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Multivariate analyses of visible/near infrared (VIS/NIR)
absorbance spectra reveal underlying spectral differences
among dried, ground conifer needle samples from
different growth environments
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Summary

» Absorbance of vistbie and near infrared (400-2500 nm) radiation by plant
malerial is determined primarily by biochemical and structural components. We used
three multivariate techniques to explore the spectral differences among dried,
ground foliage samples of lwo conifer species from different montane growth envir-
onments (three elevations and two crown positions on three different mountains).

= Principal components analysis indicated underlying spectral patterns strongly
related to species and crown position, and the detived components were correlated
with the chemical compaosition of the samples. Diseriminant analysis showed that it
was possible to perfectly separate samples by species, but much more difficuit to
discriminate among different elevations, using just the spectral infermation. Samples
from low and high elevation were weli-separated, but mid elevation samples were
frequently misclassified.

o Partial least squares regression produced results that were superior to those of
discriminant analysis, in that ail groups were belter separaled and there was fess
within-group variability.

o These approaches do not directly reveal the hiochemical basis of the spectral
differences. However, such methods provide a solid foundation for hypothesizing the
overalt degree of biochemical simitarity among diverse samples. Thus, samples from
different growth elevations appeared to be biochermically more simitar than samples
from different species or crown positions. Other potential applications are discussed.
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first step in photosynthesis, wheteas other compeounds (e.g.

Introduction starch, protein, and carbohydrazes) ate characeerized by NIR

For plany loliage, visible (V1S, 400-750 nm wavelengths)
and near infrared (NIR, 750-2500 nm} absorbance for,
conversely, reflectance) speetra are the product of complex
parzerns of scactering and absorprion by numerous strucrural
and biochemical components. Pigments (e.g. chlorophylis
and carotenoids) directly absorb visible light energy as the
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absorption signatures which are 2 consequence of suretching
and vibation by the C-H, N-H and O-H groups of which
they are composed. Interpretation of absorbance spectra is
difficule ac best, because aldhough the specrral characeeriseics
of the differenz compounds are unique, they are also broad
and thus frequendy overlap (Curran, 1989). However, the
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information content of a samples VIS/NIR spectrum is very
high, because it provides a concise but very rich summary of
the overall blochemical composidon (Foley e, 1998).

There are a vast number of simple speceral indices thas have
been developed as indicators of foliar chiorophyll content,
and quire often these work remarkably well, even on intact
leaves (Richardson et ar, 2002). For other compounds,
spectroscopic methods have been used in conjunction with
extensive laboratory-based chemical analysis 1o calibrate
empirical models for predicting the composition of a given
sumple (Curran, 1989). Although these methods were first
devefoped by food chemiszs and agriculnerises (Willlams &
MNorris, 20013, they have also been used w a miore modest
degree by ecosystem ecologises and plant ecologists. Ecological
applications include the determination of fiber constituents
(Wessman et i, 1988; Lacaze & Joffre, 1994; Bolster e at,
1996}, other biochemical cornpounds (Card ef 41, 1988), and
nurnent states {Hallewe ez 2e, 1997; Gillon eran, 1999} A
recent study by Gillon er a4 (19991} used simitar methods w
quantfy a functional attribute {the Ltter decomposition rare
constant £) on the basis of NIR spectral characterstics of a
diverse array of lizter types. However, despite the growing
interest in using remote sensing to integrate from the leaf-level
te ecosystem level {Gamon & Qiu, 1999), specrral analysis has
really not yer received widespread acceptance by ecologists.

One reason for this may be that even after more than two
decades of sesearch, we are still at the stage where we cannot
yet make a quantiative, or even qualitative, translation from
the raw spectral pattern direcily to the overall chemical
composition without first calibrating some sort of empirical
model. Therefore, we really don't yet know how to ‘read’ these
spectra (Curran, 1989 Reeves, 1995). However, given the wide
range of biochemical components that have been successfully
predicted with NIR spectroscopy, it is clear thar NIR spectra
could potentially provide as much information about the
chemical compasition of a sample as if we were to perform a
complete set of classical chemical analyses. This provides the
foundation (und motivation) for the present work,

Here, we are operating under the assumption that there
is a direar connection berween the spectral pattern and the
biochemical composition of a sample, and thus samples thar
differ in werms of biochemistry also have different VIS/NIR
absotbance characteristics. Qur hypothesis is that this specrral
partern is a signarure that can be interpreted and used as a
succinct, but quantitative, description of the chemical make-
up- Bven without conducting rraditonad chemical analyses, it
should therefare be possible to determine the degree to which
sarmiples are biochemically similar or dis-similar on the basis of
their spectral similarity (Gillon ez i, 199%2). In this regard,
we imust take a holistic vigw, and focus on the entire spectrum,
rather than individual wavelengths. To this end, we use a variety
of multivariate rechniques (principal compenents analysis
(PCA), discriminant analysis (DA}, and partial least squares
(PLS) regression -~ cluster analysis is omitted because it did
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not provide any significant insights) as tools with which we
cats begin o investigare and evaluate the overall specrral
similarity of a ser of samples. The research is framed in an
ecophysiological conrexr, in that samples from two conifer
species, across a range of different growth environments (rwo
crown positions and three growth elevations on three different
mountains) are compared.

Methods

Overview of multivariate approaches

PCA is a dara reduction technique whereby new compuosite
variables (or components) are constructed as Hinear combina-
tions of the original independent variables; usually, the first
few components capture or explain most of the variation in
the entire original daia ser (MceGarigal erar, 2000). With
PCA, there is o attempt to describe relationships bevween
the independent variables and any dependent variable.
Thus the resulting ordination is unconstrained, 1 thar PCA
emphasizes the vaviaton across all samples rather than
minimizing the variaton among similar samples (or those
belonging to the same group). As a consequence, no artificil
structure is imposed an the components. In previous swudies,
PCA has been used o differentiate the spectra of three
categories of pine needles {fresh, falling, and liver; Gillon
et at., 1999a), and to compare the spectral characteristics of
forages from different provenances of Glfricidia (Lister
er at, 2000). We use PCA 1o assess whether there are nataral,
underlying spectral differences between species or among
samples from different growth environments.

DA is another dasa reduction rechnique in which composite
variables {or canonical functions) are derived as linear combi-
nations of the criginal independent variables (McGarigal
et at, 20003, We based our [A on the components derived by
PCA (Nilsson e at, 1994; Kemsley ez ar., 1995), rather than
individual wavelengths, in order to reduce the likelihood of
over-fitting the data, and wo avoid the problems known o be
associated with stepwise selection of individual wavelengths
(Grossman et ai., 1996). The objective of DA is o establish
relationships between a dependent grouping variable and
the original independent discriminating variables. By contrast
to PCAS maximization of variation across all samples, DA
effectively minimizes the varation among samples from. the
same group, and maximizes the variation berween samples
from different groups. Previous applications of DA have
inciuded classifying plant material from closely related species
or subspecies on the basis of spectral properties {Kemsley
et at, 1995; Atkinson ef an, 1997},

PLS regression is 4 technigue whereby facrors {similar to
those in PCA) are derived by taking into account the variation
in the spectral data that is relevant for explaining variation. in
the characteristics of interest in the otiginal samples (Williams
& Norris, 2003}, PLS is one of the standard methods used o
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develop calibration equations to predict the chemical com-
position of a sample from NIR specrra (Bolster ez ae, 1996;
Reeves & Van Kessel, 7000; Reeves, 2001). Here, instead of
chemical dara, we use PLS to try o predicr to which group
{species, crown position, mounrain or elevation) pasticular
sample belongs (which is perhaps a more complex question
than predicing the concentration of a single chemical). As
with DA, knowledge of the sample qualities (i.e. group mem-
bership} is used w derive an empirical, predictive maodel, and
so both PLS and DA are more directed than PCA. However,
with this tasgeted approach, we may be able to uncover more
subtle spectzal differences than would be revealed by PCA.
There are several assumptions underlying each of the above
procedures, and when these assumprions are not mer, the
resuits mugt be interpreted with care, and it must be kept in
mind that stadsteal inference is likely invalid (Williams,
1983}, Because the spectral dara we use in this paper may
not meet some of the most basic assumptions (in particular,
multivariate normality}, we use these multivariate techniques
for exploratory data analysis, rather than stavistical testing

{(Williams, 1983},

Study sites and sample collection

Study sites were located on three mountains in the north-
eastern United States, Whiteface Mr. (Adirondack Mountains,
New Yorlg, Mt. Mansfield (Green Mountains, Vermont), and
Mt Moosilauke (White Mountains, New Hampshire), Sites
and sampiing methodology are described in greater detail by
Richardsen (2003), bur a brief overview will be given here.
Foliage samples were collected from red spruce (Picea rubens
Sarg.) and balsam fir (Abies babiamea [L.] MilL) trees at three
different elevations on each mountain: near the botrom edge
of the spruce-fir forest; at the wree line {or transition from forest
ro hruninfolz); and within the highest patches of Erummiholz.
These are denoted henceforth as low, mid, and high elevation,
respeciively; there was typically 300 m elevation between low
and mid sites, and 100 m between mid and high sites. Two
transects were run on cach mountain (thus a total of six plots
per mountain}. At each plor, foliage was taken from two
crown positions on each tree. These represented ‘sun leaves’
and ‘shade leaves.” Three trees of each species were sampled
per plot, bur like samples {e.g the three red spruce sun
samples) ar each plot were pooled. This sampling scheme
vielded a total of 72 samples (2 species X 2 crown positions
%3 elevadons X 3 mountains X 2 transects per mountain =
723 Sampling was conducted on Mo Mousilauke in early
July, Whiretace Me in Jate July—ewly August, and Me
Mansfield in fate Auguse. Oaly fully mature needles from
the previous year's growing season were collected, Chemical
analyses of these samples {Richardson, 2003, in press)
demonstrated that there were strong differences in purient
concentrations hoth berween species and crown positions, but
not among elevations, whereas fiber concentrations differed
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most between species, somewhat wnong elevations, and
lirtle (except for cellulase) berween crown positions. Pigment
content differed between species, and changed rapidly with
elevation for sun needles but not shade needles,

Sample preparation and analysis

Because water within leaf tissues has swong absorption bands
in the NIR thar overlap with (and even mask) those of
important biochemical components {(Lacaze & Joffre, 1994;
Foley er ar., 1998), and because cellular structure and surface
waxes can have a strong effect on reflectance from intact
leaves, needle samples were first oven dried at 70°C (Wessman
etal., 1988) and then ground w a fine powder iv a coffee
grinder in order ro minimize these effects. Samples were held
in a rotating sample cup and scanned a2t VIS and NIR wave-
lengths (400-2498 nm} using a scanning monochromator
(Model 6500, FOSS-NIR Systems, Silver Spring, MD, USA)
equipped with 8i (4001098 am) and PbS {1100-2498 nim)
detectors, Pseudo-absorbance spectra were collected as log(1/
R} where R = reflectance. Data were collected every 2 nm
(1050 dara points) at 2 nominal bandwidth of 10 nm, but
only every Afth data point {210 data poinws) was used for
this analysis.

Specrra were processed {e.g. standard normal variate rans-
formation and derrending (Barnes et 4, 1989), as well as first
and second derivatives using a gap width of 8 dara points)
with GRAMS/386 PLSPlus software (Galactic Industries
Corp., Salem, NH, USA). Both parricle size distribution
{which may be irregular, depending on the type of grinder
used) and density of sample packing are known to have effecrs
on the spectral properties {e.g. scattering and baseline shift) of
a sample (Foley er ar, 1998; Willlams & Norris, 2001), bur
the effects of these and other artifacss are significantly reduced
by these transformations (Wessman er ax, 1988), which can
also enhance small but critical differences among otherwise
similar specrra {Reeves, 1993), For example, the first deriva-
tive transformation removes confounding offset variations,
whereas the second derivative transformation removes con-
founding lineas trends, and both reveal small differences in
shape among spectra {Williams & Norris, 2001).

Statistical analysis was conducted using SAS 6.12 (SAS
[nstitute, Cary, NC, USA), except for PLS regressions which
were conducted 1n GRAMS/386.

Results and Discussion

Absorbance spectra

Although there was some variation among samples, especially
in the level of each curve, all absorbance spectra had generally
the same shape (Fig. 1), with a spectral pattern similar to that
previously shown for other species {e.g. red oak and white pine;
Hallerr ez a1, 1997). In other words, prominent absorbance
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Fig. 1 Visible/near infrared (VIS/NIR) absorbance spactra for dried
and ground coniter foliage from balsam fir (Abies bafsamea) and red
spruce (Picea rubens). Spectra represent the mean (n = 18) for cach
of four species % crown position combinations.

peaks and troughs tended to occur ar the same characreristic
waveiengths across all samples. Absorbance was highest in
the VIS, bur tended w0 increase with increasing wavelength
throughout the NIR. In the NIR, sun needle absorbance of
both species was higher than thar for shade needles. This
contrasts with our previous observation that the VIS
reflectance of fresh, intact sun needles (both species) is higher
than that of shade needles (Richardson, 2003).

Principal components analysis (PCA) of
absorbance spectra

PCA was conducted on a variety of different spectral sers, but
we report the anadysis for only four of these, as they provided
the most meaningful resuirs: the raw absorbance spectra, with
no further transformation (Raw STEY, the wansformed raw
absorbance spectra, processed with both mulriplicative scatter
and standard normal variate correction, as well as detrending
{Raw TRANY; the first derivative spectza, with no further
rransformation (L STK); and the second dedivasive spectra,
with no further rransformation (2rd STK). These same four
spectral sets were used for all subsequent analyses.

Visual analysis of the cigenvalue scree plots (MoGarigal
et at, 2000} indicated thar the first three principal compo-
nents were able to account for almost all of the total variance
{(97%, Fig. 2) of the Raw STE specura. By contrast, for Raw.
TRAN, the first three components accounted for only 90% of
the toral variance. For both the 752 STK and 2nd STF spectra,
the first three components accounted for less than three-
guarters of the total variance, and even the eighth component
was still making a modest contribution (= 290) 10 the wral
variance (Fig. 2}. Thus, more components were required 1o
adequarely summarize the Isr STE and 2nd STE spectra,
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Fig. 2 Cumulative spectral vasiarice explained by the first » principal
componants derived from analysis of four different sets of spectral
data (visible/near infrared (VIS/NIR) absorbance of dried, ground
conifer foliage).

compared to ejther the Raw STE or Raw TRAN specrra. Two
interpretations of this are possible: it could simply indicate
that there is more noise in the derivatized spectra, buz it may
also reflect thar the derivatized spectra actually contin more
information than the raw specira, since the dertvatized spectra
more precisely capture or describe subtle differences in
spectsal shape.

Undetlying spectral patterns revealed by PCA

Fig. 3 shows that PCA revealed broad patterns in the spectra
that indicate an underlying structure related 1o species and
crown position. For example, for the Raw STK spectra, the
two crown positions were roughly separated along the Prin 1
axis (J.e. shade, Prin { < 0; sun, Prin 1 > 0). For Raw TRAN,
the crown positions were well separated along Prin [, and
species was well separated along Prin 2 (red spruce, Prin
2 < 0; balsamn fir, Prin 2 > 0} For the derivatized data, 2ra
STE perfecty separated species along Prin 1, and roughly
separated crown positions along Prin 2. These patterns can
be wraced back to varation in the original spectra: by looking
ar plots of the factor loadings (Fig. 4}, it is possible to identify
those spectral regions which contributed most 1o each
principal component score, For the Raw STE specera, Prin 1
represented the overall NIR absorbance of the sample, as all
wavelengths > 750 nm were weighted sirongly, whereas for
the Raw TRAN specira, Prin 1 represented a contrast of
different spectral regions: $90-710 nm and 1490-2070 nm
both had strong {absclute value of 0.6 or greater} negative
weightings, whereas 750--1330 nm and 22702500 nm both
had strong positive weightings, For the derivatized spectra, the
factor patterns indicated 2 much more elaborate, osciliatory,
component structure, with very <learly defined peaks.
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Correlations between the component scores and the bio-
chemical composition help to identify the chemical consting-
ents (nutrients, fibers, and pigments; data from Richardson
{2003)) underlying the spectral differences. Note thar any
number of additional compounds, for which we did not
analyze (not only starches and sugars, but also secondary
metabolites; Foley er ai, 1998), may further contribute ro the
observed spectral variability, For example, for che 2ud ST
spectra, Prin 1 owas very surongly negatively correlated with
foliar N {r = ~0.92; P£ 0.001) and chlorophyll {r = ~0.56,
< 0.001), but positively correlated with hemicetlulose and
cellulose (v = 0.66 and » = 0.77, respectively; both P< 0.001).
As described above, Prin 1 for 2nd STE separated the samples
into wwo distinet species groups. Relating this back to the
chemistry data, it was previously shown that balsam fir foliage
had higher N and chlorophyll, but lower hemicellulose and
cellulose, than red spruce (Richardson, 2003). These correla-
tions demonstrate the fundamenial connection between the
speceral data and the sample tissue chemistry, However, they
do not really provide a means for directly estimaing tissue
chemistry on the basis of the derived components.

Mixed-model analysis (see Richardson (2003) for details
of model structure and specification) indicared that, in addi-
rion to species and crown pasition, the derived principal
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components (even beyond just the first cwo components) could
also be related to ether experimental facrors, such as elevation
and mountain (Tabie 1). For example, for 2nd STE, Prin 2
varied significantly amoug elevations (F, = 14.2, P<
0.01): samples from low, mid, and high elevation had Prin
2 neansof 3.3 £ 0.9, 0.9 £ 0.9, and —4.0 4 0.9, respectively.
Simifarly, for Raw TRAN, Prin 2 varied significantly among
mountaing (["2.10 = 13.8; P<0.01): samples from Mansfeld,
Moosilauke and Whiteface had Prin 2 means of 4.4 + 1.0,
~1.5% 1.0, and ~2.8 % 1.0, respectively.

These results clearly demonstrate that PCA, on the basis
of absorbance spectra, ordinared the samples into nawurally
occurring {and. in some cases, quite distiner) groups, These
groups, which might be considered ‘specrral families’ (Gitlon
e as, 1999a), were strongly related to species and crown
position, and more weakly related to ¢levation and mountain,
In a similar vein, Milsson ez a0 (1994) demonstrated that
PCA of NIR spectra scparated Sifene dioica stems from rosetre
leaves along Prin 1, and, 10 a lesser degree, smut-infected
tissue from uninfected tssue along Prin 2. Even without
identifying the biochemical source of differences among
samples, PCA pevertheless derives components that corrclare
with the overall characteristics of the samples in question.
These components have a descriptive value (in that they
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Fig. 4 Factor loading for the first three
principai components for four different sets of
spectral data (visible/near infrarcd (VIS/NIR)
absorbance of dried, ground conifer foliage).
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summarize the specual information) bur perhaps also a
functional significance, in that the derived componens are,
in effect, measured quantities which can be shown w differ
among ccophysiologically distinet samples.

Discriminant analysis (DA)

PCA differs from both XA and P18 in thar with PCA, under-
lying patterns can be revealed without any a prion nowledge
of the sample characteristics. By contrast, for DA and PLS,
analysis is conducted in relation to & dependent variable,
which for DA must be a grouping variable, but for PLS could
also be a continuous variable. The patential applications of
these methods therefore differ. Both DA and PLS could be
used to predict group membership of an unknown sample,
bus only once a suitable data ser had been assembled and used
to calibrate the predictive madel,

For this study, DA was conducred on the different group-
ings (as defined by species, crown, elevation and mounzain)

1600 1800 2200 2500

mulliplicative scatier correclion, standard
normal variate iransiormation and detrending
{Raw TRANY; (¢} first derivabive of
untransformed spectra (st 5TRY; (d) second
derivative of untransformed spectra

(2nd STR).

using the principal components derived above for the four
speceral sers us independent variables. The first few comnponents
were not necessarily those that were of the greatest use in dis-
criminating among groups (e.g., recalf that for 2ud STE, there
was separation of crown positions along Prin 2 but not Prin
1, see Table 1 and Fig. 3), and so we used a srepwise procedure,
whereby ar each step, the variable (i.e. component} which
contributed most to the discriminatery power of the model
was added ta the model. The procedure was continued uuntil
a specified number of steps had been taken. To prevent aver-
ficting, no more than eight variables were used in any single
discriminating model, and we limited ousselves o selecting
from the first 12 components of each spectral set, which together
accounted for between 99.9% (Rare STK) and 95% {2nd STE}
of the total variance (Fig. 2). Results of the stepwise analysis
wege then compared with those arrived at by using a discrim-
inating model based on just the fiest four principal components.

The effectiveness of each discriminasing model was judged
using two criteria: the average squared canonical correlation

www.newphytologist.org  © MNew Phyofsgis (2005} [61: 291301
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Table 1 P-vaiues fror statisticat analysis of

principal components derived from foursets  Component Prin 1 Prin2 Prin 3 Prind Prin § Frin &

of specirat dala visible/near infrared (VIS/ :

NIR} absorbance of dried, ground conifer Raw STR (erginal, untransformed spectra)

foliage) in relation to experimental factors Spedies s0.01 0.62 0.0 =0.01 0.32 0.04
Crown pos. < 0.01 £0.01 061 C.11 c.22 0.53
Elevation 0.02 0.26 0.03 0.0 0.22 018
Mountain 2 0.09 % 0.01 Q.51 0.25 Q.08 0.08
Raw TRAN (original spectra transforrned with MSIC, SNV and detrending)
Spedcies <0.01 <0.01 0.04 <0.01 ¢.06 =0.01
Crown pos. % 0.01 0.35 0.2¢ £0.04 <0.01 0.07
Elevation 0.01 0.14 0.1 .12 =0.01 0.84
Mountain 0.03 0.0 0.76 0.04 Q.07 =001
15t STR (first derivative of original spectra)
Species % 0.04 0338 0.94 0.03 061 0.76
Crown pos. 0.71 % 0.01 < 0.01 Q.25 0.13 0.42
Elevation 0.04 £ 0.01 0.35 0.17 % 0.01 0.20
Mountain 5004 0.01 0.03 0.09 £0.01 % 0.01
2rrd STR {second derivative of original spectra)
Species 50.01 0.32 0.04 0.09 0.68 .38
Crown pos. 0.06 £0.01 <0.01 <00 0.13 0.01
Elevation 0.05 £0.01 0.10 0.37 £0.01 0.98
fMountain = 0.01 0.1 <0.0% 016 0.0 0.06

The split-split- plot experimental design is described in text. Two species {red spruce (Picea
rubens) and balsarn fir (Abies balsarmea)), two crown positions (sun foliage and shade foliage),
three elevations (fow, mid and high), and three mountains (Whiteface Mt,, NY, Mt. Mansfield,
VT, and Mt Moosilauke, NH, USA), Factors significant at £ < 0.05 are shown in bold.

(ASCC), which approaches 1 if the different groups are well
separated (and 0 i the groups are not well separated), and
the classification error rate (CER), as measured by a onc-our
cross-validation procedure (Foley et ar, 1998) whereby cach
sample was classified according to a model developed using
all the other samples. This jackknife resampling procedure is
considered a usefi] means of assessing the stability of the clas-
sification funcrions when the sample size is small (McGarigal
et as, 2000), as is the case here,

All four spectral sets did a good job of differentiating
between the red spruce and balsam fir samples, even when
only Prin 1-Prin 4 were used (all ASCC 2 0.8, CER £ 1%,
Table 2). For the Isr STR and 2nd STE spectra, the first com-
pouent was the most important variable for discriminaring
between species, and indeed, near-perfect separation of
species could have been obrained using only Prin ¥ for these
two spectral sets {see Fig. 3}, By contrase, for Raw STE, Prin
3 was the most important and for Raw TRAN, it was Prin 2.

When cight variables were included in the stepwise model,
each spectral set could be used wo abtain good separation of
sun needles from shade needies (2l ASCC 2 0.8, CER < 5%:
Table 2}, However, with only four variables included, the
SITOT rates rose somewhar, especially when the four variables
were restricted 1o just Prin 1 through Prin 4 {CERs of 10%
for three our of four spectral sets, Table 2.

The 2nd STE results ilustrate the relarive ease with which
different species and crown positions could be discriminated
{Figs 3 and 5). In comparison, it was much more difficulr o
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discriminate among samples from different elevations, even
with eight variables included. Error rates of mose than 30%
were the general rule, and those of 40% or greater were not
uncommon {Table 2}. Accornpanying the high CERs were
congistently kew ASCCs (£ 0.4). While there was no problem
in separating high and low elevation samples, there was con-
siderable overlap of low and mid samples, and mid and high
samples (Fig. 3}, For example, for the 2nd STK spectra, in the
cross-validation test, only one sample from high elevation was
classified as low elevation, and only one low elevation sam ple
was classified as high elevation. However, eight mid elevation
samples were misclassified as Jow elevation sarmples, and four
mid elevation samples were misclassified s high elevation
samples. This is likely due to the facr that the midelevarion
samples were from sites that were spatially intermediate
berween the low and high elevation sites. The failure of DA
w successfully differentiate among samples from different
elevarions is probably related o the biochemical simitarity
of foliage from different elevations but of the same species.
The ability w discriminase among samples from different
mountains was similar to that for elevatons, suggesting that
site-specific differences in leaf chemnistry accounts for only a
small portion of the spectrai variability among samples.

Past efforts with DA have focused on differentiation among
samples from closely related species. For example, Gong
erai (1997) used diseriminant analysis of reflectance specrra
(320--930 nm) to differentiate among several conifer species;
reflecrance of VIS wavelengths, which is primarily determined
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Table 2 Results of discriminant analysis of

Best 8 Best4 Prie 14 principal components derived fram visible/
Orderof - near infrared (VIS/NIR) absorbance spectia
Spectral set component selection ASCC CER ASCC  CER ASCC CER (four different spectral sets) of dried, ground
conifer foliage in relation to sample
Raw STR (original, untransformed spectra) characteristics
Species 3.4,1,7,6,958 0.54 0% 044 0% 0.84 1%
Crowi pos. 1.2,83,10,4,7,9 .86 4% 080 3% 080 6%
Elevation 4.8, 6,3,10,1, 2,12 0.35 43% 025 4% 025 52%
Mouittain 2,10,7,6,8,2, 1,5 .65 5% 044 25% 023 409%
Réw TRAN (original spectra transformed with MSC, SNV and detrending)
Species 2.4,6,3,510, 1,12 0.97 0% 082 0%  0.82 1%
Crownpos.  1,5,10,4,6,11,9,7 0.87 1% 077 6% 076 10%
Elevation 5,3,1,12,49,10,2, 11 041 37% 032 35% 032 48%
Muountain 6,2,7,12,10,4,11,5 0&7 19% 045 28% ©22 41%
Tst STR (first derivative of original spectra)
Species 1,4, 7, 2,8, 12,6, 10 .98 0% 097 0% 087 0%
Crownpos.  3,2,7,8/92,12,5, 6 0.82 4%  0.74 7% 074 10%
tlevation 2,5,4,9,610,8,3 Q.40 38% 634 35% 033 46%
Maourtain 5,7,2.9,4,6 11,1 0.66 9% 042 2H% 022 35%
2nd §TR (second dervative of original spectra)
Species 1,4,3,6,5,7,10,2 0.98 0% 097 0% 097 0%
Sun/shade 2,3,9,6,4,8,7,.12 0.84 1% 075 8% 0.69 10%
Elevation 2.5,7,9,3,10,4, 11 0.41 38% 033 38% 031 49%
Mountain 3.7,5,6,9 11,4, 2 0.75 8% 0.56 24% 031 32%

A stepwise routine was used to identify, in order, the principal components (selected from the
first 12} which contributed most to the discriminating power of the model ('Best 8" and ‘Best
4" columns). These results are compared with a model based strictly on the first four principal
components (‘Prin 14" column}. ASCC is the average squared canonical correlation, CER is
the classification error rate based on a one-out cross validation procedure.

by pigment conzent, was found to be of more use than that of
NIR. This may be due to the fact that the limited porrion of
the NIR spectrum used by those authors contains liede or no
biochemical informartion. Atkinson o 2. (1997) were able to
successfully distinguish berween two Betula species and their
hybrids using discriminant analysis of VIS/NIR reflectance
spectia, but wavelengths of less than 900 nm generally had
low discriminating power. These authors found thar models
with 22 individusl wavelengths had more discriminatory
power than those based on principal component scores.
Finally, Kemsley er an {1995} found that mid infrared reflectance
could be used to distinguish between Coffea canephora var.
rebustaand the more highly valued C arabica. What differen-
tiates the present study is thar these resuits demonstrate that
there ate sample characteristics, which might be considered to
be more subtle than species (such as crown position or growth

elevation], to which DA can be successfully applied using
specural data. Clearly, there are numerous practical applica-
tions for this type of analysis. For example, this approach
could potentially be used for the rapid differentiation besween
an exotic invasive population and native populations of the
same species (cf. Lister ef az, 2000}, which would be possible
if the populations differed in their tissue chemistry. Ultimately,
remote sensing could then be used for management purposes
te map and monirer the extent or spread of the invasive
populations.

Partiai least squares (PLS) regression

For PLS, which is normally applied to continuous data, group
membership was coded numerically, for example, shade (=1)
vs sun (+1) foliage, or low (=1) vs mid {(0) vs high {+1)
elevation. The number of PLS factors used in the calibration
was determined by the Prediciion Residual Error Sum of
Squares (PRESS) Fsratistic frorm the one-our cross-validation
procedure. Once the optimal number of factors was deter-
mined, a final calibration was developed using the resalis from
the one-out cross validation.

For the sake of simplicity, we report only the PLS results for
two spectral groups, Raw STR and 2nd STER. Results vsing the
derivatized dara were consistently superior vo those using
the raw spectra; not only were fewer factors required for the
derivatized data, but the resulring sseucture explained a higher
propartion of the variance in the grouping data (i.e. higher
R, see Table 3). This was especiaily true for elevation, for
which PLS on the 24 STE spectra (R = 0.88) worked much
better than the Raw ST Rspectra (R? = 0.79). Overall, however,
resulis were similar 1o, but in comparison superior, to those of
DA, This can be seen by comparing Figs 5 and 6, and the
ASCC and CER values in Table 2 with those in Table 3. For
all grouping variables, PLS did a bester job of both separating
groups, and minimizing the scatter within groups, compared
o [3A. However, as with DA, PLS did a better job predicting
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Fig. 5 Discriminant analyses based on visible/near infrared (VIS/NIR)
absorbance spectra of dried, pround conifer follage in relation to
sample characteristics. The x-axes are coded as follows: (a) Species,
red spruce (Piced rubens) = 1, balsam fir {Abies balsamea) = +1;
(b} crown position, shade foliage = -1, sun follage = +1;

(c) glevation, low = ~%, mid = 0, high = +1. The y-axes show the firs!
canonical discriminant axis for cach analysis,
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Fig. 8 Actual (x-axis) and predicted (v-axis) sample characteristics.

based on partial least squares (PLS) regression of visible/near infrared
(VIS/NIR} absorbance spectrz of dried, ground conifer foliage. Axes
are eoded as follows: (a) species, red spruce (Picea rubens) = —1,

baisam fir (Abies balsarnea) = +1; (b} crown pasition, shade foliage
=1, sun foliage = +1; {¢) elevation, low = ~1, mid = 0, high = +1.
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Table 3 Results of partial least squares (PLS}

Grouping varizble Specirum # Factors RIMSD R ASCC CER  egression of sample characteristics against
visible/near inirared (VIS/NIR) absorbance
Species Raw 5IR 10 0.122 0.985 0.99 0% spectra of diied, ground conifer foliage
2nd 5TR 7 0.082 ¢.993 0.9¢ 0%
Crowrn Pos. Raw STR 7 0.339 0.885 0.88 0%
2nd 5TR 6 0.292 0.915 0.91 0%
Elevation Raw STR 10 0.374 0.788 (.39 7Y%
2nd 5TR 7 0.281 0.881 0.44 7Y%
Modintain Raw STR 9 0.255 0.201 0.45 3%
2nd 5TR 5 0.237 0.915 0.45 4%

Sample characteristics were defined by grouping variables, which were coded numerically {for
example, shade (~1) vs sun (+1) foliage, ot low {-1) vs mid (0) vs high (+1) elevation). Results
are showrr for two sels of spectra, Raw STR (original, unlransformed spectra), and 2nd 5TR
(second derivative of the raw spectra), The 2nd STR spectra produced the best results of all four
speciral sels tested. RMSD (root mean squared deviation} and R? are calculated for predicted
values. Discriminant analysis-ty pe statistics (ASCC, average squared canonical correlation, and
CLER, the classification error rate based on a one-out cross-validation procedire) were
cornputed by running discriminant analysis on the pradicted values from PLS regression.

species (R = 0.99 for both spectral sets) than crown position
(R%= 0.9 for both spectral sets). Unlike DA, PLS was able to
differentiate berween elevations and berween mountaing
with a high degree of success (CER < 10% with the 2nd STE
spectra). The reason thar PLS petforms better than DA for
these analyses has to do with the way in which the variance of
the speciral ser is captured by the PCA factors vs the PLS
factors. With both methods, the Factors are linear combinations
of the independent variables. However, with PCA, the first
tactor explains the maximum amount of variance in the
original data, and the second factor, which is orthogonal o
the first, explains the maximum amount of the remaining
variance, and so on, These factors are not derived in relation
to a dependent variable, and so the components used for
differentdiscriminant analyses will always be identical {i.e. the
principai components), regardiess of the grouping variable
used. By contrast, PLS extracts the variance in the dara ser as
it correlates with the quantity of interest. Thus the PLS factors
depend entirely on the dependent variable used - for example,
different PLS factors ave derived for species and crown: position.

We did not attempr to associate specific biochemical
compouncds with the PLS factors (factor weights and loadings
are not shown here). However, the PLS results for mountain
and elevation support the results of the mixed model analysis
of the PCA components, namely thar although less pro-
nounced than the spectral differences among species or crown
position, there are detecrable spectral differences among
sarmples from different mountains or elevations.

In furure studies, PLS could be applied to develop a proxy
(based on the spectral measurements) for a sample character-
istic or trait which is difheuly, time consuming, or costly to
measure. This trait, which clearly need not be a continuous
variable, could then be measured on a subset of the samples,
a calibration equation developed, and the trait value predicred
for the remainder of the samples.

Conclusion

The results presented here suggest thatspectral {and thus pre-
sumably hiochemical) differences are largest among samples
from different species (i.e. spruce vs fir}, and smallest among
samples from different elevations or different mountains.
These results agreed with our laboratory analvsis of foliar
nutrients and fiber content.

Thus, these multivariate rechniques, in particular PCA, are
proposed as exploratory methods wellsuited to the holisne
{in that the entire speetrum s usilized, rather than individual
wavelengths) analysis of VIS/NIR data, Based on the dertved
principal components, generalizations can be made abour the
overall compositional similarity of different samples. Results
indicared that the components derived from PCA were corre-
fated not only with sample characteristics such as species and
growth environment, bus also witch the chemical composition
{nutrient, fiber and chlorophyll content) of the samples. DA
and PLS can be used similardy in an exploratory manner w
investigate whether groups of samples {(i.c. experimental
treatments} differ in terms of speciral properties (and hence
chemical composition). Unkike PCA, however, DA and PLS
can be further used to develop empirical models 10 actually
predicr sample characteristics. Although a set of known samples
is required to first calibrate 2 model, the vesults presented here
show that certain characteristics {such as species, crown
position, and growth elevation) can be predicied with reason-
able success on the basis of VIS/NIR absorbance,

What makes VIS/NIR spectral analysis a useful analytical
tool is that each specirum containg such a wealth of informa-
tion. There are many instances where it may be more important
to know whether there are biochemical differences among two
sets of samples than it is to know exactly what causes these
differences. This is where multivariate analyses of VIS/NIR
spectra could be most suitably applied. In comparison, with
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classical methods of chemical analysis, it is necessary not only
1w decide which analyses to perform, but also to consider
practical consrraints {e.g. time, money, and laborazory
resources) that typically lmie the number of analyses that can
be conducred. If samples differ in Hgnin, but are only analyzad
for chlorophyll and N, one might erroneously declare there to
be 'no treatment effect’ simply because the appropriate chemi-
cal analysis was not performed. With the sosts of multivariate
analysis performed here, this is much less likely to be the case.

Although multivasiate techniques applied in this manner
do nor provide any direct information about what chemnical
components actually cause the spectral differences, these
approaches may still be useful as rapid and jnexpensive
screening tools. For example, from the onginal set of organic
samples {foliage, leaf Jitter, seed mixrures, erc.}, a subset of
samples could be selecred for furcher analysis by identifying
those samples thar are spectrally either most similar or most
ditferent. O, if samples fror wwo different experimenral weat-
ments were found to be specrrally similay, one might choose
not 1o spend the time and money conducting laboratory
analyses 1o look for chemical differences which don’t exist.
Furthermore, with more research, we may be berrer able to
identify, based on spectral differences, the source of the chemi-
cal differences — from this, we could rarget the appropriate
vaditional analyses thar would be required to conclusively
document the chemical differences.
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