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Long-term monitoring reveals forest community
change driven by atmospheric pollution and
contemporary climate change
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Forest commhity omosition and the distribution of ihdividual species are
both strongly tied to climatic conditions
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Forest community composition and the distribution of individual species are
both strongly tied to climatic conditions
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Natural and anthropogenically induced climate change exert stron
on geographical range shifts of forest trees
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Boreal-deciduous ecotone (BDE)




Shifts in the Boreal-deciduous ecotone (BDE)
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Long-term forest tree inventory on Camels Hump

Thomas Siccama established inventory plots (3.0x30.5m) in 1964 at intervals of 60m
along an elevational gradient from 550 to 1,160m.

» All trees > 2cm diameter at breast height (dbh) were recorded in plots at each of the 11

stands located along the elevational transect.
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Objectives
1. Characterize how the elevational gradient in forest [‘
composition has shifted over a 50-year period 7

2. Determine the importance of climate change and
atmospheric pollution as drivers of temporal shifts
in forest communities




Generalized Dissimilarity Modeling (GDM)

Multivariate technigue that models
dissimilarity of species composition between
sites or time periods (B diversity) as a
function of environmental differences

Ferrier et al. (2007) Diversity and Distributions
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Slope can vary at any point
along the gradient




Generalized Dissimilarity Modeling (GDM)

Multivariate technigue that models
dissimilarity of species composition between
sites or time periods (B diversity) as a
function of environmental differences

Fits non-linear I-splines for each
predictor variable to represent the
amount of biological change across
an environmental gradient
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Climate data from NOAA land stations

Mean annual temperature
Annual precipitation

Burlington Airport (~100m)
Mt. Mansfield summit (~1200m)

Used linear extrapolation to calculate a
lapse rate
« temperature: -0.5°C / 100m
precipitation: +9.4cm / 100m

Associated predicted climate to
Camels Hump survey plots

https://www.ncdc.noaa.gov/cdo-web/datasets Likens (2010) Chemistry of Bulk Precipitation at Hubbard Brook Experimental Forest, Watershed 1, 1963-present
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Objective 1: Characterize how the elevational gradient in forest composition has
shifted over a 50-year period

1965, 1979, 1983...
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composition between: between:
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Objective 1: Characterize how the elevational gradient in forest composition has
shifted over a 50-year period

1965, 1979, 1983...

Dissimilarity in species - Dissimilarity in elevation
composition between: between:
Plot 1 Plot 2 Plot 1 Plot 2
Plot1 Plot3 Plot 1 Plot 3
Plot1 Plot4 Plot 1 Plot 4

Objective 2: Determine the importance of climate change and atmospheric pollution
as drivers of temporal shifts in forest communities

Dissimilarity in species ~_ Dissimilarity in mean annual Dissimilarity in annual
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N Strong elevational gradient in forest
community turnover within years
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Deviance in community compositional change explained by elevation ranged from 53.53-63.01% across 9
Censuses.
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AN Strong elevational gradient in forest
community turnover within years
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Relative abundance of four canopy species across the
elevational gradient
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At low elevations, red spruce first contracted
(1965-1990) then expanded its range (2015)

Sugar maple has been in decline since 1965




Distribution of canopy species along elevational gradient
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Temporal models show significant effects of pollutant S and
mean annual temperature
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Temporal models show significant effects of pollutant S and
mean annual temperature

0.201 0.201

Total deviance Deviance explained

0.15 0.151 ottt explained (%) AR E L by ind. predictor (%)
Pooled Mean annual
0.10; (550-1160m) 66.73 temperature 14.32

Annual precipitation

Cumulative f diversity
o
)

0.051 0.051 Pollutant N

Pollutant S 27.33

0.00 0.00
1 2 3 4 25 3.0 35 4.0
Pollutant S (mg/L) Temperature (°C)




Temporal models show significant effects of pollutant S and
mean annual temperature

0.201

o
O
(&)

0.051

Cumulative f diversity
o
)

0.001

0.4+

Cumulative f diversity

0.01

0.31

0.21

0.1+

1 2 3 4
Pollutant S (mg/L)

1 2 3 4
Pollutant S (mg/L)

0.201

0.151

0.101

0.051

0.001

0.4+

0.31

0.21

0.1+

0.01

25 3.0 35 4.0
Temperature (°C)

/

2 3 4 5
Temperature (°C)

Cc

0.201

0.151

0.101

0.051

0.00+1

0.4+

0.31

0.01

5 6 7 8
Precipitation (cm)

—_—
125 150 175 200
Precipitation (cm)

d

0.201

0.151

0.101

0.051

0.00+1

0.4+

0.31

0.21

0.1+

0.01

12 1.4 16 1.8
Pollutant N (mg/L)

12 1.4 16 1.8
Pollutant N (mg/L)




Temporal models show significant effects of pollutant S and
mean annual temperature
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The spatiotemporal changes in the forest community
on Camels Hump are reflective of regional change

e.g. red spruce recovery in recent decades
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Summary

Forest community is more homogeneous across the elevational gradient in the latest census, but
we do not detect evidence of a synchronous upslope movement of species

Species responses to climate change are complex
and are not always accounted for in climate
models

The spatiotemporal changes in the forest community
on Camels Hump are reflective of regional change

e.g. red spruce recovery in recent decades

The temporal models show the importance of recovery from 8 T
atmospheric pollution, and corroborate previous findings of - Am;;cans}gar P
climate effects on northeastern forests Doech maple spruce —f

Wason & Dovciak (2017) Global Change Biology
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