F

What's at risk?

Implications of climate change in regional forests

Maria Janowiak <u>maria.janowiak@usda.gov</u> Northern Institute of Applied Climate Science USDA Forest Service

Climate Change Response Framework www.forestadaptation.org

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

THE BAD:

Shorter, warmer winters.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

THE GOOD:

Longer growing seasons.

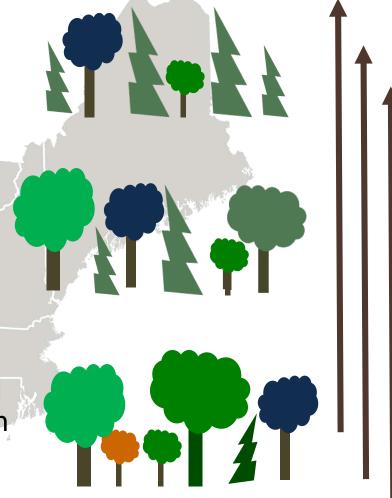
THE BAD:

Shorter, warmer winters.

THE UGLY:

More extreme events.

NY DEC


SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

Many northern/boreal species are projected to decline in the region—contract to more northerly and higher-elevation locations

Many species common farther south are expected to see increased and new habitat within the region.

SHIFTING SEASONS | **SHIFTING SPECIES** | SHIFTING STRESSORS

Likely to decline

- Balsam fir
- Black, red, & white spruce
- Northern white-cedar
- Eastern hemlock

- Black ash
- Paper birch
- Quaking aspen
- Tamarack

Mixed model results

- American beech
- Sugar & red maple
- Yellow birch
- White pine

Potential "winners"

- American elm
- American basswood
- Black cherry
- Eastern hophornbeam
- Gray birch
- Northern red oak
- Serviceberry
- Silver maple
- Sweet birch
- White oak

New habitat (esp. south)

- Black hickory
- Chinkapin oak
- Common persimmon
- Hackberry
- Loblolly pine
- Osage-orange
- Shortleaf pine
- Southern red oak
- Sweetgum
- Virginia pine

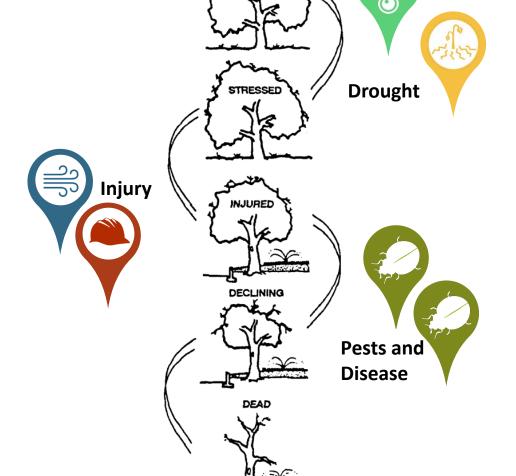
www.forestadaptation.org/ne-species

SHIFTING SEASONS | **SHIFTING SPECIES** | SHIFTING STRESSORS

Location, Location, Location

Research and assessments describe <u>broad trends</u> but <u>local</u> <u>conditions</u> and <u>management</u> make the difference.

SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS



SHIFTING SEASONS | SHIFTING SPECIES | SHIFTING STRESSORS

Climate change is a "threat multiplier"

- Chronic stress
- Disturbances
- Insect pests
- Forest diseases
- Invasive species

Interactions make all the difference.

Image: Bartlett Tree Experts

Responding to Change

Responding to Change

Adaptation is the adjustment of systems in response to climate change.

Adaptation actions are designed to specifically address climate change impacts and vulnerabilities in order to meet goals and objectives

A Spectrum of Adaptation Options

RESISTANCE

Improve defenses of forest against change

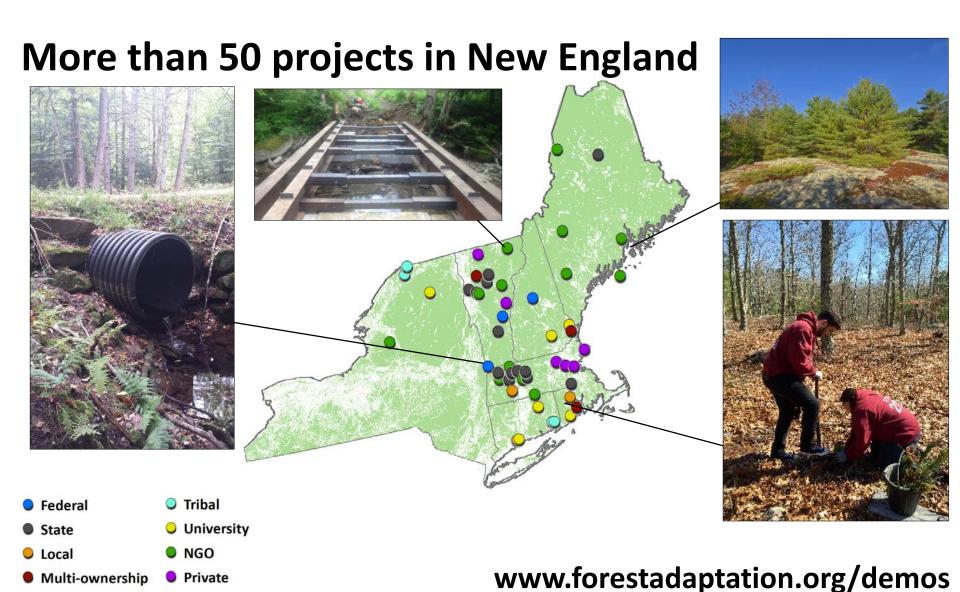
Maintain relatively unchanged conditions

and disturbance

RESILIENCE

- Accommodate some degree of change
- Return to prior reference condition following disturbance

TRANSITION



- Intentionally facilitate change
- Enable ecosystem to respond to changing and new conditions

Real-World Adaptation Projects

Adaptation Options in Projects

RESILIENCE

TRANSITION

Northern New England:

32%	43%	25%

Southern New England:

21%	46%	33%

Learning by Doing

Every action becomes an experiment in an era of change, increasing the need to record and evaluate our actions.

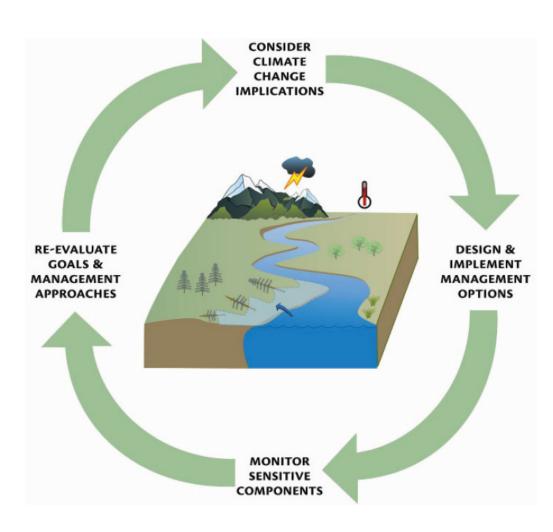


Image: USGCRP/Kareiva et al. 2010

Learning by Doing

Every action **becomes an experiment** in an era of change, increasing the need to **record and evaluate** our actions.

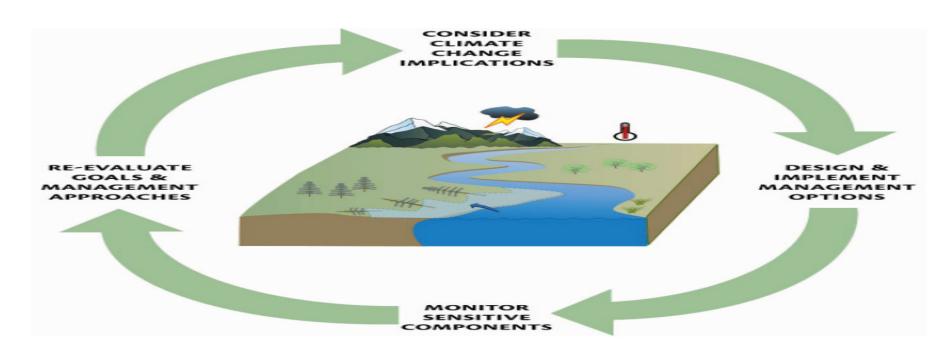
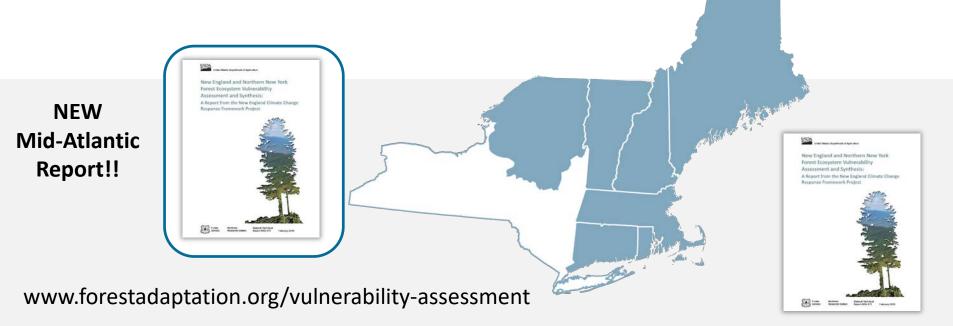


Image: USGCRP/Kareiva et al. 2010

Summary

Forests are changing.

> Shifting seasons, species, and stressors


Match adaptation actions to the need.

> Resistance, resilience, and transition

Vulnerability Assessment

- Synthesize existing assessments and scientific literature
- Incorporate new results from forest impact models
- Draw on local expertise of scientists and land managers
- Describe state-of-knowledge for anticipated changes in climate and response of forest ecosystems

The Process of Adaptation

DEFINE project area and management goals.

ASSESS climate impacts and vulnerabilities.

EVALUATE challenges and opportunities.

IDENTIFY adaptation actions for implementation.

MONITOR whether actions were effective.

4

Adaptation Actions in Projects

- 1. Sustain fundamental ecological functions.
- Reduce existing biological stressors.
- 3. Reduce impacts of severe disturbances.
- 4. Maintain or create refugia.
- 5. Enhance species and structural diversity.
- 6. Promote ecosystem redundancy.
- 7. Increase landscape connectivity.
- 8. Enhance genetic diversity.
- 9. Facilitate species transitions.
- 10. Realign after disturbance.

If you want a single "answer" for how to respond to climate change, it's

"It depends"

It depends on where you are working and what you're trying to achieve.