 0
21%aaCL/ o - 0 0
219ccCL/ 5168 0 0
219eeCL/ 0 0 0
24QIICL/ 0 0 0
307eCl/c 0 0 0
307cCl/c 0 0 0
307sCl/c 1045 0 0
307nCl/c 0 0 0
307ccCL/ 0 0 0
307vCllc 0 0 0
307kkCL/ 0 0 0
307{fCL/ 0 0 0

317iCl/c 0 0 0

g 317gCLic 0 0 0
317pClic 0 0 0
317rCL/c 0 0 0
317zClJc 0 0 0
317bbCL/ 0 0 0
317iCL/ 0 0 0
I17#CL/ 0 0 0
804sgCl/cm 0 0 0
804sfCLfcm 0 0 0
804fgClL/cm Q 0 0
804ffCL/cm 0 0 0
1005jCL/cm 0 0 0
1005bCL/cm 0 0 0
1108s3CL/cm 0 0 0
1108f10CL/cm 0 0 0
1129s68CL/cm 0 0 0
1129faCL/cm 0 0 0
1219s3CL/cm 0 0 0
1249f10CL/cm 0 0 0
105f1CL/cm 0 0 0
105f5CL/cm t] 0 0
105s3CL/cm 0 0 0
10587CL/cm 0 0 0
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date ' Psuedoanabaena catenata Lyngbya subtilis___Entophysalis

204rCl/cm 840 1679 0
2041CL/Icm 0 54200 0
204ddCL/ 2000 101989 0
20411 CL. 0 8585 0
204ff2CL 0 18001 Q
218aCl/c 24439 276977 0
219gCL/c 11289 138292 -0
219ICL/c 22022 134882 0
219nCl./c 9604 156875 9]
219aaCLl/ 199367 876799 0
219ccCL/ 0 478846 0
219eeCLl/ 24018 456659 0
219lCL/ ‘ 12287 126487 0
307eClic : 0 230680 0
307cClUc 12177 53578 0
307sCllc 0 212573 0
307nClLlc 0 111213 0
307ceCL/ 117649 476200 0
307vCl/c 0 27979 0
307kkCL/ 0 8726 0
307ffCL/ 0 80268 0
317iCL/c 0 245566 0
317gCl/c 11805 ' 59526 0
317pCl/c 31432 768663 31432
317rCl./c 0 0 0
317zCL/c 0 75582 0
317bbCL/ 0 58923 0
37icL 1045 146788 0]
3174CL/ 0 293198 0
804sgCl/cm 681688 231796 0
804sfCL/icm 10374 134865 0
804fgCL/cm 5970 61192 0
804ffCl/icm 10581 96149 0
1005]CL/em 13859 147092 0
1005bCL/cm 0 500473 0
1108s3CL/cm 0 10632 0
1108f10CL/cm 8895 8885 0
1129s6CL/cm o 226338 0
1129f9CL/cm 0 21156 0
1219s3CL/icm 7138 56080 0
1219f10CL/cm 1115 139178 0
105f1CL/em 0 1257 0
105f5CL/ecm 0 7858 0
10583CL/Icm 0 11730 0
105s7ClL/cm 0 3128 0
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date Chamaesiphon  Frustularia rhomboides Synechocystis
204rCl/cm 8563 0 : 1343
204ICL/icmn 128516 0 0
204ddCL/ 53404 0 50994
204ff1CL 0 0 0
2042CL 0 346 141238
219aCl/c 190082 0 190082
219gCLic 67790 o 0
218ICL/c 144975 0 99097
219nCLic 210083 0 141656
219aaCL/ 212484 0 162642
219ccCL/ 117152 0 110261

_ 219eeCL/ 238839 4] 78339

i 219ICL/ 351354 0 233650
307eClic 334397 0 320091
307cCl/c 265454 0 194829
307sCllc 136600 0 13392
307nClic 76528 0 55056
307ccCL/ 141926 0 164336
307vClic 260099 0 84972
307kKCL/ 126672 0 49852
307ffCL/ 338273 0 24367
317iCl/c 689924 0 0
317gCLic 193657 0 138100
317pCLic 351470 0 22860
317rClUc 101070 0 111709
317zClic 1276170 0 40698
317bbCL/ 312651 0 177971
317iiCL/ 39178 0 54253
317ffCL/ 119485 0 9191
804sgCL/cm 424336 0 153285
804sfCL/icm 74450 0 106793
804fgCL/icm 244769 0 382079
804£CL/cm 662461 0 141463
1005jCL/cm 304690 0 g7711
1005bCL/icm 144594 0 55613
1108s3CL/cm 23162 0 20237
1108f10CL/cm 185912 0 152110
1128s6CL/Icm 480358 0 146550
1129foCL/cm 19429 0 26769
1219s3CL/cm 228400 0 1092713
1218f10CL/cm 286386 0 144531
105f1CL/em 4713 0 24194
105f5CL/cm 88182 0 90802
105s3CL/cm 85773 0 70378
105s7CL/cm 5475 0 9190

139




date Aphanothece _Unknown 3 Hormidium Lyngbya 3__Synechococcus

204rClL/em 0 0 0 0 3526
204ICL/em 0 0 0 0 0
204ddCL/ 0 ¢ 12999 11499 19998
204ff1CL 1662 554 0 0 0
20452CL 0 0 0 0 0
219aCl/c 0 0 Q 0 0
219gCl/c 0 0 0 0 0
219iCLJe 0 0 0 0 63312
219nCLic 0 0 0 0 0
219aaCl/ 0 7870 0 0 0
218ccCL/ 0 0 0 0 75804
219eeCL/ 0 0 0 0 131839
2191CL/ 0 0 3514 0 0
307eCl/c 0 0 0 0 0
307cClLic 0 0 0 4871 98632
307sCl/c 0 0 0 0 24820
307nCL/c 0 2202 0 0 0
307ccCL/ 0 0 0 0 0
307vCl/c 0 0 0 0 121241
307kkCL/ 0 0 0 0 0
307§fCL/ 0 0 0 0 149069
317iCL/c 0 0 0 0 0
317gCL/c 0 0 0 0 0
317pClL/c 0 0 0 0 120014
317rCLlc -0 0 0 0 0
317zCLic ' 0 0 0 0 78489
317bbCL/ 0 Q 0 0 0
317iCL/ 0 0 0 0 0
317fCL/ 0 0 5515 0 45956
804sgClL/em 0 0 0 0 0
804sfClL/icm 0 0 6510 0 0
804fgCL/cm 0 Q0 0 0 0
804ffCL/cm 0 0 8741 0 0
1005jCL/cm 0 0 14709 0 0
1005bCL/em 0 0 0 0 0
1108s3CLfcm 0 0 0 0 0
1108f10CL/cm 0 0 0 0 0
1129s6CL/cm 0 0 0 0 0
1129f0CL/cm 0 0 0 0 0
1219s3CLIcm 0 0 0 3059 Q
1219f10CL/em 0 0 0 0 0
106f1CL/cm 0 0 0 Q 0
105f6CL/Icm 0 873 0 0 0
105s83CL/cm 0 440 0 0 0
10587CL/Icm 0 0 0 0 0
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date Audouinelia 2 Unknown 2 Lyngbya 4 Rivularia___Tabellaria flocculosa

204rCL/cm 0 0 0 0 0
2041CL/cm 0 0 0 0 0
204ddCL/ 500 0 0 0 0
204ff1CL 0 0 0 0 0
204ff2CL 0 0 0 0 0
219aCL/c 0 0 4073 0 0
219gCLl/c 0 0 0 0 0
219ICL/c 0 0 4588 0 Q
219nCL/c 0 0, 0 0 0
219aaCl/ 0 0 78698 0 0
219ccCL/ 0 0 0 0 0
219eeCL/ 0 0 191071 47768 0
218ICL/ 0 0 0 29894 0
307eClL/c 0 0 0 0 0
307cClic 0 0 0 0 0
307sCl/c 0 0 0 0 0
307nClLic 0 0 0 0 0
307ccCL/ 0 0 0 0 0
307vClL/c 0 0 ¥ 0 0
307kkCL/ 0 0 0 0 0
307CL/ 0 0 0 0 0
317iCl./¢c 0 0 0 0 0
317gCl/c 0 0 0 0 0
317pCLic 0 0 0 0 0
317rCL/c 0 0 0 0 0
317zCL/c 0 0 0 0 0
317bbCL/ 0 0 0 0 0
317iiCL/ 0 0 0 0 0
317ffCL/ 0 0 0 0 0
804sgCLl/cm 0 Q 5369 0 0
804sfCL/cm 0 0 0 0 )
804fgCL/cm 0 0 0 0 0
804ffCl/cm 0 0 0 0 480
1005iCL/cm 0 0 6304 72495 0
1005bCLICm 0 0 0 0 0
1108s3CLl/cm 0 0 0 0 0
1108§10CL/cm 0 0 0 0 0
1129s6CL/cm 0 0 0 Q 0
1129faClL/cm ) 0 0 0 "]
1219s3CL/cm o 0 0] 0 0
1219f10CL/ecm 0 0] 0 0 0
105f1CL/cm 0 0 0 0 0
105f6CL/cm 0 0 0 0 0
105s3CL/cm 0 0 0 0 0
10587CL/cm 0 0 0 - 0 0
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date Pascherinema  Oscillatoria 1 _Chroodactylon _Anabaena
204rClicm 0
204ICL/cm
204ddCL/
204ff1CL
204§f2CL
219aClL/c
219gCL/c
219iCL/c
219nCL/c
219aaCl/f
219ccCL/
219eeCl/
219UCL/
307eClic
307cCl/c
307sCl/c
307nCL/c
307ccCL/
307vCL/c
307kkCL/
307fCL/
317iCL/c
317gClLJc
317pCl/c
317rCL/C
317zCL/¢c
317bbCL/
317icL/
317HCL/
804sgCL/cm
804sfCL/icm
804fgCLl/cm
804ffCL/Icm
1005jCL/cm
1005bCL/cm
1108s3CLJ/cm
1108f10CL/cm
1129s6CL/cm
1129f9CL/cm
1219s3CL/cm
1249f10CL/cm
105f1CL/cm
105f5CL/cm
105s3CL/cm
105s7CL/Icm
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date Cosmarium 2  Borzia __ Cocconeis placentula Gloeotilopsis
204rClicm 0 0
204i1ClL/em 0
204ddCL/ 0
204ff1CL 0
20452CL 0
219aCl/c 0
219gCL/c 0
218ICL/c 0
219nCL/c 0
219aaCL/ 0
219¢ceCL/ 0
21%eeCLl/ 0
219MICL/ 0
307eCl/c 0
307cCl/e 0
307sCL/c 0
307nClL/c 0
307ceCl/ 0
307vClic 0
307kkCL/ 0
307HCL/ 0
317iCL/fc 0
317gCl/c 0
317pCLl/c 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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317rCL/c
317zCL/c
317bbCL/
317iCL/
31THCL/
804sgClL/em
B804sfCL/icm
804fgCL/cm
804ffCL/cm
1005{CL/cm
1005bCL/cm
1108s3CL/cm
1108f10CL/cm
1129s6CL/cm
1128f8CL/cm
1219s3CL/cm
1219f10CL/cm
105f1CL/em
105f6CL/ecm
105s3CL/cm
105s7CL/cm
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date Nitzschia gracilis _Nitzschia _Epithemia sorex Acnanthes lanceclata
204rClicm 0 0 ‘ 0
204IClL/em 0
204d¢dCL/ 0
2041CL 0
204ff2CL 0
219aCl/c 0
219gClL/c 0
219ICL/c 0
219nCl/c 0
218aaCl/ 0
219¢ccCL/ Q
219eeClL/ 0
2191ICL! 0
307eCl/c 0
307cClic 0
307sClL/c 0
0
0
0
0
0
0
0
0
0
0
0
0]
0
0

307nCl/c

307ccCL/

307vCl/c

307kkCL/

307HCL/

317iCLlc

317gCL/c

317pClic

317rCl/c

317zCL/c

5 317bbCL/

317iCL/

317fHCLS

804sgClicm

804sfCL/cm ‘ 10

804fgCl./em Q
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

9

OOOOOOOOOOOOOOOOOOOOOOOQOOQOOOOOO

BO4ffCL/cm

1005jCL/em

1005bCL/cm 420

1108s3CL/em 0

1108f10CL/cm 0

1129s6C1L/cm 0

1129faCl/icm 0

1219s3CL/icm 0

1219f10CL/cm 0
0
0
0
0

0
0
0
0
8

.

OO0 O0O0QOCH
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105f1CL/icm
105§5CL/em
10583CL/cm
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105s7CL/cm 0
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0
0
0
0
0
0
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date Peroniella  Cymbella affinis __ Lyngbya 5  Diatomna hiemale

204rCl/cm 0 0 0 0
204IClL/em 0 0 0 0
204ddCL/ 0 0 0 0
204ff1CL 0 0 0 0
2041f2CL 0 0 0 0
218aCl/c 2715 0 0 0
219gCLf¢c Q 0 0 0
219ICL/c 0 0 0 0
219nCLfc 3601 0 0 Q
219aaClL/ 10493 0 0 0
218ccCL/ 0 0 0 0
218eeCL/ 0 G 0 0
218HCL/ 0 0 8784 0
307eCL/c 0 0 0 0
307cCL/c 0 0 0 0
307sClLic 1339 0 0 0
307nClL/c 25326 0 0 0
307ccCL/ 0 0 0 0
207vCL/c 0 0 0 0
307kkCL/ 1407 0 0 0
307ffCL/ 0 0 0 0
317iCLfic 0 0 0 0
317gCL/c 0 0 0 0
317pCl/c 0 0 0 0
317rCLic 33690 0 0 0
317zCl./c 0 0 0 0
317bbCL/ 8418 0 0 0
317iCL/ 7313 0 0 0
317§CL/ 0 0 0 0
804sgCL/cm 0 0 0 0
804sfCLicm 137 0 0 0
804fgCLicm 14925 0 0 0
804ffCLicm 0 0 0 0
1005jCL/cm 0 0 0 0
1005bCL/iem 0 0 0 0
1108s3CL/icm 39489 0 0 0
1108f10CL/em 16901 0 0 0
1129s6CL/cm 0 0 0 0
1129f3CL/cm 9930 0 0 0
1219s3CL/cm 7138 0 6968 )
1219f10CL/cm 1115 0 0 0
105f1CL/em 2514 314 0 0
105f5CL/em 1746 0 0 0
105s3CL/cm 4838 0 0 0
10557CL/cm 9190 o 0 0
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date Chroococcidiopsis__ Nitzschia linearis __ Cosmarium 1 Oscillatoria 2

204rClicm 0 0 0 0
204ICL/cm 0
204ddCL/ 0
204ff1CL 0
204ff2CL 0
218aCl/c 0
219gCl/c 0
219iCL/c 0
219nCl/c 0
219aaCL/ 0
219ccCL/ 0
21%eeCL/ 0
219lCL/ 0
307eCl/c 0
307c¢CL/c 0
307sCl/c 0
307nClL/c O
307ccCL/ 0
307vCLic 0
307kkCL/ 0
307ffCL/ 0
347iCllc Q0
317gClic 0
317pClic 0
317rCl/c 15958
317zCL/c 0
317bbCL/ 0
317iCL/ 0
317ffCL/ 0
804sgClL/cm 0
804sfCl/cm 0
804fgCLl/cm 0
804ffCL/icm 0
1005jCl/icm 0
1005bCL/icm 0
1108s3CLfem 0
0
0
0
0
0
0
0
0
D
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1108f10CL/cm
1428s6CL/cm
1129f9CL/em
1219s3CL/cm
1219f10CL/cm
105f1CL/icm
105f5CL/em
10583CL/ecm
105s7CL/Icm
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date Plectonema 1 Gleocapsa _Plectonema 2 Navicula cari
204rClicm 0 0
2041CL/em 0
204ddCL/ 0
204ff1CL 0
204ff2CL 0
219aCljc 0
0
0
0
0
0

0
0
0
0
0
219gCL/c 0
219ICL/c 0
219nCL/c 0
219aaCL/ 0
219ccCL/ 0
219eeCLl/ 0
2191CL/ 63244 10541

0
2
307eClic 0
0
0

[e)]
I
N
w

5

0
307cCLic 0
307sClLic
307nCLic 0
307ccCl/ 0
307vCl/c 0
307kkCL/ 0
307ffCL/ 0
317iCL/ic 0
317gCL/c 0
317pCl/c 0
317rClL/c 0
317zCL/c 0
317bbCL/ 0
317iCL 0
317fCL/ 0
804sgCl/em 0
804sfCL/icm 0
804fgClL/cm 0
804ffCL/icm 0
1005jCL/icm 0
1005bCL/em 0
1108s3CLicm 0
1108f10CL/cm 0
1129s6CL/cm 0
1128fgCl/cm 0
1219s3CL/cm 0
1219f10CL/cm 0
105f1CL/cm 0
105f5CL/Iem 0
105s3CLIcm 0
105s7CL/em 0
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date Cylindrocystis brebissonni__Closterium leibleinii
204rCLicm 0
204i1CL/cm
204ddCL/
204ff1CL
20452CL
218aClfc
219gCljc
219ICL/c
218nCLic
219aaCL/
219ccCL/
219%eeCL/
219CL/
307eCl/c
307c¢Cl/c
307sCL/c
307nCLic
307ccCL/
307vClL/c
307kkCL/
307ffCL/
317iCL/c
317gCL/c
317pCL/c
317rCL/c
317zCL/c
317bbCLf
317HCL/
317ffCL/
804sgCl/cm
804sfCL/cm
804fgCLicm
804fCLIcm
1006iCL/cm
1005bCL/icm
1108s3CL/cm
1108f10CL/icm
1129s6CL/cm
1429f9Cl/cm
1219s3ClL/em
1219f10CL/cm
105f1CL/em
105f5CL/cm
10583CL/cm
10587CL/cm
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