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BaCkg round Spatially-explicit tree species distribution maps are increasingly valuable to forest managers and researchers, particularly in light of the effects of climate change and invasive pests on

forest resources. Advanced remote sensing techniques, such as spectral unmixing and object-based Image analysis (OBIA), utilize spectral and ancillary environmental data to provide information on
proportional species composition and enable more precise forest cover mapping. This is especially useful in Northeastern forests where species composition is often highly mixed. Here, we:

1. Develop a novel method for classifying tree species/genera across a heterogeneous landscape that integrates spectral unmixing and OBIA methods using
multitemporal Landsat imagery and ancillary environmental data.

2. Compare the accuracy of our approach to large-scale forest mapping products, including the National Land Cover Database (NLCD), LANDFIRE Existing Vegetation
Type (EVT Group), and the National Forest Type Map (USFS NFTM).

Pixel-based Spectral Unmixing Workflow
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Percent Basal Area Results and OBIA Workflow
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