

2024 Forest **Ecosystem** Monitoring Cooperative Meeting

Brad Oberle boberle@nybg

New York
Botanical Garden

- 250 acre National Historic Landmark
- Bronx Park, Bronx, NY

Thain Family Forest (Hemlock Grove)

- Largest uncut old growth in NYC
- 50 acres / 20 ha
- Shallow, rocky, hydrophobic soils
- 1.5 miles active trails

Has 125 years of stress decimated the canopy?

Severe Weather (1876-2016)

- 9 nor'easters
- 9 tropical storms
- 10 tornados

Significant Pests/Pathogens

- Chestnut blight (1904)
- Dutch elm disease (1930s)
- Dogwood anthracnose (1978)
- Hemlock wooly adelgid (1985)
- Emerald ash borer (2009)
- Beech Leaf Disease (2023)

Little change in canopy tree size or density

Table I. Mean basal area (m^2h^{-1}), mean diameter (cm) and mean density (trees h^{-1}) from 1937 – 2021

(Nagele et al 2024 https://doi.org/10.1093/jofore/fvad057)

Year	Plots	Forest canopy structure (DBH ≥ 15 cm)							Forest-wide structure (DBH ≥ 2.54 cm)					
		Trees	Basal	area (se	e) DB	H (se)	Densit	:y (se)	Γrees	Basal area (s	se)	DBH (se)	Densit	y (se)
1937	113			(2.08)a				3 (12.91) ^a						
1985	113	252	\overline{A} r	e 5	nva	asiv	7 e 3t	rees	ta	king	\overline{O}		789.38	(44.24)a
2002	113			(1.76)a				7 (12.67) ^a						
2006	113	220	25.69	(2.56) ^a	33.	07 (1.74)	a 194.69	9 (12.05)ª	793	27.55 (2.55) ⁶	a j	16.75 (0.97)ª	701.77	(38.89)ª
2011	113	194	23.62	(2.38)a	31.	79 (2.01)	a 171.68	3 (11.42) ^a	891	25.20 (2.37)	a	14.27 (0.88)ª	^b 788.50	(38.72)a
2016	113	199	24.60	(2.16)a	31.	94 (1.96)	a 176.12	L (12.01) ^a	1178	26.90 (2.17) ²	a j	12.96 (0.83) ^b	1,042.4	48 (58.87)b
2021	113	202	23.13	(2.42)a	31.	09 (1.98)	a 178.76	5 (13.27)ª	1161	25.66 (2.42) ^a	a	11.75 (0.59) ^t	1,027.4	43 (51.31) ^b

Rooted in resilience: Species diversity (≥ 2.54 cm DBH)

(Nagele et al 2024 https://doi.org/10.1093/jofore/fvad057)

HYPOTHESIS: increasing quantity, diversity and resilience abovegrou

improves belowground function

Objective 1: tests relationships between aboveground dynamics and soil carbon variation

- Objective 2: establish a continuous record of forest-water relations
- Objective 3: connect long-term changes in soil health to urban public health

Belowground Variation in the World's Premier **Urban Research Forest**

HYPOTHESIS: increasing quantity, diversity and resilience aboveground improves belowground function

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

- Objective 1: tests relationships between aboveground dynamics and soil carbon variation
- Modified Smithsonian ForestGEO soil C protocol
 - 20 20 x 20 m plots (1 ha⁻¹) all soil types represented
 - 48 points overlap with aboveground inventory

Thain Family Forest- Soil Sampling Map

NEW YORK BOTANICAL GARDEN

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

- <u>Objective 1:</u> tests relationships between aboveground dynamics and soil carbon variation
- Modified Smithsonian ForestGEO soil C protocol
 - 20 20 x 20 m plots (1 ha⁻¹) all soil types represented
 - 48 points overlap with aboveground inventory
 - Litter mass, sampling and earthworm presence
 - Soil Organic layer depth and vertical sampling
 - Bulk density and composition

NEW YORK BOTANICAL GARDEN

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

- Objective 1: tests relationships between aboveground dynamics and soil carbon variation
 - Litter mass increases with basal area but decreases with canopy diversity
 - Stepwise AIC $R^2 = 0.26$, p = 0.006
 - Soil organic layer increases with basal area but decreases where worms are present
 - Stepwise AIC $R^2 = 0.23$, p = 0.009

HYPOTHESIS: increasing quantity, diversity and resilience aboveground improves belowground function

Worms present in 173 / 179 sample locations

Brad Oberle

NEW YORK BOTANICAL GARDEN

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

- Objective 1: tests relationships between aboveground dynamics and soil carbon variation
 - Soil bulk density increases with depth and with canopy tree species richness
 - Stepwise AIC $R^2 = 0.17$, p < 0.001
 - Root: soil ratio decreases with depth and with canopy tree species richness
 - Stepwise AIC $R^2 = 0.33$, p < 0.001

HYPOTHESIS: increasing quantity, diversity and resilience aboveground improves belowground function

50% variance within plots 30% between plots

Ongoing: C content & community change

Root : Soil also increases with moisture content

Brad Oberle NEW YORK BOTANICAL GARDEN

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

Objective 2: establish a continuous record of forest-water relations

Fine-resolution characterization of water stress in New York City urban forests with ECOSTRESS

- Part of urban forest that kept 800 Statue of Liberties (25 ha³)
 worth of runoff out of the river in 2012 (Nowack et al. 2018)
- What happens to soil during such a flood?

Dr. S. Perl Egendorf Pace University

Enhanced Ecosystem Monitoring in New York City's Only Old Growth Forest

- Objective 3: connect long-term changes in soil health to urban public health
- 1993 Foundational study of urban soil lead contamination

- o How and where did lead move in 30 years?
- Will removing the Bronx river dam remobilize pollution?

What happens to soil

during such a flood?

Funding

Co-PI

John Zeiger

<u>Interns</u>

- Olivia Baker
- Xavier Counsell
 - Fiona Chou
- Nicky Duby
- Mariel Haberle

Brad Oberle