
Northeastern Permanent Forest Land ClearingForests in the Northeastern United States serve as critical reservoirs of biodiversity, carbon 
storage, and ecosystem services, playing a central role in regional climate resilience and 
sustainable resource management (Foster & Aber, 2004). Despite their importance, monitoring 
forest health, detecting deforestation, and differentiating between temporary management 
disturbances (e.g., shelterwood harvesting, planned rotations) and permanent forest conversion 
remain ongoing challenges (Hansen et al., 2013; Tropek et al., 2014; Olofsson et al., 2021).

Many existing global and regional land cover products conflate cyclic forest management events 
with permanent deforestation, misrepresenting forest dynamics and potentially informing 
misguided policy decisions (Ahmed et al., 2021; Cohen et al., 2022). In the Northeast, where 
active forest management and natural regeneration after harvest are commonplace, such 
misclassifications obscure true forest conditions and trends. For instance, clearcutting followed 
by rapid regrowth is a managed cycle, not permanent forest loss, yet conventional methods 
often treat these temporary reductions in canopy cover as deforestation (Kennedy et al., 2010; 
Griffiths et al., 2021). This project addresses these limitations by leveraging higher-resolution 
(10 m) satellite imagery and time-series analysis to:
• Generate updated land cover maps focused on Northeastern U.S. forests, reflecting fine-

scale spatial heterogeneity.
• Distinguish between short-term, management-related forest disturbances and long-term, 

permanent deforestation that leads to temporally stable non-forest land covers.
• Incorporate multi-year satellite observations—such as those from the Landsat and Sentinel 

programs—to track forest regeneration, ensuring that cyclical harvest-and-recovery 
processes are not mistaken for irrevocable land cover changes (Hermosilla et al., 2022; 
White et al., 2021).

• Provide a clearer picture of drivers behind permanent forest loss, including urbanization, 
agricultural expansion, and solar energy installations etc, by identifying true land cover 
transformations rather than cyclical vegetation dynamics (Hansen et al., 2022; Fagan et al., 
2013).

Overview

Example: Chittenden 10m Land Classification 2016-2024

Classification Accuracy Compared With Dynamic World

Land Classification Accuracy

Data Processing
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Why Are These Data Useful?

Model Overview

Data Visualization

• Improved Land Monitoring: Highlight the strengths of the FEMC Classification System in accurately 
capturing transitions, such as regenerating forests, critical for tracking land-use changes over time.

• Identifying Gaps in Other Models: Show the limitations of models like Dynamic World, particularly its 
low accuracy for shrub classification, aiding in refining remote sensing methodologies.

• Enhanced Conservation Planning: Provide robust, accurate classifications to support ecosystem 
monitoring, conservation strategies, and resource management efforts.

• Adaptation for Climate Monitoring: Enable better tracking of dynamic land-cover changes, vital for 
understanding climate impacts and informing mitigation policies.

• Comparative Model Assessment: Offer a benchmark for assessing the performance of multiple 
classification systems across various land classes.

The figures comparing accuracy in classes and overall accuracy highlight the superior performance 
of the FEMC Classification System, consistently achieving over 85% accuracy compared to the 
variability of Dynamic World (DW), which struggles with transitional land classes. DW nearly fails 
to classify Shrub while the FEMC model excels at identifying regenerating forests, capturing 
transitions between forest and shrub more effectively. Forest is the most consistently classified 
class across all systems, while Urban and Water show moderate accuracy. The FEMC model’s 
ability to classify dynamic land categories demonstrates its robustness compared to DW’s 
limitations. The better the yearly classification, the better the temporal classification of persistent 
forest loss. 

Variable Importance

Summary

• Forest: Dominated by tall, mature trees (deciduous, evergreen, or mixed). Represents 
continuous woody canopies.

• Shrub: Characterized by shorter woody vegetation (shrubs, scrub).Includes shrub-dominated 
wetlands.

• Grass/Crops: Herbaceous vegetation (natural grasslands, pasture, hay, cultivated fields). 
Incorporates herbaceous-dominated wetlands.

• Urban: Built environments, from scattered housing to dense city centers. Encompasses all 
development intensities in a single class.

• Water: Open water bodies and water-dominated wetlands. Lakes, ponds, rivers, and flooded 
areas.

• Bare: Exposed soil, rock, sand, or minimal vegetation cover. Reflects areas with sparse or no 
plant growth.

The process of annual land classification involves filtering Sentinel-2 imagery by region, date 
range, and cloud cover. A cloud masking function removes contaminated pixels, and key spectral 
indices such as NDVI, EVI, SAVI, and others are computed. A temporal smoothing technique 
using a 20-day rolling mean reduces noise caused by cloud gaps. For each year, a median 
composite of the indices is generated, producing an annual summary image. These annual 
composites are classified using predefined land classes such as forest, water, agriculture, and 
built-up areas. 

The classification of permanent loss focuses on detecting areas where forest cover has 
transitioned permanently to non-forest categories like urban areas, agriculture, or bare ground. 
This involves comparing annual classified layers to identify consistent changes across multiple 
years. If a previously forested area remains classified as non-forest for several consecutive years, 
it is labeled as a permanent loss. This approach filters out temporary disturbances such as 
seasonal clearing or thinned forests, ensuring that only irreversible land-use changes are marked 
as permanent loss.

Next Steps
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Cumulative Variable Importance

The cumulative variable importance (IVcumulative
𝑗

 ) in land cover classification using Random Forest evaluates the 

overall contribution of the 𝑗j-th predictor variable in explaining the variability of the target classification output (𝑌) 
over multiple years. It builds on the conditional expectation function, 𝜏(𝑋) = 𝐸[𝑌 ∣ 𝑋] which represents the 
expected value of the target (𝑌) given the predictors (𝑋). By removing the 𝑗-th variable from the predictors (𝑋−𝑗), 
the importance of this variable is measured as the reduction in explained variance in 𝜏(𝑋) To capture this effect 
cumulatively over 𝑇 years, we define:

IVcumulative
𝒋

=
σ𝒕=𝟏

𝑻 𝑬 V 𝝉 𝑿𝒕 𝑿𝒕
−𝒋

σ𝒕=𝟏
𝑻 V 𝒀𝒕

​This measure highlights the 𝑗-th variable’s overall contribution to explaining the output variance across time, helping 
identify key drivers of land cover changes in temporal datasets.
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Processing Visual

20

Spectral Index Processing 1. Filtering and Data Selection: Identify and process regions 
and times of interest.

2. Cloud Masking: Remove cloud-contaminated pixels.
3. Index Calculation: Generate multiple spectral indices.
4. Temporal Smoothing and Imputation: Apply rolling means 

to reduce gaps and noise.
5. Annual Composite: Aggregate data to yearly median 

values.
6. Topographic and Vector Layers: Get the DEM and other 

vector layers for processing
7. Rasterize: Build and calculate raster layers
8. Compute secondary layers: For layers of distance to 

features, calculate Euclidean distance raster
9. Clip raster: Clip to northeast 
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Spatial Layer Processing
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Processing Description 
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To ensure a high quality, reliable classification, we collected over 5,000 training points relatively 
evenly distributed across key land cover classes. Using Google Earth Engine (GEE), our team visually 
interpreted satellite imagery for each year (2016–2024), verifying class assignments following a 
standardized protocol. We included both stable sites (no land cover transitions) and areas identified 
as having changed classes, informed by Hansen et al. (2022) forest loss data. Importantly, we did 
not classify short-term forest harvesting as land cover change, focusing only on lasting transitions 
such as forest to shrub or urban. This approach allowed us to accurately quantify and characterize 
meaningful shifts in land cover composition over time.
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2024 Chittenden County Land Classification

Authors & Contributors: Soren Donisvitch, Alison Adams, Nicholas Aflitto, Jennifer Pontius, Matthew Rios
Data Training: Elissa Schuett, Benjamin Porter, Alexana Wolf, Matthias Sirch, Nancy Voorhis, 2024 FEMC Field Crew

Simplified NLCD Classes  

Training Data and Classification Methodology

The data indicate a significant disparity between the Total Forest-to-Urban Change Area and the 
Total Permanent Forest Loss Area, highlighting differences in land-use dynamics. The Forest-to-
Urban/Bare Change Area is substantial at 758.55 ± 19.7 hectares, reflecting conversion of forested 
areas into urban environments. This underscores urbanization as a major driver of forest cover 
change. In contrast, the Total Permanent Forest Loss Area is much smaller at 27.29 hectares 
(3.6%), indicating that while some forest loss is irreversible (e.g., due to development or 
infrastructure), the overall scale of permanent loss is relatively limited. This distinction is crucial 
for targeting conservation and reforestation efforts. Where permanent forest loss is the long-term 
conversion of forest to Urban or Bare for at least 3 consecutive years without regrowth to shrub or 
forest. 

• Finalize entire Northeast region models and temporal classification.
• Publication of summary and technical reporting on regional drivers.
• Provide hosting and download capability for land class modeling classification and product layers.
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